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Abstract

A package Format.m extending Mathematica’s built-in formatting rules is pre-
sented. Examples of shortcomings of the standard rules are given, where code gen-
erated may not be syntactically correct and of appropriate precision. These issues
are addressed and the formatting rules are extended to include lists as data objects
and assignments to expressions. The package may be used to considerably enhance
and automate code generation. The result is a symbiosis of symbolic-numeric en-
vironments built upon the existing Splice communication process. Finally, some
examples from applied numerical mathematics are given, where the package has
been used to establish a generalised formulation to a problem via the use of a tem-
plate file.
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1 Introduction

This document is an introduction to the package Format.m. The main purpose of the pack-
age is to translate Mathematica expressions and assignments into C [10], FORTRAN77
[20], TEX[12] and Maple [17].

Mathematica has its intrinsic formatting rules, CForm, FortranForm and TeXForm etc.
These often fail to give accurate and syntactically correct output and are somewhat limited
in scope. These are compared and contrasted with output from the Assign functions of
Format.m. It should be emphasised that some of the examples chosen to demonstrate
shortcomings in the formatting rules are also valid for other symbolic packages. In fact,
some of the features outlined are (as yet) unavailable in alternative symbolic environments.

There are traditional conceptions the roles and capabilities of compiled and symbolic
languages. Commonly, symbolic computation programs are regarded as fairly limited in
most of the following areas:

1. Solving non-linear ODEs and PDEs

2. Solving non-linear algebraic equations

3. Solving non-linear optimization problems

These problems are the province of numerical computation, because adequate analytic
solution methods may not exist and therefore may not be implemented in a symbolic
computation package. However symbolic methods can be used to derive expressions nec-
essary for performing numerical computations - such as gradients and Jacobian and Hes-
sian matrices. Thus, the traditional roles of numeric and symbolic computation are not
distinct and many benefits arise from merging the two.

Numerical computations in Mathematica (being an interpreted language) can be lim-
ited in use for large scale problems [30]. Mathematica is a useful tool for obtaining a
quick formulation to a problem, but often involves high computational overhead when
compared with compiled languages. Hence there is a need to translate symbolic code
into a more efficient computational environment. It is believed that the integration of
symbolic-compiled language environments will lead to many new approaches in areas of
applied science and numerical mathematics [6, 34].

There are two forms of communication process in Mathematica - structured and un-
structured communication. Structured communication is achieved via MathLink [18]. The
basic idea is to exchange complete Mathematica expressions to external programs which
are specially set up to handle such objects. Structured communication via MathLink re-
quires strong data typing for all information passed in the communication process and
necessarily has a very complex syntax. Often there is no need to establish a two-way
communication process, but what is required is the translation of symbolic code for use
in an alternative environment.

Unstructured communication consists of sending and receiving ordinary text from ex-
ternal programs. The package Format.m is intended primarily for use with the Splice
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form of unstructured communication, but may also be used interactively within a Math-
ematica session. Splice is a one-way communication process which, the author feels, has
not achieved it’s full potential due to syntactical limitations in Mathematica’s built-in
formatting code. Format.m has been developed to address these issues.

The main ethos behind Splice is to set up a (generalised) template file containing
a mixture of (active) Mathematica and (passive) compiled language source code. The
template file is processed with Splice, which evaluates the active parts (the passive parts
remain unaffected), producing a file consisting solely of compiled language code. It is
important to emphasise the portability of the source code files. In general a template
file to a problem is written, Mathematica then processes this file using Splice and the
resulting file may be transferred to an alternative hardware platform for efficient execution.

By utilising the (numerous) available options, the functions defined in Format.m al-
low a high degree of user control. This enables precise formatting of expressions which
eliminates the need for editing of the resulting code. The result facilitates the automation
of code generation and the merging of symbolic-numeric environments built upon the
existing interface and communication protocols.

The general design philosophy relies on attaching rules to functions in order to re-
format them. This will ultimately result in longer execution times when compared with
the built-in formatting functions. However, the goal is efficient and accurate compiled
language code. It is anticipated that the compiled language code will be used extensively
and may be executed many times. The small degradation in performance when translating
code is a trade-off that is worth making, in order to provide more accurate and more
flexible formatting tools. The current version of Format.m consists of over 1500 lines of
code (including full on-line documentation) which is an indication of the complexity of
the task involved.

There are several intended purposes for this documentation. Firstly it serves as a
tutorial introduction to Format.m. Secondly it provides a comprehensive test suite which
is used extensively in the development stages of the package. Thirdly, the package and
examples are updated as new versions of Mathematica appear. The evolution spans
several years including development and the documentation refers to the features and
implementation strategies of the current version.

In the next section a summary of the main features of the Assign functions of Format.m
is given along with the steps required for initialisation. The construction of the package
is then briefly detailed, illustrating design decisions. Examples of interactive usage within
a Mathematica session are given throughout and contrasted with the standard format-
ting rules. The implementation is broken down into several basic components which are
outlined in detail in section 4. Extensions to other format types is demonstrated. A func-
tion with no current parallel in Mathematica, MapleAssign, has been added to translate
basic expressions from one symbolic environment to another. The issue of optimization
of computational sequences has also been addressed [29]. Optimization of the generated
code can yield significant performance benefits and a brief introduction is given. Finally,
some examples demonstrating practical usage of the symbolic-numeric environment are
provided. The package has been developed and used extensively for research in numerical
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mathematics and examples are naturally taken from this area. There are many other
potential applications.

2 Overview

An overview of the features available in Format.m is given in this section. The initialisation
steps that are assumed in subsequent sections are then outlined.

2.1 Summary of features

Below is a brief summary of the main features of the Assign and related functions of
Format.m.

• CAssign translates to C, FortranAssign to FORTRAN77 and MapleAssign to
Maple.

• The Assign function accepts any Mathematica OutputForm (e.g. TeXForm).

• Translation of and assignments to expressions and lists of expressions is possible.
Multiple assignments are also possible.

• Many options are provided for precise control over the formatting of expressions.

• Large FORTRAN expressions can automatically be broken into sub-expressions in
order to stay within compiler limits.

• Code translation adheres to ANSI C and FORTRAN standards.

• Optimized computational sequences are possible.

• Many Mathematica rules have been rewritten to produce more efficient executable
code.

• The range of integer and floating point numbers can be checked against IEEE stan-
dards.

• Syntax checking on all options is performed and full on-line documentation is avail-
able.

2.2 Initialisation

In order to reproduce the examples which follow, the package Format.m is required, along
with the files driver.f, example.mf, func.mf, linsolv.mf, newton.mf, rksub.mf, and
sub.mf. All Mathematica executable code in subsequent sections is labelled using In and
Out references, initialised in each new section unless otherwise stated.
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The next executable statements perform the following three steps. The first (optional)
step switches off spelling warning messages for variables with similar names. The second
step sets the line width to 73 characters for output. This is required for producing 72
column FORTRAN code (an additional character being required for line-breaking).1 Note
that for the the NoteBook front end, the option Break at x character width (in the
Edit/Preferences/Action menu) may over-ride with this setting. The third step loads
in the package. An optional directory path may also need to be be specified, depending
upon where the package resides.

In[1]:= Off[General::spell,General::spell1];

In[2]:= SetOptions[$Output,PageWidth->73];

In[3]:= <<Format‘;

In the sections which follow, input lines begin with In[4] if these steps have been assumed.

3 Construction

This section explains some of the details of how the package has been implemented and
the general design philosophy.

3.1 Output formats

A print form (or output form) in Mathematica is a printing specification. This is inde-
pendent of the evaluation of an expression, since evaluation is performed without regard
to the print form. For example, reformatting an expression has no effect on the value of
the expression itself. In this sense, print forms are referred to as wrappers. The format
type specifies how expressions are to be formatted; FormatValues[f] specifies the print
forms associated with a symbol f. A label attached to Out (e.g. //FortranForm) is used
to indicate special formatting associated with an expression.

In[1]:= expr = FortranForm[1 + Sin[x]^2]

Out[1]//FortranForm=

1 + Sin(x)**2

The result of the previous computation is the expression inside the print form (without
FortranForm wrapped around it) :

In[2]:= %

Out[2]:=

2

1 + Sin[x]

The value of expr includes the wrapper:

1This document has in fact been typeset with the line width set at 71 characters.
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In[3]:= expr

Out[3]//FortranForm=

1 + Sin(x)**2

Maeder [15] gives an example of the use of Format to print arguments as indices and
thus mimic subscripted mathematical notation. A list of available print forms may be
obtained by issuing the command $PrintForms. Other output formats exist, such as
TreeForm[expr] which returns a tree representation of expr with different levels printed
at different depths. A list of output forms may be obtained using $OutputForms. The for-
matting functions proved difficult to extend for our purposes and an alternative strategy,
outlined in the next section, has been adopted.

3.2 Output as strings

Mathematica can be used to handle pure strings of text. Many facilities for string-
conversion and manipulation are provided. It is also possible to use standard programming
concepts such as transformation rules.

In[4]:= str = ToString[expr];

In[5]:= FullForm[str]

Out[5]//FullForm=

"1 + Sin(x)**2"

A string is much more flexible for formatting purposes than an expression. For example,
long expressions can be broken into multiple lines at any point, without regard to syntax.
lhs variables, array indices and assignment operators ("="), can be efficiently attached
using StringJoin, in order to convert an expression into an assignment. There are also
many built-in string manipulation tools available.

In[6]:= ToLowerCase[str]

Out[6]= 1 + sin(x)**2

When print forms of expressions are converted to strings,the ability to manipulate the
evaluated forms (as was possible in section 3.1) is forfeited. The ability to recover expres-
sions using the expression parser ToExpression can also be lost. In the following example
the expression no longer evaluates to Power[Sin[x],2].

In[7]:= ToExpression[str] //FullForm

Out[7]//FullForm=

Plus[1, Times[Sin, NonCommutativeMultiply[x, 2]]]

In this way the behaviour of Mathematica’s print form wrappers has not been maintained.
This is considered a price worth paying in order to provide improved formatting tools.
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3.3 Reformatting expressions

Several Mathematica functions have been redefined in order to modify the way that they
are formatted. In order to do this a Block structure has been used to temporarily set
aside current definitions and attributes (such as Protected) and assign new definitions.
Any redefinitions hold only within the scope of the Block and this form of encapsulation
mechanism avoids interference with the rest of the system. For example, in some cases it
is convenient to attach a rule to a built-in function such as Power. In such cases, Block
ensures that the rule is removed before any result is returned.

3.4 Localised definitions

Rules defined using Mathematica’s Format hold only in the body of a Block. They do
not hold for functions executed within the Block. This behaviour can be illustrated by
the following example:

In[1]:= mainformat[expr_,FortranForm]:= FortranForm[expr];

In[2]:= badformat[expr_] :=

Block[{ArcSin,ASin},

Format[ArcSin[y_],FortranForm]:= ASin[y];

mainformat[expr,FortranForm]

];

In[3]:= badformat[ArcSin[a+b]]

Out[3]= ArcSin(a + b)

The format rule for ArcSin does not hold within the body of mainformat and is never
applied to the function. It is therefore difficult to implement a modular design using
this approach which, at the very least, makes code maintenance difficult. A preferred
approach is outlined in the next section.

3.5 Renaming functions

It turns out to be efficient and flexible to rename functions by applying a head replacement
function. The example below illustrates this. The function Csc is redefined in terms of
a compiled language equivalent and the result is formatted as a FORTRAN expression.
The function FD is used for the FORTRAN Definition.

In[1]:= mainformat[expr_,FortranForm]:= FortranForm[expr];

In[2]:= myformat[expr_] :=

Block[{Csc,FD},

FD[Sin]=sin;

Csc[x_]:= Evaluate[1/FD[Sin][x]];;

mainformat[expr,FortranForm]

];
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Evaluate is used to avoid head replacement each time the rule is executed, by inserting
the redefinition when the rule is created.

In[3]:= myformat[y Csc[2 x]]

Out[3]= y/sin(2*x)

Using this method, temporary rules defined during execution of the Assign functions
do not interfere with global definitions. As a cautionary note it is emphasise that this
approach may affect the evaluation of expressions. For example, Csc[2.3] would not eval-
uate numerically if myformat had the attribute HoldAll. Thus numerical approximation
(such as using N) must be performed before this step.

3.6 Package documentation

Full online documentation for all functions and options is available.

In[4]:= ?FortranAssign

FortranAssign[lhs,rhs,options]

FortranAssign converts the assignment of lhs to rhs into FORTRAN

compatible strings. Options enable control over the conversion

process. Expressions are broken up and continuation characters are

added by default. The precision of real numbers in expressions may

be specified together with single or double precision exponents.

Generic FORTRAN functions are used since compilers can infer the

function type from the precision of the argument. If assignments to

expressions are not required, the lhs argument may be omitted.

When used with Splice, the option FormatType->OutputForm should be

specified.

In[5]:= ?AssignToArray

AssignToArray is used to convert Mathematica arrays and functions into

arrays in C and FORTRAN. Arguments are protected from N and

maintained in exact form. AssignToArray may evaluate to any list of

symbols.

A complete list of all Assign related functions and options may be obtained as follows:

In[6]:= ?*Assign*

Out[6]=

Assign AssignIndex AssignTemporaryIndex

AssignBreak AssignLabel AssignToArray

AssignCase AssignMaxSize AssignToFile
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AssignEnd AssignOptimize AssignTrig

AssignFortranNumbers AssignPrecision AssignZero

AssignFunction AssignRange CAssign

AssignHyperbolic AssignReplace FortranAssign

AssignIndent AssignTemporary MapleAssign

A complete list of all symbols introduced by the package (including those used internally)
can be obtained by issuing the command ?@ in a new session after the package has been
loaded.

3.7 Parameter and option checking

Mathematica provides a facility for data-typing of function arguments. When a pattern
match for an argument fails the unevaluated function is returned.

In[4]:= g[x_Integer]:=x^2;

In[5]:= g[2.3]

Out[5]= g[2.3]

Since there are many options available in the package, it is preferable to perform parameter
type checking for all arguments and options using a conditional test (/;). An appropriate
error message is then output [16]. This behaviour is demonstrated with an example of
incorrect input syntax, showing the close correspondence with Mathematica’s own internal
error messages.

In[6]:= FortranAssign[x,Pi t,AssignIndent->wrongtype]

FortranAssign::args:

The option AssignIndent did not evaluate to a string or a

positive integer.

Out[6]= FortranAssign[x, Pi t, AssignIndent -> wrongtype]

The option AssignIndent specifies an ASCII string prepended to the output.

4 Implementation

There are many details which need to be considered when translating from one language
to another. f2c the FORTRAN to C converter from netlib illustrates this [23]. Numerous
examples of the limitations and deficiencies of Mathematica’s formatting rules are given
along with demonstrations of how these are overcome using the Assign functions.
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4.1 The precedence of operators and operator syntax

Parentheses can be used in order to specify a precedence for the order of evaluation of oper-
ations in a computation. For example, the expression !a==b parses as Not[Equal[a,b]]
which is converted to Unequal[a,b]. Whereas, (!a)==b parses as Equal[Not[a],b]

which is entirely different. A code translation package is practically useless if it does not
produce code that obeys the operator precedence of the target language. Fortunately,
most cases are dealt with correctly by Mathematica’s format functions, since they simply
correspond to the operator precedence in that language. This is not always immediately
obvious. For example, what is the order of precedence in the expression a^b^c? In fact
this is evaluated as a^(b^c) and correctly interpreted in FORTRAN without parenthe-
ses. Unfortunately, there are cases where Mathematica’s syntax for operators does not
produce correct target language code.

For example, logical operators can be specified with multiple arguments in Mathemat-
ica. FortranForm is unable to translate these and returns syntactically incorrect output.

In[4]:= FortranForm[ a>b>c ]

Out[4]//FortranForm=

Greater(a,b,c)

In contrast, FortranAssign knows about such operators and performs some transforma-
tions to manipulate the expressions into appropriate form.

In[5]:= FortranAssign[ a>b>c ]

Out[5]//OutputForm=

(a.gt.b).and.(b.gt.c)

Some cases are not so obvious and require additional subtlety, because they do not obey
the law of transitivity: If a→ b and b→ c then a→ c.

In[6]:= FortranAssign[a!=b!=c]

Out[6]//OutputForm=

(a.ne.b).and.(a.ne.c).and.(b.ne.c)

In fact there are other examples when translation of relatively simple relational statements
is inaccurate. The following example illustrates this for the Inequality construct.

In[7]:= FortranForm[ a>b<c ]

Out[7]//FortranForm=

Inequality(a,Greater,b,Less,c)

Translation of expressions involving Inequality is possible with the Assign functions.

In[8]:= FortranAssign[ a>b<c ]

Out[8]//OutputForm=

(a.gt.b).and.(b.lt.c)
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4.2 Rules for code translation

When translating symbolic expressions, certain functions should be restricted according
to the type of their arguments (integer, real, double, complex etc.). For example, all the
arguments of the FORTRAN function max must be of the same type. To ensure ease of
use and improved efficiency, the issue of data typing of function arguments has not been
addressed. The tools provided are assumed to have been used appropriately.

4.3 Conforming to ANSI standards

Both FortranAssign and CAssign convert to the full set of compiled language func-
tions according to the American National Standards Institute guidelines. Some examples
of translating to compiled language intrinsics are given in this section. CAssign and
FortranAssign automatically test for the presence of non-standard ANSI C and FOR-
TRAN functions. An appropriate warning message is issued the first time a function
which does not conform to the standard is encountered.

In[4]:= FortranAssign[Sin[f[x]]+f[x]]

AssignFunction::undef:

Expression contains the function f which is not part of the ANSI

FORTRAN standard.

Out[4]//OutputForm=

sin(f(x))+f(x)

Only generic functions are used. These are functions which are not restricted by their
arguments. For example, sin is generic whereas dsin is not, since it only accepts double
precision arguments.

However, in some cases it is desirable to mix Mathematica with target language code.
The ANSI test function also knows about type-specific variants of functions, which are
assumed to be in lower case form.

In[5]:= FortranAssign[ Cos[x]+dsin[y] ]

Out[5]//OutputForm=

cos(x)+dsin(y)

Examples in C include functions such as fabs and fmod which are real argument versions
of abs and mod.

This concept can be taken further to produce code fragments. This example uses the
FORTRAN function dim(x,y), which returns the maximum of x-y and 0. First the ANSI
compatibility message is suppressed because programming language constructs are not
implemented in the test.
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In[6]:= Off[AssignFunction::undef];

In[7]:= FortranAssign[ if[dim[x,y]<10,y,x] ]

Out[7]//OutputForm=

if(dim(x,y).lt.1.d1,y,x)

The user should take care when using Mathematica constructs with the Hold attribute.

4.4 Utilising intrinsic compiled language functions

It is desirable to convert Mathematica functions into intrinsic (built-in) compiled language
functions whenever possible. The reason for this adherence is not merely syntactic. In
many cases the code produced is more efficient.

Mathematica converts Exp[x] to Power[E,x] which is then formatted in a way that
does make use of the FORTRAN exp function. It is inefficient to calculate the exponential
of a function as a power of a constant E in this way.

In[4]:= FortranForm[Exp[x]]

Out[4]//FortranForm= E**x

FortranAssign converts to the exponential function in FORTRAN.

In[5]:= FortranAssign[x Exp[y],AssignIndent->""]

Out[5]//OutputForm= x*exp(y)

Consider the inverse trigonometric and inverse hyperbolic family of functions.

In[6]:= FortranForm[ArcSin[x]]

Out[6]//FortranForm= ArcSin(x)

ArcSin is not a legitimate intrinsic FORTRAN function. The corresponding FORTRAN
function is asin.

In[7]:= FortranAssign[ArcSin[x],AssignIndent->""]

Out[7]//OutputForm= asin(x)

Some related functions have no compiled language analogy.

In[8]:= FortranForm[ArcCot[x]]

Out[8]//OutputForm= ArcCot(x)
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ArcCot is not a legitimate FORTRAN function (and neither is acot). FortranAssign

converts such functions by default, controlled via the option AssignTrig.

In[9]:= FortranAssign[ArcCot[x],AssignIndent->""]

Out[9]//OutputForm= atan(1.d0/x)

Notice that ArcCot is not uniquely defined at x = 0, despite the fact that Mathematica
returns the result Pi/2 (perhaps it should return ±Pi/2). There is therefore no loss
of generality in using the above definition. The handling of branch cuts and choice of
principal values is a common criticism of computer algebra systems [33]. If principal
values are not used in compiled languages, substantial loss of precision can result.

The existence of inverse hyperbolic functions is compiler dependent since they are not
part of the ANSI standard. Some compilers provide intrinsic functions for these. When
the compiler does not support such functions, an option for rewriting in terms of Log and
Sqrt is provided which return the unique principal value.

In[10]:= FortranAssign[ArcTanh[x],AssignHyperbolic->True]

Out[10]//OutputForm=

5.d-1*log((1.d0+x)/(1.d0-x))

Moreover, Mathematica’s representation of the two argument function ArcTan is some-
what unusual in reversing the standard convention.

In[11]:= FortranAssign[ArcTan[y,x]]

Out[11]//OutputForm=

atan2(x,y)

In summary the options AssignTrig and AssignHyperbolic may be used to format
trigonometric and hyperbolic functions, which may not be supported by an ANSI C or
FORTRAN conforming compiler. A method of quantifying the magnification of errors
in expression sequences is the condition number [26]. Transformations such as those
performed above should also be justified on this basis.

4.5 Maintaining appropriate precision

FortranForm will not always produce code of the correct precision, typically only 6 digits
are printed. This behaviour was improved in version 2.2 where floats were (sometimes
unnecessarily) printed to full machine precision. However, some compilers do not keep
the correct precision unless floats are specified with single or double precision exponents.

In[4]:= FortranForm[100 Pi t //N]

Out[4]//FortranForm= 314.159*t
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The default setting for AssignPrecision produces $MachinePrecision digit, double pre-
cision C and FORTRAN code for efficiency. In FortranAssign, floating point numbers
are coerced into exponent form by default, using an appropriate exponent which is deter-
mined by the requested precision.

In[5]:= FortranAssign[100 Pi t, AssignIndent->""]

Out[5]//OutputForm= 3.141592653589793239d2*t

If the requested precision is less than or equal to 8 digits, then single precision floating
point numbers are output.

In[6]:= FortranAssign[100 Pi t, AssignPrecision->8,

AssignIndent->""]

Out[6]//OutputForm= 3.14159265e2*t

Considerable time may be required to coerce numbers into exponent form. The option
AssignFortranNumbers can be used to suppress this form if it is not required by the
compiler.

Constants and function arguments can be maintained in exact form if required. This
is advantageous if, for example, a symbol occurs many times - it need only be assigned a
value once at the beginning of a file. This is also useful if integer arithmetic is required.

In[7]:= FortranAssign[100 Pi t, AssignPrecision->Infinity,

AssignIndent->""]

Out[7]//OutputForm= 100*Pi*t

As demonstrated, when converting symbolic expressions (a variant of) the function N

is applied to convert all numerical constants to reals, with the precision controlled by
the option AssignPrecision. Evaluation can be delayed until the code is compiled and
executed, by specifying analogous lower case functions (these are all documented and
declared in the package).

In[8]:= FortranAssign[sin[1],AssignIndent->""]

Out[8]//OutputForm= sin(1.d0)

Function types can be inferred from the precision of the argument. Thus, explicit use of
the dsin/DSIN function is unnecessary. Care should be exercised when using coercion in
an expression containing a mixture of single and double precision values. In such cases,
the appropriate precision may not be maintained.

This section is concluded with some issues concerning the range of floating point and
integer numbers. Mathematica utilises so-called arbitrary precision (or BigNum) arith-
metic. Therefore some numbers contained in symbolic expressions may not be admissible
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in a corresponding compiled language statement. The option AssignRange has been pro-
vided to test the range of numbers occurring in the input. Single or double precision real
and float ranges are selected for the test according to the setting for AssignPrecision.
For details of the IEEE standards see [26, 31] (the former reference contains a useful
section on rounding strategies, while the latter contains an interesting section on ma-
chine representation of numbers). A comprehensive survey of the pitfals of floating point
arithmetic is given in [9].
Integer numbers which are outside the permissible range are coerced to floats.

In[9]:= FortranAssign[10^20 t,AssignPrecision->Infinity,

AssignRange->True]

AssignRange::integer:

63

Expression contains integers outside the permissible range -2

63

to 2 - 1 which cannot be represented in IEEE double

precision and have been converted to floating point numbers.

Out[9]//OutputForm= 1.d20*t

A warning message is output if floating point numbers lie outside the permissible range.

In[10]:= FortranAssign[10.^40 t,AssignPrecision->8,AssignRange->True]

AssignRange::float:

Expression contains machine numbers outside the permissible range

-38 38

1.17549 10 to 1.70141 10 for IEEE single precision.

Out[10]//OutputForm= 1.e40*t

4.6 Converting powers

FortranForm incorrectly maintains fractional powers as rationals - these will be truncated
by a compiler.

In[4]:= FortranForm[x^(-2/7)]

Out[4]//FortranForm= x**(-2/7)

Using FortranAssign most rational powers are converted to floating point numbers.
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In[5]:= FortranAssign[x^(-2/7),AssignIndent->""]

Out[5]//OutputForm= x**(-2.d0/7.d0)

This representation is generally more compact than carrying out the division, which will
be handled by a compiler when creating the executable file. Where possible, Mathematica
functions are converted to compiled language functions (see section 4.2). An example is
the square root function in FORTRAN.

In[6]:= FortranAssign[y x^(-1/2),AssignIndent->""]

Out[6]//OutputForm= y/sqrt(x)

The only exception to the conversion of rational exponents to floats concerns expressions
of the form x±1/2. Expressions generally translate into more lines of code, but this is
outweighed by improvements in performance.

Unlike C, FORTRAN compilers recognise integer powers and use special heuristics to
evaluate them more efficiently than floats. Therefore FortranAssign maintains integer
powers as integers.

In[7]:= FortranAssign[x^7,AssignIndent->""]

Out[7]//OutputForm= x**7

A strategy for efficient factorisation of powers is implemented in a separate package for
peforming optimizations (see section 5 and [29]).

4.7 Array and sign conversion

There is nothing to distinguish between arrays and functions in Mathematica. Array
and function arguments may therefore not be handled appropriately when translating
expressions. Assign and related functions enable arrays and functions to be distinguished.

On an alternative note, the internal representation of a symbolic expression is often
translated verbatim and this can lead to inefficiencies. An example is negation. Mathe-
matica stores the expression -x internally as Times[-1,x]. The following expression is
translated into appropriate form in FORTRAN.

In[4]:= FortranForm[ -x ]

Out[4]//FortranForm= -x

However, the function N is often applied to obtain numerical approximants, and convert
constants, often simplifies results. This is not accounted for by Mathematica’s formatting
functions.
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In[5]:= FortranForm[ N[a[1] - b[1]] ]

Out[5]//FortranForm= a(1.) - 1.*b(1.)

Two issues are raised here. There is a need for some method of protecting array or function
arguments from numerical approximation. We also have to overcome the display of N[-x]
as -1.*x, which results in unnecessary multiplication. A partial fix is to explicitly use
NProtectedAll to protect specified arguments from N.

In[6]:= SetAttributes[{a,b},NProtectedAll];

In[7]:= FortranForm[a[1] - b[1]] //N

Out[7]//FortranForm= a(1) - 1.*b(1)

These attributes remain unless they are cleared.

In[8]:= Attributes[{a,b}]

Out[8]= {{NProtectedAll}, {NProtectedAll}}

Array conversion in the Assign functions is handled using the option AssignToArray.
Conversion to the negative sign is accomplished by using a pattern matching rule to
recover expressions of the form Times[-1., ].

In[9]:= ClearAttributes[{a,b},NProtectedAll];

In[10]:= FortranAssign[a[1] - b[1], AssignToArray->{a,b},

AssignIndent->""]

Out[10]//OutputForm= a(1)-b(1)

Any attributes given to symbols by Assign functions are removed before execution is
completed.

In[11]:= Attributes[{a,b}]

Out[11]= {{}, {}}

As illustrated above, when an array is specified explicitly using AssignToArray, it is
exempt from the test for ANSI compatible functions.

A final example illustrates how functions with mixed argument types can be con-
structed and translated. These are neither arrays (integer indexed functions) nor real
argument functions. The first step is to protect arguments from N.

In[12]:= SetAttributes[m,NProtectedAll];
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The next step is to override the rule for specific cases. This can be done by specifying
how arguments should be evaluated when N is applied.

In[13]:= m/: N[m[i_,r_,j_],prec___]:= m[i,N[r,prec],j] /; Head[r]=!=Real;

The pattern condition is needed to avoid infinite recursion, because of the infinite eval-
uation model that Mathematica uses. Here is an example of how this works. First the
warning message for non-ANSI functions is suppressed.

In[14]:= Off[AssignFunction::undef];

In[15]:= FortranAssign[ 2 m[1,3/4,2] ]

Out[15]//OutputForm=

2.d0*m(1,7.5d-1,2)

4.8 String manipulation

Since expressions are converted to strings, various options are provided for for string
manipulation purposes.

4.8.1 String replacement

Character replacement is possible using standard transformation rules. As an example,
output strings can be compacted using AssignReplace->{" "->""} and this is the default
for FortranAssign. The advantage is a reduction in the number of lines of code needed
to represent an expression, which makes line-breaking more efficient. This technique can
be used to substitute for other strings, such as to replace generic function types.

In[4]:= FortranAssign[Sin[x],AssignReplace->{"sin"->"dsin"}]

Out[4]//OutputForm=

dsin(x)

The replacement is literal in the sense that exact character sequences are substituted
and should be used with caution. In this example an ANSI FORTRAN function is not
obtained.

In[5]:= FortranAssign[ArcSin[x],AssignReplace->{"sin"->"dsin"}]

Out[5]//OutputForm=

adsin(x)
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4.8.2 Upper and lower case

Certain FORTRAN compilers (specifically MSDOS) require that all characters be speci-
fied in upper case.

In[4]:= FortranAssign[y,Sin[2 Cos[x + Log[y]]],AssignCase->Upper]

Out[4]//OutputForm=

Y=SIN(2.D0*COS(X+LOG(Y)))

Case conversion can also be used to translate expressions to lower case in C (see sec-
tion 4.11 for the command CAssign).

4.8.3 Controlling line breaking

Some editors (such as vi in UNIX) limit the number of lines a single expression may
occupy. It is therefore useful to be able to specify how to break long expressions explicitly.
This option may also be useful when cutting and pasting expressions into different sized
windows.

In[4]:= expr = Expand[(w-Sin[x]+y+Exp[z])^2];

In[5]:= FortranAssign[expr,expr,AssignBreak->{45,"\n & "}]

Out[5]//OutputForm=

expr=w**2+2.*w*y+y**2+2.*w*exp(z)+2.*

& y*exp(z)+exp(2.*z)-2.*w*sin(x)-2.*y*s

& in(x)-2.*exp(z)*sin(x)+sin(x)**2

ANSI standard conforming FORTRAN code occupies columns 7 to 72 (the others are
reserved for special tokens such as continuation characters and statement labels). As
already mentioned, the default output of FortranAssign uses columns 8 to 72 since this
aligns with the tab character, commonly used in programs to save on file space. Many
modern compilers allow variants on line formatting which are not part of the FORTRAN
standard. In such cases, the default setting can be modified using the AssignBreak option
as above.

4.9 Assignments to expressions

Mathematica’s output formats have only been implemented to translate expressions. As a
result, it is not possible to produce assignment statements. Assign and related functions
enable four categories of assignments.

1. Translation of an expression or list of expressions (lhs omitted or Null assignment).

2. Assignment of an expression to a symbol (or string).
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3. Array assignment. Assignment of a list of expressions (rhs) to a symbol (lhs)
resulting in a sequence of assignments to an array. The array index is determined
by the shape of the array.

4. Assignment of a list of expressions to a list of symbols - the lhs and rhs lists must
have the same length, but can contain a mixture of lists and symbols.

If the lhs is a list, it may not contain sublists (it must pass the test VectorQ).
The following example illustrates the inability of Mathematica’s output forms to translate
assignments.

In[4]:= expans = Expand[(b+c)^6];

In[5]:= FortranForm[a=expans]

Out[5]//FortranForm=

b**6 + 6*b**5*c + 15*b**4*c**2 + 20*b**3*c**3 + 15*b**2*c**4 +

- 6*b*c**5 + c**6

The result of the previous computation evaluates the expression expans and sets the sym-
bol a to the result. In contrast what is required is to produce a translated assignment
statement in FORTRAN without affecting the definition of the symbol. Other attempts,
such as FortranForm[HoldForm[a=b]] also fail to give the desired result. Before pro-
ceeding, the previous definition must be cleared.

In[6]:= a=.;

By specifying a lhs argument to our Assign function the desired assignment can be
obtained.

In[7]:= FortranAssign[a,expans]

Out[7]//OutputForm=

a=b**6+6.d0*b**5*c+1.5d1*b**4*c**2+2.d1*b**3*c**3+1.5d1*b**2*c*

& *4+6.d0*b*c**5+c**6

Since FortranAssign has attribute HoldFirst, the definition of expans does not interfere
with the assignment in the following example.

In[8]:= FortranAssign[expans,expans]

Out[8]//OutputForm=

expans=b**6+6.*b**5*c+15.*b**4*c**2+20.*b**3*c**3+15.*b**2*c*

& *4+6.*b*c**5+c**6
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This enables us to use lhs names which would normally evaluate to expressions and
maintain closer correspondence with our Mathematica definitions.
Another deficiency of FortranForm is that it does not always produce the desired results
when applied to lists (in this case, no continuation lines).

In[9]:= Map[ FortranForm, {expans,expans} ]

Out[9]//FortranForm=

{b**6 + 6*b**5*c + 15*b**4*c**2 + 20*b**3*c**3 + 15*b**2*c**4 +

6*b*c**5 + c**6, b**6 + 6*b**5*c + 15*b**4*c**2 + 20*b**3*c**3 +

15*b**2*c**4 + 6*b*c**5 + c**6}

In[10]:= FortranForm[{expans,expans}]

Out[10]//FortranForm=

List(b**6 + 6*b**5*c + 15*b**4*c**2 + 20*b**3*c**3 + 15*b**2*c**4 +

- 6*b*c**5 + c**6,b**6 + 6*b**5*c + 15*b**4*c**2 +

- 20*b**3*c**3 + 15*b**2*c**4 + 6*b*c**5 + c**6)

With FortranAssign a sequence of array elements are assigned to when the lhs is a
symbol or string and the rhs is a list.

In[11]:= FortranAssign[a,{expans,expans}]

Out[11]//OutputForm=

a(1)=b**6+6.d0*b**5*c+1.5d1*b**4*c**2+2.d1*b**3*c**3+1.5d1*b**2

& *c**4+6.d0*b*c**5+c**6

a(2)=b**6+6.d0*b**5*c+1.5d1*b**4*c**2+2.d1*b**3*c**3+1.5d1*b**2

& *c**4+6.d0*b*c**5+c**6

Alternatively, different symbols can be assigned in a single statement, by constructing a
list of lhs values.

In[12]:= lhs = {a1,a2};

In[13]:= rhs = {b1,b2};

In[14]:= FortranAssign[Evaluate[lhs],rhs]

Out[14]//OutputForm=

a1=b1

a2=b2

In this way, a mixture of lists and symbols can be assigned to. The Assign functions
automatically detect the type of the assigned object and generate an appropriate lhs,
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including array arguments if necessary. In this way blocks of assignments can be collected
and issued simultaneously. Block assignments are more efficient than a sequence of single
assignments since rewrite rules are generated only once and option type tests do not need
to be repeated.

In[15]:= lhs = {a,b,c};

In[16]:= rhs = {d,{e1,e2},f};

In[17]:= FortranAssign[Evaluate[lhs],rhs]

Out[17]//OutputForm=

a=d

b(1)=e1

b(2)=e2

c=f

Any shape list can be assigned and the assignment variable assumes the appropriate
index. Labels can also be attached to expressions along with terminating strings. Thus
expressions can be separated by a carriage return as AssignEnd->"\n".

In[18]:= FortranAssign[a,{{ArcCos[w],x^(1/2)},{Exp[y],Log[z]}},

AssignLabel->55]

Out[18]//OutputForm=

55 a(1,1)=acos(w)

a(1,2)=sqrt(x)

a(2,1)=exp(y)

a(2,2)=log(z)

Individual array elements can be assigned to by using the list assignment form.

In[19]:= FortranAssign[{a[2,3],a[3,2]},{b,c}]

Out[19]//OutputForm=

a(2,3)=b

a(3,2)=c

The lhs may also be specified as a string or list of strings.

In[20]:= FortranAssign["a(2,1)",b+c d]

Out[20]//OutputForm=

a(2,1)=b+c*d
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4.10 FORTRAN compiler limitations

Many FORTRAN compilers impose a limit on the number of continuation lines a given
expression may contain. There are two limitations of Mathematica’s FortranForm in
this sense. The first is the way that FortranForm breaks expressions into multiple lines.
FortranForm attempts to format aesthetically by avoiding breaking sub-expressions where
possible, thus producing many more lines of code than is necessary. Compilers do not
impose restrictions on where expressions are broken (other than the ANSI standard for-
matting in columns 7 to 72).2 Secondly, FortranForm imposes no limit on the number
of lines of code produced. Typically a restriction of 19 continuation lines by a compiler
makes FortranForm useless for translating large expressions.

Code has been developed to automatically extract sub-expressions and introduce tem-
porary variables when expressions exceed a specified tolerance. The syntax of the original
expression is maintained, by ensuring only syntactically correct sub-expressions are ex-
tracted. This was the most difficult feature to implement. After attempting several
different strategies, the following approach was adopted because of its efficiency, whilst
at the same time it provides a degree of user control.

Sub-expression extraction is performed recursively. A user specified tolerance is in-
put using the option AssignMaxSize. This relates to the maximum number of bytes in
memory a sub-expression may occupy. The test is based on Mathematica’s ByteCount,
because evaluation is very efficient. Starting at the root of the expression tree, each level
in an expression is traversed. Branches in the expression tree are tested to see if they
exceed bounds. If the bound is exceeded, a sub-expression within tolerance is found (and
extracted) by recursing further down the expression tree. The sub-expression is assigned
to a new temporary variable. The position occupied by the sub-expression is replaced by
the temporary variable. This process is repeated until the expression is fully traversed
and what remains is within bounds.

The test used to estimate the size of sub-expressions is similar to the current strategy
implemented by M. Monagan in Maple [17], however, the recursive extraction is quite
different. There are several deficiencies in ByteCount for our purposes, which should be
mentioned. Firstly, it takes no account of the length of a variable name.

In[4]:= Map[ByteCount,{a,aa,aaa}]

Out[4]= {0, 0, 0}

Secondly, ByteCount resolves very little information concerning numbers and their preci-
sion.

In[5]:= Map[ByteCount,{1, 123456789, 123.456}]

Out[5]= {12, 12, 20}

2A lot of modern compilers allow more freedom over the formatting of expressions using compiler
flags.
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Whilst the strategy based upon ByteCount is only a rough heuristic, it works well in
practise and is justified on this basis. Before proceeding with an example, it seems
appropriate to explain the above behaviour by giving some more detailed information
concerning how ByteCount is implemented.

ByteCount[<machine integer>] for machines with 32-bit integers returns 4 bytes
plus an 8 byte expression overhead. ByteCount[<machine real>] returns the 8 byte
expression overhead plus the memory used for a machine real plus whatever is needed
for memory alignment. On computers with 64 bit reals, this works out as 16 bytes. On
computers like the Apple Macintosh which typically use 80 bit reals and 4 byte memory
alignment, the result is 20 bytes.

ByteCount[<symbol>] always returns zero. The reasoning behind this is that symbols
are always shared, so multiple copies of the same symbol in an expression are not counted
twice. As was illustrated above, they aren’t even counted once. Allowance for shared
expressions disagrees with the documentation for ByteCount [35].

The overhead for a normal expression is essentially 12 bytes. The rest of the memory
is normally 4-byte pointers for the head and each of the elements. Since symbols are
taken to use zero memory, ByteCount[f[]] uses 16 bytes, ByteCount[f[x]] uses 20,
and ByteCount[f[x,y]] uses 24.

A more complicated example is f[f[x],f[x]], which consists of an outer normal
expression with two elements. The overhead of this expression is 12 bytes, plus a 4 byte
pointer for the head and each of the two elements, yielding a total of 24 bytes. The first
element, f [x], is a normal expression with one element, and uses 20 bytes, as does the
second element. The total for the entire expression is 64 bytes.

Some comments also need to be made concerning the temporary variable introduced
during recursive decomposition of an expression. The option AssignTemporary specifies
a pair {var,form}. Here var is a symbol or string name for the temporary assignment
variable introduced during sub-expression extraction. The second argument form specifies
the type of format for the temporary variables. Valid formats are Sequence and Array.
For example, the default {t,Sequence} introduces the temporary variables t1, t2, etc.
The user should take care not to assign to symbols with the same name.

In FORTRAN, implicit data statement declarations may be used to avoid individual
variable type declarations. For example when data typing a FORTRAN program, the code
below would be preceeded by a declaration such as:

implicit double precision(a-h,o-z)

The following example illustrates the use of the auto-extraction code.

In[6]:= example = {Sin[Expand[(a+Exp[(b-c-d)])^3]]};

In[7]:= FortranAssign[x,example,AssignMaxSize->400]

Out[7]//OutputForm=

t1=a**3+exp(3.d0*b-3.d0*c-3.d0*d)
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t2=3.d0*a*exp(2.d0*b-2.d0*c-2.d0*d)

t3=3.d0*a**2*exp(b-c-d)

x(1)=sin(t1+t2+t3)

The default setting of AssignMaxSize should be adjusted by the user if overly-long state-
ments are produced. Experimentation with ByteCount (utilising the previous informa-
tion) should give a more precise indication. There is a minimum setting of 200, which
prevents the user-specification of unattainable bounds.

4.11 Formatting C Expressions

A function CAssign has also been implemented for producing assignments in C. Code
resulting from Mathematica’s CForm requires pre-processor statement, #include mdefs.h

and the related include file to be accessible. If this statement is not specified, the compiler
will be unable to correctly interpret the code produced by Mathematica. The include file
mdefs.h is currently only distributed with Unix versions of Mathematica. CAssign makes
the file redundant and adds many extra features.

Array indices in C start from zero. The option AssignIndex may be used to modify
the starting index of arrays. Here is the default behaviour.

In[4]:= CAssign[a,{{x1,x2},{x3,x4}}]

Out[4]//OutputForm=

a[0][0]=x1;

a[0][1]=x2;

a[1][0]=x3;

a[1][1]=x4;

Each statement is terminated using a semi-colon via the option AssignEnd.
Powers in C are converted according to the following rules:

1. Rational powers x1/2 and x−1/2 are converted to sqrt(x) and 1/sqrt(x) respectively.

2. Remaining rational exponents and all integer exponents and are converted to floats.

The following example illustrates these.

In[5]:= CAssign[x^5-1/Sqrt[y]+z^(3/2)]

Out[5]//OutputForm= pow(x,5.)+pow(z,3./2.)-1./sqrt(y);

An array in Mathematica CForm can thus be incorrectly converted into a C function.

In[6]:= expr = Expand[(ArcCos[a[1]]-Sin[b[1]])^2];

In[7]:= CForm[expr]
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Out[7]//CForm=

Power(ArcCos(a(1)),2) - 2*ArcCos(a(1))*Sin(b(1)) + Power(Sin(b(1)),2)

CForm actually converts Part to an array. In this example, the list a needs to be wrapped
in HoldForm to prevent an evaluation warning message.

In[8]:= CForm[ HoldForm[ a[[3,2]] ] ]

Out[8]//CForm= a[3][2]

In[9]:= CForm[ a[[3,2]] ]

Part::partd: Part specification a[[3,2]]

is longer than depth of object.

Out[9]//CForm= a[3][2]

What is actually required is to convert Mathematica arrays to C arrays. Since there is
no distinction for arrays in Mathematica, it is not possible to perform this conversion
automatically. Instead this is left up to the user via the option AssignToArray.

In[10]:= CAssign[expr,expr,AssignToArray->{a,b}]

Out[10]//OutputForm=

expr=pow(acos(a[1]),2.)+pow(sin(b[1]),2.)-2.*acos(a[1])*sin(b[1]);

Notice the line continuation character which is added.
Since the lhs may be specified as a string, assignment to array elements in C is possible.

In[11]:= CAssign["a[2][1]",Exp[b+ArcTan[c]]]

Out[11]//OutputForm=

a[2][1]=exp(b+atan(c));

When arrays are initialised in C, array elements that are not formally defined are defaulted
to zero by a compiler [10]. Therefore, for the purposes of efficiency, it is desirable to remove
unnecessary assignments and have them assigned by the compiler.

In[12]:= CAssign[a,{{0,b},{c,0}},AssignZero->False]

Out[12]//OutputForm=

a[0][1]=b;

a[1][0]=c;



26 M. SOFRONIOU

Notice how the array indices correspond to the input.
There is a potential conflict with this option, when all assignments are zero-valued. In
such a case, assignments to zeros are performed and an appropriate warning message is
output.

In[13]:= CAssign[a,{0,0},AssignZero->False]

AssignZero::continue:

Expression encountered with no non-zero elements. Continuing with

zero assignments.

Out[13]//OutputForm=

a[0]=0;

a[1]=0;

In some cases, C statement delimiters may not be required. For example if an expression
is translated for use inside an if statement.

In[14]:= CAssign[a<=6||a>=-6,AssignEnd->""]

Out[14]//OutputForm=

a<=6.||a>=-6.

Although C compiler impose no restriction on the number of lines a single expression may
occupy, it is often useful to break up large expressions for debugging purposes etc. The
default for C is to generate an array of temporary variables t[1], t[2], etc. The global
symbol AssignTemporaryIndex specifies the number of temporary variables introduced
during each call to an Assign function.

Long expressions are broken up using the backslash character
. This is a preprocessor command which allows even token (the fundamental building
blocks of C) to be broken up [10, section 2.1.2].

When writing C code, it is often useful to control the precision of data types in the
following manner.

• Define all float variables as double throughout.

• Conversion to single precision is possible by including the pre-processor definition,
#define double float, in the header of the C source file. Mathematica may be
used to choose whether to specify this if the Splice form of communication is used.

• Floating point math library functions in C are implemented in double precision. In
ANSI C there are compiler options to ensure that functions accept and return argu-
ments of type float. This may greatly improve efficiency for numerical computations,
if the extra precision is not required.

Some other points of note. The default Mathematica exponentiation is used for floating
point numbers. Unlike FORTRAN, C does not possess complex data types. A complex

structure must be declared in order to extend library functions (see section 5.6 of [10]).
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4.12 Conversion to Maple

A basic expression translator from Mathematica to Maple has been implemented. The
MapleAssign command works slightly differently from the other Assign-related functions
in that the rhs is maintained in unevaluated form. The following example illustrates how
lists and matrices (lists of lists) of expressions can be converted.

In[4]:= MapleAssign[ z, {NSolve[x^7+x^5-x==0,x],

Map[f,Sin[x^2] y CosIntegral[2]]}]

Out[4]//OutputForm=

z:=[fsolve(-x+x^5+x^7=0,x),map(f,y*Ci(2)*sin(x^2))];

In contrast, all other Assign functions output a sequence of statements, with lhs indices
in correspondence with the shape of the list.

Most Mathematica operators are translated by MapleAssign without evaluation. How-
ever, it is convenient to allow some basic arithmetic operations to be performed during
the conversion process. The operators Plus, Power and Times are evaluated during con-
version. Consequently some numeric operations are performed.

In[5]:= MapleAssign[ intex, Integrate[Sin[x^2 + 1/3 - 2/11 ],x] ]

Out[5]//OutputForm=

intex:=int(sin(5/33 + x^2),x);

Some more complicated, but commonly used, functions have also been implemented.

In[6]:= MapleAssign[ diffex, D[AiryAi[1.] Sin[x y],{x,2},y] ]

Out[6]//OutputForm=

diffex := diff(diff(Ai(1.)*sin(x*y),x$2),y);

A few Maple library procedures have also been implemented. These must be read in using
with(libname), before execution in Maple. Because of syntactical differences between
the two languages, some decisions need to be made during conversion. In the following
example the higher of the two truncation orders specified in Series, is passed to the
Maple equivalent mtaylor.

In[7]:= MapleAssign[seriesex,Series[Sin[x y],{x,1,3},{y,2,2}]]

Out[7]//OutputForm=

seriesex := mtaylor(sin(x*y),[x=1,y=2],3);

Substitutions analogous to Mathematica’s replacement rules can also be performed in
Maple.
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In[8]:= MapleAssign[y,f[g,h] /. {g->1,h->2}]

Out[8]//OutputForm=

y:=subs([g=1,h=2],f(g,h));

MapleAssign is a less complete implementation than the related Assign functions. It
is useful for comparison purposes and cross-checking of results. While computer algebra
systems contain bugs, it is far less likely that the same bug exists in two different systems.
Almost all of the basic functions in Maple (those not utilising external libraries) have direct
equivalents in Mathematica. These have been implemented. User-defined procedures and
functions are not yet supported.

The command MapleAssign also illustrates the difference in syntax between Math-
ematica and Maple. The design of the programming languages and differences in the
evaluation processes, make it questionable as to whether more extensive developments
are worthwhile.

4.13 Other Assign forms

Other types of Mathematica output formats may be specified as arguments to the Assign
function. The following shows how TEX expressions may be produced:

In[4]:= Assign[ "\alpha", x Log[Subscripted[y[i]]], TeXForm ]

Out[4]//OutputForm=

\alpha = x\,\log (y_{i})

Which prints as α = x log(yi). This facility can be particularly useful for producing TEX
and LATEX documents from Mathematica notebooks. Smith suggests establishing template
TEX and LATEX files for use with Splice [27]. The Mathematica input and output lines
are evaluated and placed at appropriate points in the text, thus ensuring accurate proofs.
In LATEX the inverbatim environment is especially useful and has been used throughout
the preparation of this document.

4.14 Interactive output

Interactive output can be used in a session to send results to files. A change in definition
followed by re-execution results in modified contents of the file. Here the text file temp.f

is created and the contents of the file are displayed.

In[4]:= example1 = {Expand[(a+b-c-d)^2],

Sin[Expand[(a+Exp[(b-c-d)])^3]]};

In[5]:= channel = OpenWrite["temp.f",FormatType->OutputForm];

In[6]:= Write[channel,FortranAssign[a,example1]];

In[7]:= Close[channel];
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In[8]:= !!temp.f

a(1)=a**2+2.*a*b+b**2-2.*a*c-2.*b*c+c**2-2.*a*d-2.*b*d+2.*c*d

& +d**2

a(2)=sin(a**3+exp(3.*b-3.*c-3.*d)+3.*a*exp(2.*b-2.*c-2.*d)+3.

& *a**2*exp(b-c-d))

The process of writing to an external file has been simplified, by inclusion of the option
AssignToFile.

In[9]:= FortranAssign[a,example1,AssignToFile->"temp.f"];

In[10]:= !!temp.f

a(1)=a**2+2.*a*b+b**2-2.*a*c-2.*b*c+c**2-2.*a*d-2.*b*d+2.*c*d

& +d**2

a(2)=sin(a**3+exp(3.*b-3.*c-3.*d)+3.*a*exp(2.*b-2.*c-2.*d)+3.

& *a**2*exp(b-c-d))

As has already been mentioned, the output produced by the Assign functions is a se-
quence of strings. The strings are wrapped in OutputForm, which avoids printing of string
delimiters (") for example. Cutting and pasting of results using an editor is then straight-
forward. This process also facilitates the use of the Copy Output From Above command
when using the NoteBook interface.

5 Optimized computational sequences

The package Optimize.m performs syntactic code optimization on Mathematica expres-
sions [29, 30]. The term ‘optimization’ is used in the sense of lowering the overall compu-
tational cost and not the best possible. Identical common sub-expressions are matched
in linear time (O(n) operations) and the strategy is thus very efficient for large expres-
sions. For example, the x+y in (x+y)*f[x+y] is matched, but not in x+y+f[x+y]. Some
heuristics such as extraction of numeric coefficients are also performed (see [29] for a fuller
discussion).
The following operations are distinguished.

• Specified operators to be ignored during the optimization process, controlled using
the option OptimizeNull.

• Sub-expressions with head Power (option OptimizePower).

• Sub-expressions with head Plus (option OptimizePlus).

• Sub-expressions with head Times (option OptimizeTimes).
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• Remaining functions (option OptimizeFunction).

Additionally the option OptimizeCoefficients can be used to include numerical coef-
ficients in Plus and Times as candidates for optimization (the default setting does not
to do this since it is less efficient). Distinguishing the above operations enables more
efficient optimization of certain types of expressions, by allowing the user some control
over the optimization process. The example below illustrates several additional issues.
Options of Optimize may be passed to CAssign and FortranAssign. Efficient factoring
of exponents in binary form is also possible.

In[4]:= <<Optimize‘;

In[5]:= expr = Tanh[b^5] Sin[a^2] + Tanh[1/b^3] Cos[a^4]/a^5;

In[6]:= FortranAssign[expr,expr,AssignOptimize->True,

OptimizePower->Binary]

Out[6]//OutputForm=

o1=a**2

o2=o1**2

o3=b**2

o4=o6**2

expr=sin(o1)*tanh(b*o4)+cos(o2)*tanh(1/(b*o3))/(a*o2)

The example also demonstrates the relation between reciprocals and powers (1/x^k and
x^k) which share the same set of binary factorisations. If Optimize related messages
are generated, or optimization fails for some reason, code translation proceeds using the
original (unoptimized) expression.

When expressions are polynomials, special factorisations can yield more efficient eval-
uation. PolynomialQ[poly,var] is a logical test in Mathematica for verification that the
expression poly is a polynomial in the variable var. Horner form is the most efficient form
of factorisation, when issues of numerical stability are not considered. The factorisation
involves n additions and n multiplications for a polynomial of degree n. The procedure
Horner is provided in the package Optimize.m for factoring uni-variate and multi-variate
polynomials in Horner form. The following example illustrates that when the coefficients
are numeric, the routine is able to determine the variable(s) to be factored.

In[5]:= Horner[ 3 x^2 + 2 x - 1]

Out[5]= -1 + x (2 + 3 x)

The routine is able to determine the variables (using Variables[poly]) whenever the
coefficients are numeric. The default ordering is lexicographic, but the user can over-ride
this by specifying the variable list explicitly. Because of the highly recursive nature of the
nesting of factors, Horner form yields a fairly severe test for code translation routines. The
following example shows the behaviour of Mathematica’s output formatter, simulating a
nested Horner form using Fold.
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In[6]:= nestpoly = Fold[ (#2 + x #1)&, 0 , Range[20] ]

Out[6]=

20 + x (19 + x (18 + x (17 +

x (16 + x (15 + x

(14 + x (13 +

x (12 +

x (11 +

x (10 +

x (9 +

x (8 +

x (7 +

x (6 + x (5 + x (4 + x (3 + x (2 + x)))))))))))

)))))))

The output is not space-efficient. Furthermore, CForm and FortranForm exhibit similar
behaviour since they utilise the same internal code. In contrast, our implementation is
able to deal with such difficult examples, even when sub-expression extraction is requested.

In[7]:= FortranAssign[nestpoly, nestpoly, AssignMaxSize->200]

Out[7]//OutputForm=

t1=4.d0+x*(3.d0+x*(2.d0+x))

t2=x*(6.d0+x*(5.d0+t1*x))

t3=9.d0+x*(8.d0+(7.d0+t2)*x)

t4=x*(1.1d1+x*(1.d1+t3*x))

t5=1.4d1+x*(1.3d1+(1.2d1+t4)*x)

t6=x*(1.6d1+x*(1.5d1+t5*x))

t7=1.9d1+x*(1.8d1+(1.7d1+t6)*x)

nestpoly=2.d1+t7*x

Further examples of the use of the code optimization option are provided in the applica-
tions section 6.

6 Splice and template files

The use of FortranAssign is illustrated with some examples of template files and code
generation using Splice. Firstly, an overview of the concepts involved is given using some
relatively simple examples.

6.1 Introduction to unstructured communication using Splice

Unstructured communication provides a one-way link for sending ordinary data and text.
This process can be used to format Mathematica expressions and pass the results to an
external file. This is much more flexible than translating code fragments and avoids the
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tedious (and sometimes error prone) step of manipulation using a text editor. Further-
more, Mathematica can be used to specify additional program information, ensuring a
more efficient and flexible construction than is otherwise possible.

The Mathematica command Splice to processes a template file consisting of a mixture
of (active) Mathematica and (passive) compiled language source code and produces an
object-code output file. The active code is distinguished by statement delimiters (usually
<* and *>) which is taken as Mathematica input. The file is processed by Splice which
passes over the file, evaluates the active parts and replaces them with Mathematica output,
before moving onto the next active block of code. The passive code is translated verbatim.
The beauty of this approach is that results are substituted at the exact point in the file
which was previously occupied by the active code.

The default format for the output file is determined by the extension of the input file.
As an example, the command Splice[" myfile.mtex "], processes the file myfile.mtex
with TeXForm and puts the result in the file myfile.tex. An output file name may be
specified as a second argument to Splice.
E.g. Splice["myfile.mtex ","outfile.tex "].
Here is a simple example of the use of Splice.

In[1]:= !!example.mf (* Display the template file. *)

main example

real x,y

x = 1.

y = <* D[x^x Sin[x],x] *>

write(*,*) y

stop

end

In[2]:= Splice["example.mf"]; (* Generate the source code file. *)

In[3]:= !!example.f (* Display the source code file. *)

main example

real x,y

x = 1.

y = x**x*Cos(x) + (x**x + x**x*Log(x))*Sin(x)

write(*,*) y

stop

end

The Splice option FormatType can be used to override default output styles. It is
emphasised that the Assign functions require the setting FormatType->OutputForm as
an option of Splice in order to ensure correct formatting of the output file.



EFFICIENT SYMBOLIC-NUMERIC COMPUTATIONS 33

6.2 Defining a subroutine

Here is an example of a subroutine template file.

In[4]:= !!sub.mf

subroutine sub(x,y,z)

double precision x,y(<* yarray = Array[y,2];

ylength = Length[yarray] *>),z(<* ylength *>)

<*

(***** Mathematica definition *****)

expr = yarray^2 - f /@ Table[x^i,{i,ylength}];

(***** FORTRAN Translation *****)

FortranAssign[z,expr,AssignToArray->{y}] *>

return

end

Arrays are best declared inside the type declaration statement at the beginning of the
file, when dimensioning information is required for the first time. The source code file is
now generated.

In[5]:= Splice["sub.mf",FormatType->OutputForm];

In[6]:= !!sub.f

subroutine sub(x,y,z)

double precision x,y(2),z(2)

z(1)=-f(x)+y(1)**2

z(2)=-f(x**2)+y(2)**2

return

end

The function f in this subroutine is as yet undefined and an ANSI compatibility warning
message is output to the screen. An example definition is given in the next section.

6.3 Combining code

The adherence to ANSI compiled language functions is illustrated with an example of a
function template file for use with the subroutine of the previous section.

In[4]:= !!func.mf
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double precision function f(x)

double precision x

<* (***** Function Definition *****)

f = D[(Sin[x] + Cos[x]) Cot[x],x];

(***** FORTRAN Translation *****)

FortranAssign[f,f] *>

return

end

In addition, Mathematica could be used to specify the type declaration (real, complex
etc.) depending on the requested precision.

In[5]:= Splice["func.mf",FormatType->OutputForm];

In[6]:= !!func.f

double precision function f(x)

double precision x

f=-((cos(x)+sin(x))/sin(x)**2)+1.d0*(cos(x)-sin(x))/tan(x)

return

end

Any definitions made in an external file will remain unless cleared.

In[7]:= Clear[f];

A simple main routine, driver.f, is provided for driving the processed function func.f

and subroutine sub.f. For example, in a UNIX environment, link the driver, subroutine
and function files by issuing the command:

f77 driver.f func.f sub.f

and execute the resulting file (the default is a.out on UNIX systems). Various options
enable renaming of the executable file (-o) and compiler optimization (-O) and the user
should consult their compiler documentation for more information.

The driver routine can also be generalised using a template file approach. Often it is
more convenient to merge the routines in a single template file. It is also good practice to
keep all information required for the problem in the template file (and not in additional
Mathematica files). This ensures that the program is self-contained and eases the burden
of code maintenance.
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6.4 A generalised Runge-Kutta subroutine

Consider the problem of writing a general subroutine for a Runge-Kutta scheme [13] for
a system of ordinary differential equations. The convention of writing an m-dimensional
vector in a bold typeface is adopted.

The general s-stage Runge-Kutta method for the initial-value problem

y′ = f(x,y), y(α) = η, f : R× Rm 7→ Rm , (1)

is defined by

yn+1 = yn + h
s∑

i=1

bi ki ,

where

ki = f(xn + ci h,yn + h
s∑

j=1

aij kj), i = 1, . . . , s ,

and the row-sum conditions

ci =
s∑

j=1

aij ,

are usually assumed to hold. Furthermore, if aij = 0 for j ≥ i, i = 1, . . . , s then the
method is said to be an explicit or classical Runge-Kutta scheme and the ki can be
calculated by a straightforward recursion.

Structural information for a problem, should invariably be exploited in a symbolic
system, since the resulting performance gains can be significant [4]. The same techniques
should be applied when creating a general template file. A lot of the tedium can be
removed from the analysis of a large number of problems and greater throughput is
enabled. The next section contains such an example.

6.4.1 Hamiltonian systems

A Hamiltonian system with d degrees of freedom satisfies Hamilton’s equations of mo-
tion [2]:

q′ = ∇pH , p′ = −∇qH

q and p represent the position and momentum respectively and are d-dimensional vec-
tors. ∇x is the gradient operator taken w.r.t. x, x′ denotes the derivative of x with
respect to time, t. H = H(q(t),p(t)) = H(q,p) is the scalar-valued, autonomous (time-
independent) Hamiltonian function. A Hamiltonian system is thus (necessarily) of even
dimension (with m = 2d in the autonomous form of (1)).

The Hamiltonian H(q,p) is time-invariant, i.e. it is a constant of the motion. When
the Hamiltonian is interpreted as the energy of the system, time-invariance is equivalent
to conservation of energy. To see this consider the chain rule:

H ′ = p′∇pH + q′∇qH + ∂H
∂t

= ∂H
∂t

(by Hamilton’s equations of motion)
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= 0 (if H is autonomous)

6.4.2 The gravitational n-body problem

For the classical n-body problem in dynamics [2], the Hamiltonian is of potential or
separable form:

H(q,p) = T (p) + V (q)

with

T (p) =
p.p

2
, V (q) =

1
√

q.q

where x.x denotes the scalar product of x. For example, in 2 degrees of freedom,

H(q,p) = (p1
2 + p2

2)/2 + 1/
√

(q12 + q22)

where subscripts denote vector components.

6.4.3 Creating a template file

A general template file for a Runge-Kutta function subroutine for the n body problem is
detailed in this section. This involves evaluating the first derivatives of the Hamiltonian.
The subroutine below is written so that derivatives with respect to components of position
are evaluated first, followed by derivatives of components of momentum.

In[4]:= !!rksub.mf

subroutine evalf(f,q,p)

implicit double precision (a-h,o-z)

dimension q(<*

(***** Input degrees of freedom (dimension/2) *****)

d = 3;

(***** End of required input *****)

(* Ensure that arrays are protected form N during translation. *)

SetOptions[FortranAssign,AssignToArray->{q,p}];

(* Automatically evaluate variables and n-body Hamiltonian *)

qvars = Array[q,d]; pvars = Array[p,d];
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H = pvars.pvars/2 + 1/Sqrt[qvars.qvars];

d *>),p(<* d *>),f(<* 2 d *>)

<* (***** Calculate derivatives of the Hamiltonian. *****)

FortranAssign[

f,

Flatten[{Outer[D,{H},pvars],- Outer[D,{H},qvars]}]

] *>

return

end

Appropriate array dimensions are specified by Mathematica. This means that precise
control can be exercised over the generated FORTRAN subroutine, by allocating only as
much stack space as the problem dictates. This is useful for large scale problems such as
molecular dynamics simulations.

An attraction of this approach is that it may be generalised to account for any func-
tional form of Hamiltonian. In order to do so, the Hamiltonian must be specified by the
user in the template file, along with the number of degrees of freedom. Mathematica can
then be used to Splice the results into a file containing FORTRAN source code for the
problem.

In[5]:= Splice["rksub.mf",FormatType->OutputForm];

In[6]:= !!rksub.f

subroutine evalf(f,q,p)

implicit double precision (a-h,o-z)

dimension q(3),p(3),f(6)

f(1)=p(1)

f(2)=p(2)

f(3)=p(3)

f(4)=q(1)/sqrt((q(1)**2+q(2)**2+q(3)**2)**3)

f(5)=q(2)/sqrt((q(1)**2+q(2)**2+q(3)**2)**3)

f(6)=q(3)/sqrt((q(1)**2+q(2)**2+q(3)**2)**3)

return

end

6.4.4 Optimising the code

Computationally, the most expensive part in evaluating the function subroutine comes
from the computation of the derivative of the potential term:

∂V (q)

∂qi
=

qi√
(q21 + q22 + q23)

, i = 1, . . . , 3
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In particular, evaluation of the fractional power is common to all components. This
problem is found in many areas of molecular dynamics simulations (−∇qV (q) is analogous
to the force).

Common sub-expressions can be extracted using Mathematica’s pattern matching
rules before code translation is performed - in an attempt to optimize the resulting
FORTRAN code. In general any structural knowledge of the problem in hand should
been used to optimize the code. However, some computer algebra systems often use syn-
tactic optimization to extract common sub-expressions and factor powers. The option
AssignOptimize makes use of the package Optimize.m to automatically produce an op-
timized computational sequence, as outlined in section 5. The user is encouraged to try
the optimization option on the example of the previous section. For example, after load-
ing the optimization package, the following statement produces an optimized sequence for
the problem.

FortranAssign[

f,

Flatten[{Outer[D,{H},pvars],- Outer[D,{H},qvars]}],

AssignOptimize->True,AssignToArray->{p,q},

OptimizeNull->{p,q},OptimizePower->Binary

]

The option OptimizeNull effectively tells the optimization procedure that p and q are
arrays (and not functions) and should not be considered as candidates for optimization.
The option OptimizePower is used to binary factor powers, which has the added benefit
of making use of the efficient FORTRAN intrinsic sqrt. The resulting output is given
below.

o1=q(1)**2

o2=q(2)**2

o3=q(3)**2

o4=o1+o2+o3

o5=sqrt(o4)

o6=o4*o5

o7=1/o6

f(1)=p(1)

f(2)=p(2)

f(3)=p(3)

f(4)=o7*q(1)

f(5)=o7*q(2)

f(6)=o7*q(3)

In practice, better numerical schemes exist for Hamiltonian systems than the standard
explicit 4th order Runge-Kutta method [25].
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6.4.5 Extension to non-autonomous Hamiltonian systems

Assume that the previous problem is extended to non-autonomous Hamiltonians. It
is straightforward to modify the above subroutine for this case. In the template file
rksub.mf, modify the first line to include time-dependence:

subroutine evalf(f,q,p,t)

The definition of f needs to be modified (the vector of first derivatives of H) to account
for time-dependence of the Hamiltonian:

<* FortranAssign[ f,

Flatten[{Outer[D,{H},pvars],- Outer[D,{H},qvars],D[H,t]}]

] *>

The dimension of f must also be increased:

f(<* 2 d + 1 *>)

The main routine should now include a line to increment the time value at each interme-
diary stage:

t = t + c(i)*h

for i = 1(1)s. Finally a modified call to rksub.f is required

call rksub(f,q,p,t)

To take the template file approach to an extreme, we could even select an implicit or
explicit Runge-Kutta method, depending upon some stiffness criteria implemented in
Mathematica.

6.5 A generalised Newton iteration scheme

As another practical example of the use of the template file approach, consider writing a
general program for solving a system of equations of the form:

f(x) = 0 (2)

using Newton’s method [32]. A bold typeface is again used to denote a vector.
The system of iterates can be written as:

x(i) = x(i−1) − (J (i−1))−1 f (i−1) , i = 1, . . . , itmax (3)

where J = ∂f(x)
∂x

denotes the Jacobian matrix and x0 is a given set of initial values used
to start the iteration process. (Jk)−1 denotes the inverse of J (k) and the superscript k
denotes evaluation at iterate x = x(k). The iterative process is continued until some
stopping criteria are satisfied at iteration itmax. When the system to be solved is scalar
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valued, (Jk)−1 is simply the reciprocal of Jk. For practical implementation, (3) is rewritten
at each iteration as:

x(i) = x(i−1) − y(i−1) (4)

where y(i−1) satisfies
J (i−1) y(i−1) = f (i−1) . (5)

The linear system (5) is typically solved using LU decomposition of the Jacobian matrix
at each iteration. The value of y(i−1) thus obtained is substituted into (4) to obtain x(i−1).

6.5.1 Evaluating the Jacobian matrix analytically

Mathematica can be used to calculate the Jacobian matrix in exact form for any given
system of equations. There is currently no built-in definition, but a simple construction
using the partial differentiation operator D and the generalised outer product Outer is
possible [15]:

JacobianMatrix[f_List,x_List] := Outer[D,f,x]

6.5.2 Performance issues

In implementing Newton’s method using a template file formulation, greater control over
the convergence of the scheme (and convergence properties) is possible than using Math-
ematica’s FindRoot. At the same time, much of the generality of the built-in function is
retained.

The majority of computational time in Newton’s method is spent on LU decomposition
and updating of the Jacobian matrix at each iteration. If the matrix is not updated at
each iteration quadratic convergence is lost, but similar convergence properties are still
retained in the neighbourhood of the solution.

Convergence of the iteration scheme can be controlled by:

1. Moving the definition of the Jacobian matrix and the call to the LU decomposition
routine outside the main iteration loop (i.e. to before the do loop labelled 20 in
the code below). This means that a fixed Jacobian matrix is used throughout the
iteration process (sometimes referred to as modified Newton-Raphson iteration).
This approach is not recommended if the starting value is known to be far from the
true solution.

2. Adding a clause to ensure that the Jacobian matrix is not updated after a specified
number of iterations. If the problem is well conditioned, the Jacobian matrix will
not change significantly in value when the scheme is near convergence.

3. Taking account of any special structure arising in the problem - such as a tri-
diagonal, banded, sparse or symmetric Jacobian matrix. This decreases the com-
plexity of the linear solver and allows for greater scope in parellisation. For special
case linear solution routines see for example [1, 22].
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For more information about the linear solution routines used in our example, see [1].
These are a set of machine independent codes in the public domain [23] for linear algebra
known as LAPACK.3 The file linsolv.f contains the LAPACK general linear solver
and LU decomposition routine which does not utilise property 3 above. Special purpose
routines are available for other matrix structures. LAPACK uses Basic Linear Algebra
Subprograms (BLAS) with machine specific implementations, thus providing near optimal
efficiency for each platform. The necessary BLAS are given as FORTRAN code in the file
linsolv.f and should be removed if machine specific versions are available.

The file linsolv.f should be linked with newton.f (the file which results from the
application of Splice to newton.mf) at compile time. When the system of equations
becomes large (typically greater than 50x50) iterative refinement of the solution may
become necessary. It is straightforward to implement iterative refinement using the LA-
PACK routine dgerfs.f.

6.5.3 Stopping criteria

3 convergence criteria for the scheme are specified in the template file: relerr, abserr
and fmaxerr.
The absolute error at each iteration is given by

||x(i) − x(i−1)|| < abserr.

The absolute error is necessary when the sequence of iterates is converging to zero, but is
sensitive to changes in the scaling of x(i).
The relative error is given by

||x(i) − x(i−1)||
||x(i)||

< relerr.

Combining these we have

||x(i) − x(i−1)|| < ||x(i)|| relerr + abserr

which provides a reasonable stopping criteria for the Newton scheme. The logical variable
xconv is used in the program to indicate if this condition has been satisfied.
A convergence criteria for the function f is also implemented as

||f (i)|| < fmaxerr

A relative error test is not necessary since f (i) is converging to 0 from (2). The logical
variable fconv is used in the program to indicate if this condition is satisfied. The
convergence tests are performed in the do loop labelled 30 below.

The iteration is successfully completed when both fconv and xconv return true. For
a discussion of convergence considerations, see [24]. The values given below are system-
dependent (often depending on the precision of the architecture) and problem specific

3LAPACK supersedes the previous LINPACK and EISPACK libraries
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and may need to be adjusted accordingly. Specifying too strict a tolerance may result in
unattainable bounds and for this purpose a maximum number of iterations is specified
using the variable maxit.

6.5.4 Further enhancements

The code below represents a typical speedup of the order of 102 to 103 over Mathematica’s
FindRoot (depending on the size of the problem). However, this example will only find real
roots of a system of equations and is thus less robust. The limitation here is the linear
solution routine (not the translation of complex-valued expressions into FORTRAN).
Analogous linear solution routines for complex systems exist (see routines cgesv.f and
zgesv.f from [1]), but are considerably more expensive to implement in terms of the
arithmetic overhead involved.

In[4]:= !!newton.mf

program newton

implicit double precision(a-h,o-z)

double precision jac

logical fconv,xconv

integer dim

dimension x(<*

SetOptions[FortranAssign,AssignToArray->{x}];

(***** General problem formulation. *****)

(* Input equations in variables x[i]. *)

f = { Sin[x[1] x[2]^2] - 1, Exp[ Cos[x[1]/x[2]] ] - 1 };

(* Input initial values - must the same dimension as f. *)

init = {1.,.5};

(***** End of required input. *****)

dim = Length[f]; vars = Array[x,dim]; dim *>)

dimension jac(<* dim *>,<* dim *>),ipiv(<* dim *>)

dimension f(<* dim *>),xnew(<* dim *>)

data dim/<* dim *>/

c

c Specify convergence criteria and maximum number of iterations.

c

data maxit/30/,relerr/1.d-10/,abserr/1.d-10/,fmaxerr/5.d-9/
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<* (***** Assign initial values to x. *****)

FortranAssign[x,init] *>

do 10 i = 1,dim

xnew(i) = x(i)

10 continue

do 20 k = 1,maxit

<* (***** Calculate Jacobian Matrix. *****)

FortranAssign[jac,Outer[D,f,vars]]

*>

<* FortranAssign[f,f] *>

c

c LU decomposition of Jacobian matrix.

c

call dgetrf(dim,dim,jac,dim,ipiv,info)

c

c Linear solution routine overwriting f with solution.

c

call dgetrs(’No transpose’,dim,1,jac,dim,ipiv,f,dim,info)

c

c Update solution and error indicators.

c

fconv = .true.

xconv = .true.

xmaxdiff = 0.d0

xmax = 0.d0

do 30 i = 1,dim

xnew(i) = x(i) - f(i)

if (abs(f(i)).gt.fmaxerr) then

fconv = .false.

endif

xnewabs = abs(xnew(i))

if (xnewabs.gt.xmax) then

xmax = xnewabs

endif

xdiff = abs(xnewabs - abs(x(i)))

if (xdiff.gt.xmaxdiff) then

xmaxdiff = xdiff

endif

30 continue

do 40 i = 1,dim

x(i) = xnew(i)
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40 continue

if (xmaxdiff.gt.(relerr*xmax+abserr)) then

xconv = .false.

endif

c

c Test if convergence criteria are satisfied.

c

if (fconv.and.xconv) then

goto 50

else

if (k.eq.maxit) then

write(*,100) k

endif

endif

20 continue

c

c Output solution vector.

c

50 do 60 i = 1,dim

write(*,*) x(i)

60 continue

100 format(’Newton scheme did not converge after ’,

& i2,’ iterations’)

stop

end

The template file is then processed as follows.

In[5]:= Splice["newton.mf",FormatType->OutputForm];

In[6]:= !!newton.f

program newton

implicit double precision(a-h,o-z)

double precision jac

logical fconv,xconv

integer dim

dimension x(2)

dimension jac(2,2),ipiv(2)

dimension f(2),xnew(2)

data dim/2/

c

c Specify convergence criteria and maximum number of iterations.

c



EFFICIENT SYMBOLIC-NUMERIC COMPUTATIONS 45

data maxit/30/,relerr/1.d-10/,abserr/1.d-10/,fmaxerr/5.d-9/

x(1)=1.

x(2)=0.5

do 10 i = 1,dim

xnew(i) = x(i)

10 continue

do 20 k = 1,maxit

jac(1,1)=cos(x(1)*x(2)**2)*x(2)**2

jac(1,2)=2.*cos(x(1)*x(2)**2)*x(1)*x(2)

jac(2,1)=-(exp(cos(x(1)/x(2)))*sin(x(1)/x(2))/x(2))

jac(2,2)=exp(cos(x(1)/x(2)))*sin(x(1)/x(2))*x(1)/x(2)**2

f(1)=-1.+sin(x(1)*x(2)**2)

f(2)=-1.+exp(cos(x(1)/x(2)))

c

c LU decomposition of Jacobian matrix.

c

call dgetrf(dim,dim,jac,dim,ipiv,info)

c

c Linear solution routine overwriting f with solution.

c

call dgetrs(’No transpose’,dim,1,jac,dim,ipiv,f,dim,info)

c

c Update solution and error indicators.

c

fconv = .true.

xconv = .true.

xmaxdiff = 0.d0

xmax = 0.d0

do 30 i = 1,dim

xnew(i) = x(i) - f(i)

if (abs(f(i)).gt.fmaxerr) then

fconv = .false.

endif

xnewabs = abs(xnew(i))

if (xnewabs.gt.xmax) then

xmax = xnewabs

endif

xdiff = abs(xnewabs - abs(x(i)))

if (xdiff.gt.xmaxdiff) then

xmaxdiff = xdiff

endif

30 continue

do 40 i = 1,dim
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x(i) = xnew(i)

40 continue

if (xmaxdiff.gt.(relerr*xmax+abserr)) then

xconv = .false.

endif

c

c Test if convergence criteria are satisfied.

c

if (fconv.and.xconv) then

goto 50

else

if (k.eq.maxit) then

write(*,100) k

endif

endif

20 continue

c

c Output solution vector.

c

50 do 60 i = 1,dim

write(*,*) x(i)

60 continue

100 format(’Newton scheme did not converge after ’,

& i2,’ iterations’)

stop

end

6.5.5 Optimization of the function and Jacobian matrix

Structural knowledge and functional properties should be used by the symbolic environ-
ment in order to improve the efficiency of the resulting compiled code [21]. Optimisation
can be used for more efficient evaluation of the function and its Jacobian matrix in New-
ton’s method, in much the same way as in the Runge-Kutta example of section 6.4.4. For
example, the optimization process can resolve matrix symmetries.

Illustration of these issues is given by a simple example. Consider a Jacobian matrix
derived from a function of two variables f(x, y).

In[1]:= f[x_,y_] := {x + y + 2 x Sin[y]^2, x + y + x^2 Sin[2 y]};

In[2]:= jac[f_List,vars_List] := Outer[D,f,vars];

In[3]:= matrix = jac[f[x,y],{x,y}];

In[4]:= matrix //MatrixForm
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Out[4]//MatrixForm=

2

1 + 2 Sin[y] 1 + 4 x Cos[y] Sin[y]

2

1 + 2 x Sin[2 y] 1 + 2 x Cos[2 y]

In fact this matrix turns out to be symmetric:

In[5]:= simpmat = Simplify[matrix];

In[6]:= simpmat //MatrixForm

Out[6]//MatrixForm=

2 - Cos[2 y] 1 + 2 x Sin[2 y]

2

1 + 2 x Sin[2 y] 1 + 2 x Cos[2 y]

A considerable amount of computation can be saved if the property m12 = m21 is utilised.
Moreover, the functions Cos[2 y] and Sin[2 y] need only be evaluated once if the val-
ues are stored as temporary variables. This information is again resolved by syntactic
optimization. An optimized computational sequence in FORTRAN may be obtained as:

In[7]:= FortranAssign[m, simpmat, AssignOptimize->True,

OptimizePower->True,OptimizeTimes->False]

Out[7]//OutputForm=

o1=cos(2.d0*y)

o2=sin(2.d0*y)

o3=1.d0+2.d0*o2*x

m(1,1)=2.d0-o1

m(1,2)=o3

m(2,1)=o3

m(2,2)=1.d0+2.d0*o1*x**2

Notice that the matrix components are optimized, but the encapsulating lists themselves
are not, since the default setting OptimizeNull->{List} has been used to ignore such
objects. Also we use the option OptimizeTimes->False to ignore sub-expressions with
head Times. Such operations do not yield additional optimizations in this example and
ignoring them speeds up the optimization process.

6.6 Code optimization using Splice

Some information is given here to explain how Splice can be used in conjunction with
Optimize to automate code generation. Specifically, it is necessary to keep track of the
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number of optimization variables introduced during the optimization process, in order to
make appropriate type and dimension declarations.

In FORTRAN, it is possible to declare all optimization variables to be the same type by
using implicit statement declarations as mentioned previously. In C this is not possible
and there are several strategies which may be adopted, the simplest of which is outlined
below.

• Use the option OptimizeFormat->False. This has the effect of generating the
optimization variables in array form o[i] (the default is a concatenated format oi
which is more memory efficient). This is facilitated by a finishing touch during
formatting, where optimization variables are returned in consecutively numbered
form o[1], o[2],....

• It is difficult to judge in advance exactly how many optimizations will be performed.
Optimize returns a list of the form {optseq,optexpr}. The dimension of the
optimization array corresponds to Length[optseq].

• Use a two-pass Splice. The first pass fills in the body of the procedure and contains
statements such as o(ToExpression["<* arraydim *>"]). The second pass is used
to fill in the array dimension arraydim.

7 Conclusions and further enhancements

Many considerable shortcomings of Mathematica’s format rules have been addressed.
Particular attention has been given to the accuracy and syntax of translated code. At
the same time Format.m has been written to perform efficiently, allow the user a high
degree of control over the formatted output and interact seamlessly with the rest of the
Mathematica system. The package has been written primarily for use with Splice but
may also be used interactively within a session. The problem-specific editing of files has
been minimised by the provision of numerous formatting options. Tedious syntax errors
may thus be eliminated.

Many physical problems have a degree of mathematical structure which may be utilised
in the formulation of a general template file. In this way precise mathematical information
relating to a problem can be derived using Mathematica and passed to a more efficient
computational environment.

It is possible to further enhance a symbolic-numeric interface by compiling, linking
and executing programs and analysing results in a single Mathematica session. [11] pro-
vides an example of an interface for accessing numerical libraries in the Unix environment.
Robb [5] has developed the commercial package InterCall, which links Mathematica with
the NAG and IMSL libraries as well as user supplied routines. For example, InterCall
facilitates the definition of a Mathematica function which executes external code. Mac-
Gregor and co-workers [14] also developed a code translation package for Mathematica as
an internal project for Schlumberger plc., but this was never formally released.
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A process analogous to the Splice form of unstructured communication will be avail-
able using TemplateFile in AXIOM [3] version 2.0 - along with additional tools for
generating complete subprograms. However, the syntax of these additional tools is (nec-
essarily) quite complicated in comparison with the template approach. The GENTRAN
package [8] for REDUCE also enables the use of template files among other more complex
techniques. Perhaps surprisingly there is no such facility yet in Maple.

Other utilities for C and FORTRAN code generation exist and may be useful. Public
domain versions include:

1. Toolpack (also available from NAG [22]) is a utility for formatting and rewriting
FORTRAN code. The utility addresses some performance issues (such as vectori-
sation of loops) whilst maintaining logical structure.

2. f2c - this is a FORTRAN to C translation tool. Complete source code is available
from AT&T.

3. GNU FORTRAN - this is a front end (in development) which uses f2c and the GNU CC

compiler. For up to date information, see [7].

The program nb2tex is also useful for converting Mathematica notebooks into TEX doc-
uments [19].

The package Format.m and related files are available from the MathSource archive [19]
under the item number 0205-254. The current version supersedes that distributed as part
of the electronic supplement to the Mathematica Journal [28]. The package Optimize.m

and related files can be found under the item number 0206-592.
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