Integration of three body phase space:
The 3BodyXSections and 3BodyDecays packages
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In this note we review the integration of three body phase space. We explain in detail the necessary
steps to use two packages for the three body phase space for cross sections as well as for decays.
These packages, 3BodyXSections and 3BodyDecays, with real examples, can be obtained from my
web page [1].

I. INTRODUCTION

It is always a problem when the students want to attack a more complex problem that needs numerical integrations,
like the three body decays. In normal textbooks this part it is normally not covered and, at most, is left as an exercise.
My experience is that, for the first time, the students need some help. I will try to cover in this article the necessary
steps to establish the formulas to be used and then explain how to use two codes in real processes.

II. THE CROSS SECTION

As we want to be as general as possible, we consider the process,

p1(mq) + p2(mp) — q1(ma) + g2(m2) + gs(msg), (1)

without specifying which particles we are referring to. We use for the momenta the conventions of QGRAF[2] and
FeynMaster[3, 4]. For the masses, as we will be mostly interested in the final state, we use m; to go with ¢;. We
choose the kinematics in the CM frame shown in Fig 1. The cross section is then given by,
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FIG. 1: Kinematics in the CM.
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Singling out particle with momenta q3 and scattering angle, 8, and knowing that the scattering is in one plane, we
can do the ¢ integration to obtain,
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To proceed we must do the integrations over the the system of particles 1 and 2. For this we evaluate the following
Lorentz invariant quantity
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where A = p; +p2 — q3. These quantities are Lorentz invariant and can be evaluated in any reference frame. However
the calculation is particularly simple in the CM frame of particles 1 and 2. In that frame,

A = (m12,0,0,0), (5)
where
miy = (q1 + @2)° = (p1 +p2 — @3)° = s + m3 — 21/sE3, (6)

is the invariant mass of the pair. We then get (¢ are the vectors in the CM frame of the pair)
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We get then
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where we have used

7 ‘_M (10)

2m12

with A being the Kéllen function,

Mz, y,2) = \/x4 + yt + 2% — 22292 — 20222 — 29222, (11)

Notice that Eq. (9) is symmetric in the interchange of particles 1 and 2, indicating that the order of integration in g;*
or g5 is arbitrary. The final form for the cross section is then,
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and we have already used the fact that the final result does not depend on the azimuthal angle ¢ of particle 3 and
have done that integration. Note that if we have identical particles (see example below) we have still to divide by the
symmetry factor in the end of the calculation. It is crucial to understand the meaning of the angles in the previous
expression. The angle 6 is the scattering angle of the Higgs boson in the CM of the collision (for collider also the
lab frame), while the angles (6*, p*) are the angles of one of the two particles (the one with momentum ¢;) in the
CM frame of the pair. It is in these variables that the integrations are simple to set, but of course, there remains the
difficulty of relating the 4-momenta in that frame to the lab frame. We will discuss in generality this question in the
following section.

III. KINEMATICS: HOW TO RELATE DIFFERENT REFERENCE FRAMES

As we have seen in the previous section we have to relate the coordinates of 4-vectors in different reference frames.
The best way is to do this in steps, using in sequence elementary rotations and boosts. We always perform boosts
along the z axis, so the relevant Lorentz transformation is

z = Boost,(8) - 2’ (13)

where z(z’) are the coordinates in the reference frame S(S’), respectively, and the reference frame S’ moves with
relative speed 8 along the z axis with respect to S. The explicit form of the matrix Boost,(53) is
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Boost,(8) = 001 0 (14)
8 00 ~v

For rotations, we can always use a sequence of rotations along the coordinate axis. So the relevant rotations, always
written with the convention

z=Rotx(#)-2' ; z=Roty() -2 ; z=Rot,(H) 2’ (15)
are
10 0 0 1 0 0 0
Rot(0) = 8 (1) (;029 sige Roty (0) = 8 60059 (1) Sige (16)
0 0 —sinf cosf 0 —siné 0 cosf
and

1 0 0 0
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Now, if we look at the kinematics shown in Fig. 1, we can easily realize that the correct transformation laws for ¢f
and ¢5 in the CM frame of the Z boson pair are,

q1,2 = Roty (6 4 7) - Boost,(f) - ¢} » (18)
where
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Taking in account that
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where
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we can now use Eq. (18) to obtain ¢; and ¢o in the lab frame, as a function of (Es, 0, 6%, ©*).

There is still one important point in the kinematics, that is to know what are the integration limits on the energy
Es5 of particle 3 in Eq. (12). Obviously the minimum of the energy is for E3 = ms. For the maximum value, it can
be easily obtained, as we know that the momentum of particle 3 is given by

A(V/s,m12, m3)

7l = . 22
Now the maximum value for F3 is obtained for the maximum value of |g3|. This occurs for[5],
mig = M1 + Mo . (23)
So we get,
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IV. DECAY WIDTH

After explaining in detail the three body phase space for the CM cross section, we can easily obtain the expression
for the three body decay of one particle. For definiteness we consider the process,

P(M) — q1(m1) + ga(m2) + g3(m3) (25)

where for the final state we use the same conventions as before. Now the formula for the decay width can be easily
obtained from that for the cross section, Eq. (12), by the substitution,
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We get therefore!
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with the same integration over the three body phase space.

V. NUMERICAL INTEGRATION PACKAGES

With the kinematics completely implemented, we have to perform the integrations and obtain the cross sections. In
few problems can the integrals that appear in the evaluation of cross sections be done analytically. Most of the time
we have to revert to numerical methods to evaluate the integrals. There are many ways to do evaluate the integrals
numerically. A good library is CUBA package[6]. It can be linked either with C/C++ or with Fortran programs. It
has several methods with the same calling structure, so that one can substitute one method for another and check
for accuracy. The manual comes with the package. I have done a Gaussian integration subroutine in Fortran called
gauss.f that uses the same calling conventions, and therefore can also be tested in the same way. Although the
method does not differ for cross section and decays, it is useful to have to different ready made programs for the two
cases. These are described in the next subsections and can be downloaded from my web page[1].

1 One might wonder about the dimensions in view of Eq. (26). But we have to realize that the dimensions of M are M9 for the process
in Eq. (25) and M ! for the process in Eq. (1). This gives [0] = M2 while [['] = M as it should.



A. Package 3BodyXSections

The package 3BodyXSections has three main components, that we will briefly explain below

e Driver3BodyXS.f

This is the driver program that call the integration routine. It is in this program that the constants are defined.
It has a simple structure,

program XS3Body
implicit none
integer i,method,npoints

real*8 rs,ma,mb,ml,m2,m3

real*8 thetaw,g2,gp,mw,mz,gw,gz,sw2,ee,GF,pi
real*8 xs(1),xsection

common/data/mw,mz,gw,gz,sw2,ee,GF,pi
common/parameters/rs,ma,mb,ml,m2,m3

open(10,file=’res.dat’,status=’unknown’)

call sigma(xs,method,npoints)

end

In this program method refers to the integration method, method=1 for Gaussian integration and method=2 for
Vegas integration. Vegas is normally better and faster for the four dimensional integrations that we have to
perform. Gauss integration is included for comparison. If you choose Gaussian integration you have to specify
the number of points, see inside the integration subroutine for more details.

e Integration3Body.f

This file includes the integration routines and gives the value of the cross section. In principle the user does not
have to change this file. The important points are,

subroutine sigma(xs,method,npoints)
implicit none

xs(1)=integral (1)
return

end

subroutine integrand(ndim, xx, ncomp, ff)
implicit none

f£(1) = dsig(x)*Jacob

return
end



real*8 function dsig(x)

implicit none

real*8 theta,thetal

real*8 rs,ma,mb,ml,m2,m3

real*8 plp2,plql,plq2,plq3,p2ql,p292,p293,q192,9193,q92q3,
& mi2,plpl,p2p2,91ql,q2q92,9393,EPSplp2qlq2

dsig=cst/Flux*sin(theta)*sin(thetal)*2d0*pi/ (2d0*pi) **5xp3CMx*

& Msq(rs,ma,mb,ml,m2,m3,plp2,plql,plq2,
& plq3,p2q91,p292,p293,q9192,9193,92q93,m12,plpl,p2p2,qlql,
& 9292,9393,EPSp1p2q1q2)
return
end
e st *
K *
subroutine TBkinXS(x,rs,ma,mb,ml,m2,m3,plp2,plql,plq2,
& pla3,p2q1,p292,p293,9192,q193,9293,m12,plpl,p2p2,qlql,
& 9292,9393,EPSp1p2qiq2)

implicit none

qlg2=dot(ql,q2)
qlg3=dot(ql,q3)
9293=dot (92,93)

EPSplp2qlqg2=epsilon(pl,p2,q91,q2)

return
end

The subroutine TBkinXS gives, for each point (Es, 0,0*, ¢*), all the Lorentz invariant scalar products. The only
point worth mention is that the user has to supply the averaged squared amplitude as described below. We
have also included here the subroutines necessary for the integration of three body decays, see below. So you
need only one file Integration3Body.f for both cases.

o MsqAvg.f

This file contains the user supplied averaged squared amplitude for the case in study. The syntax of the calling
function it is important

ettt e *
real*8 function Msq(rs,ma,mb,ml,m2,m3,plp2,plql,plq2,
& p1q3,p2q1,p292,p293,9192,9193,92q3,m12,plpl,p2p2,qlql,
& 9292,9393,EPSp1p2qiqg2)

implicit none

real*8 rs,ma,mb,ml,m2,m3,plp2,plql,plq2,
& pla3,p2ql1,p292,p293,9192,q193,9293,m12,plpl,p2p2,qlql,
& q292,9393,EPSplp2qlq2



The arguments of this function are all the scalar products, written in obvious notation

plal = (p1-q1),pla2 = (p1 - @2), - - (28)

From my web site [1], you can download the package 3BodyXSections.tar.gz that contain all the files for the
process e et — ZZH.

B. Package 3BodyDecays

The package 3BodyDecays has again the corresponding three main components, that we will review below:

e Driver3BodyDecays.f
This file is the driver program for the three body decay.

program Decays3Body
implicit none
integer i,method,npoints

call DecayWidth(width,method,npoints)

e Integration3Body.f

This file incorporates the integration routines. It is the same file for three body decays and three body cross
sections, all the necessary subroutines are included. In principle, the user does not have to change this file.

subroutine DecayWidth(width,method,npoints)
implicit none

subroutine integrand(ndim, xx, ncomp, ff)
implicit none

ff(1) = dgamma(x)*Jacob

real*8 function dgamma(x)
implicit none

call TBkinDecays(x,MO,ml1,m2,m3,P0q1,P0q2,P0q3,q9192,9193,9293,
& m12,P0OP0,qlql,q9292,9393,EPSP0q19293)

end



subroutine TBkinDecays (x,M0,m1,m2,m3, P0q1,P0g2,P0g3,q192,q1q3,
& 92q3,m12,P0P0,q1ql,9292,9393,EPSP0q1g293)
implicit none

o MsqAvg.f

This file evaluates the averaged squared amplitude, like in the previous case,

real*8 function Msq(MO,ml,m2,m3,P0ql,P0q2,P0q3,9192,q193,9293,
& m12,POP0,qlql,q9292,q393,EPSP0q1q293)
implicit none

where Msq is supplied by the user.

VI. EXAMPLES

In this section we give examples of the use for these packages.

A. The cross section for e~ +et - Z+Z+ H

As a first example we look at the process

e (p1) + et (p2) = Z(q1) + Z(q2) + H(gs)- (29)

As explained in my text in Ref.[7], we have four diagrams and the averaged squared amplitude can be written, in an
obvious notation, as

— 1
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We reproduce below the code for the file MsqAvg.f. In the package 3BodyXSections this is the example included.

real*8 function Msq(rs,ma,mb,ml,m2,m3,plp2,pliql,plq2,
& plq3,p2q1,p292,p293,9192,9193,9293,m12,plpl,p2p2,q1ql,
& 9292,9393,EPSp1p2q1q2)

implicit none

real*8 rs,ma,mb,ml,m2,m3,plp2,plql,plq2,
& pl193,p2q1,p292,p293,q9192,9193,92q93,m12,plpl,p2p2,qlql,
& q292,9393,EPSplp2qlqg2

real*8 gV,ghA,MH,cst

real*8 Msqll,Msq22,Msq33,Msq44,Msql12,Msql13,Msql4

real*8 Msq23,Msq24,Msq34

real*8 mw,mz,gw,gz,sw2,ee,GF,pi

real*8 p3CMmax,E3max,kallen



common/data/mw,mz,gw,gz,sw2,ee,GF,pi
ga=-1d0/4d0
gv=-1d0/4d0+sw2

MH=m3

R

R

R X

IR

R

Msqll=(-2*x(ga**4 + 6*xga**x2*gv**2 + gvx*4)*(-16*xplql*p2ql
*p2q2**2 + MZ**x6xrs*x*2 —4+«MZx*2%p2q2* (-4*plql*p2ql + 4*plqgl
*qlq2 +p2q2*rs**2) +4*MZ*x*4* (plql*p2ql + p2q2*(-2*plqg2

+ rs**2))))/ (MZx*4*x (MZ**2 - 2%p2q2) *x2% (MH*x*4 + GZ**2*MZ**2 + 4
*MH**2%q1q3 + 4%ql1q3*%*2))

Msq22=(-2*(gax*4 + Gxgakx*x2*xgvx*2 + gv*x4)*(-16*plql**2xplq2
*p2q2 + MZx*6xrs*x*2 —4+xMZ*x2+plql* (-4*plgq2*p2q2 + 4xp2q2*qlqg2
+plql*rs**2) +MZ*x4*(-8xplql*p2ql + 4*plq2*p2q2 + 4x*plql
*xrs*%2))) / (MZx*4* (MZx*2 - 2+plql) **2% (MH**4 + GZ**2xMZ**2 + 4
*MH**2%q2q3 + 4*q2q3**2))

Msq33=(-2*x(ga**4 + 6*xga*x*x2*xgv**2 + gvx*4)*(-16xplql*plq2**2
*p2ql + MZ**6*xrs**2 —4xMZ**2*%plq2* (-4*plql*p2ql + 4*p2ql*qlq2
+plg2*rs**2) +4*xMZx*4* (plql*p2ql + plq2*(-2*p2q2 + rs**2))))
[/ (MZr*x4x (MZ**2 — 2*pl1q2) **2% (MH**4 + GZ**2xMZ**2 + 4*MH**2
*qlq3 + 4xql1q3%%*2))

Msqdd=(-2*x(ga**4d + 6*xga*xx2*xgv**2 + gvx*4)*(-16xplq2*p2ql**2
*p2q2 + MZx*6xrs*x*2 —4*xMZ*x2+p2ql* (-4*plq2*p2q2 + 4xplq2*qlqg2
+p2ql*rs**2) +MZ*x4x(-8%plql*p2ql + 4%plg2%p2q2 + 4+*p2ql
*xrs**2))) / (MZ*x4x (MZ**2 — 2+p2ql) **2% (MH**4 + GZ**2*MZ**2 + 4
*MH**2%q2q3 + 4%q2q3**2))

Msq12=(64*EPSplp2qlq2*ga*gv* (ga*x*2 + gvk*2)*GZ*x (MZ**2 + 2*xplql)
* (MZ**2 + 2*%p2q2)*(qlg3 - q2q3))/ (MZ**3*(MZ**2 - 2*plql)
*(MZ**2 — 2*%p2q2) * (MH**4 + GZ**2xMZ**2 + 4xMH**2xqlq3 + 4
*q1q3**2) * (MH*x*4 + GZ**2*MZ**2 + 4*MH**2%q2q3 + 4*q2q3+**2)) -(4
*x(gaxxd + 6xgax*2xgu*x2 + gvk*kd)* (MH**4 + GZ**2*MZ*x*2 + 4%qlq3
*Q2q3 +2*xMH**2%(q1q3 + q293))* (4*plql*p2q2* (2+plg2*p2ql + 2
*plql*p2q2 —qlq2*rs**2) +MZ*x*4*(2*xplq2+p2ql + 18*plql*p2q2

- qlg2*rs**x2) -2xMZ**2x(plql + p2q2)*(-2*plg2*p2ql + 6*plql
*p292 + qlq2*rs**2)))/(MZ**x4*x (MZ**2 - 2*plql) * (MZx*2 - 2%p2q2)
* (MH**4 + GZ*x2*MZ**2 + 4*xMH*x2%qlq3 + 4*qlq3**2)* (MH**4

+ GZ**2+MZ**2 + 4xMH**2%q2q3 + 4%q2q3**2))

Msql13=(4*(gax*4 + Bkxgax*2xgvx*2 + gv*x4)*(-16*plql*plq2*p2ql

*p2q2 + LGAMZ*xB*rs**2 +MZ**2% (8%plq2*p2ql**2 + 8xplql**2%p2q2
+8xplql*p2ql*rs**2 — 4%plq2*p2q2*rs**2 -4*xplql*xqlg2*rs*x2 - 4
*p2ql*qlq2xrs*x*2) -2xMZx*x4x (2xplql*p2ql + rs**x2+(plg2 + p2q2
= rs**2))) )/ (MZ**4* (MZ**2 - 2xpl1q2) * (MZ**2 - 2*p2q2)* (MH**4

+ GZ**2+MZ**2 + 4xMH**2xqlq3 + 4%qlq3**2))

Msq14=(64*EPSplp2qlq2*gaxgv* (gax*2 + gu*x2)*GZ* (3*MZ**4 - 4
*p2ql*p2q2 - 2*MZ**2*(p2ql + p2q2))*(qlg3 - q293))/ (MZ**3
*(MZ*x2 — 2%p2ql)* (MZ**2 — 2%p2q2) * (MH**4 + GZ**2*MZ**2 + 4
*MH**2%q1q3 + 4*q1q3**2)* (MH**4 + GZ**2xMZ**2 + 4*MH**2xq2q3
+ 4%q2q3**2)) +(4x(gax*4 + B*xgax*x2xgv*x*2 + gvx*x4)*x (MH**4

+ GZ**2+«MZ*x2 + 4xqlq3*q2q3 +2xMH**2x(qlq3 + q2q3))* (MZx*4x (2



10

*plq2*p2ql + 2*plql*p2q2 +(8*p2ql + 8%p2q2 - 5*qlq2)*rs**2) +4
*p2q1*p2q2* (2xplg2+p2ql + 2*plql*p2q2 -qlq2*rs**2) +2*xMZ**2% (2
*plq2*p2ql*(p2ql - 3*p2q2) +2xplql*p2q2*(-3*p2ql + p2q2)

-(p2ql + p2q2)*qlq2*rs**2)))/ (MZx*4* (MZ**2 - 2*p2ql)* (MZ**2 - 2
*p2q2) * (MH**4 + GZ**2*MZ**2 + 4*xMH*x2%qlq3 + 4*qlq3**2)* (MH**4
+ GZ**2+«MZx*2 + 4xMH**2%q2q3 + 4%q2q3+**2))

Frrreeee

Msq23=(64*EPSplp2qlq2*gaxgv* (gax*2 + guv*x2)*xGZx* (3*MZ**4 - 4
*plqlxplq2 - 2#MZ**2%(piql + p1q2))*(qlq3 - q2q3))/ (MZ**3
*(MZ**x2 — 2+plql)* (MZ**2 - 2xpl1q2) * (MH**4 + GZ**2*MZ**2 + 4
*MH**2%q1q3 + 4%qlq3**2)* (MH**4 + GZ**2*xMZ**2 + 4*xMH**2%q2q3

+ 4%q2q3**2)) +(4x(gax*4 + BG*xgak*2kxgv*k*2 + gvx*x4)* (MH**4

+ GZ**2+«MZ**2 + 4xqlq3*q2q3 +2*MH**2%(qlq3 + q2q3))*(4*plql
*p1g2* (2*plq2*p2ql + 2%plql*p2q2 —qlq2*rs**2) +MZ**4* (2*plql
*p2q2 + 8*plql*rs**2 - B*xqlq2*rs**2 +2xplq2*(p2ql + 4*rs*x2))
+2xMZ**#2% (2xp1lql**x2%p2q2 +plq2*(2xplq2*p2ql - qlg2*rs**2) -plql
*(6+plq2* (p2ql + p292) + qlg2*rs**2))))/(MZ**x4* (MZ**2 - 2*plql)
*(MZ**%2 — 24p1q2)* (MH**4 + GZ**2xMZ**2 + 4*MH**2xqlq3 + 4
*q1q3**2) * (MH*x*4 + GZ**2*MZ**2 + 4*MH**2%q2q3 + 4*q2q3**2))

R

Msq24=(4*(ga*x*4 + 6xgax*2xgv**2 + gvx*4)*(-16xplql*plq2*p2ql
*p2q2 + DAMZ**B*rs**2 —4*MZ**2% (-2%plq2**2*p2ql - 2xplql
*p2q2**2 +plql*p2ql*rs**2 + p2q2*qlq2*rs**2 +plq2* (-2*p2q2
+ q1g2) *rs**2) -2xMZx*x4x (2+xp1q2*p2q2 + rs**x2*(plql + p2ql

= rs**2))) )/ (MZ**4* (MZ**2 - 2xplql) * (MZ**2 - 2*xp2ql)* (MH**4
+ GZ**2+MZ**2 + 4xMH**2xq2q3 + 4%q2q3**2))

R

Msq34=(64*EPSplp2qlq2*gaxgv* (gax*2 + gv**2)*GZ* (MZ**2 + 2*plq2)
* (MZ**2 + 2*p2ql)*(qlg3 - q2q3))/ (MZ**3%(MZ**2 - 2xplq2)
*(MZ**2 — 2*%p2ql)* (MH**4 + GZ**2xMZx*2 + 4xMH**2xqlq3 + 4
*q1q3**2) * (MH**4 + GZ**2*MZ**2 + 4*MH**2%q293 + 4*q2q3*%*2)) -(4
x(gaxxd + 6xgax*2xgu*x2 + gvk*kd)* (MH**4 + GZ**2*MZ**2 + 4xqlq3
*q2q3 +2*MH**2%(qlq3 + q2q3))*(4*xplq2*p2ql* (2xplg2*p2ql + 2
*plql*p2q2 -qlq2*rs**2) +MZ*x*4*(18*plq2*p2ql + 2xplql*p2q2

- qlq2*rs**2) -2+MZ*x2x(plq2 + p2ql)*(6*%plg2*p2ql - 2*plql
*p2g2 + qlq2*rs**2)))/ (MZ*x4* (MZ*x*2 — 2xp1q2)*(MZ**2 - 2*p2ql)
* (MH**4 + GZ**x2*MZ**2 + 4*xMH*x2%qlq3 + 4*qlq3**2)* (MH**4

+ GZ**2+«MZ**x2 + 4xMH**2xq2q3 + 4%q2q3**2))

Frrrrrrerereeee

Msq=1d0/4d0* (Msq11+Msq22+Msq33+Msq44+Msq12+Msql3
& +Msq14+Msq23+Msq24+Msq34)

cst=256d0*GF**3/sqrt (2d0) *MZ**8
Msq=Msqg*cst

return
end

In Fig. 2 we present a comparison of our result with the CalcHEP result, for the same parameters, showing complete
agreement. CalcHEP also uses Vegas integration in its code. At this point one might ask why do not use CalcHEP
all the time? The answer has to do with the fact that with our code we do not need to have a model implemented
in CalcHEP, and in some cases that is useful. The other reason is that in this way we control the code and can look
at other aspects, like for instance the cross section for producing longitudinally polarized Z bosons which would be
difficult in CalcHEP.
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FIG. 2: Cross section for e~ + et — Z 4+ Z + H. The red line corresponds to our calculation, the blue dots comparison with
CalcHEP

B. The decay H e + V. + wt

As an example of the 3BodyDecays package we look at the decay H(P) — e (q1) + Ve(q2) + W (g3). Before the
Higgs boson was discovered it was common to plot the decay widths, for various channels, as a function of the Higgs
boson mass. This decay is particularly interesting as it can happen that the intermediate W boson can be close to
on-shell, enhancing the decay width. Neglecting the electron mass the only diagram contributing is shown in Fig. 3.
This leads to the following amplitude

Ve

W+

W"r
FIG. 3: Diagram for the decay H — ¢~ + 7. + W™,
9 1

M= = B P g — M & iy My 7 P (@2)en(as) oy

A simple calculation leads to the following expression

2(q1 - 43)(a2 - g3) Mg, (32)
Mg, (M7 —2(P - g3))* + My TGy

M2 =g" (g1 q2) +

With this we can evaluate the decay width as a function of the Higgs boson mass. The result is shown in Fig. 3 where
again we compare with the CalcHEP result.
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FIG. 4: Decay width H — e~ + T, + W™ as a function of the Higgs boson mass.The red line corresponds to our calculation,
the blue dots comparison with CalcHEP.

VII. CONCLUSIONS

In this note we review the integration of three body phase space. We explain in detail the necessary steps to use
two packages for the three body phase space for cross sections as well as for decays. We show examples of the use of
these tools in the calculation of the cross section for e~ +e* — Z+ Z + H and the decay width of H — ¢~ +7U,+ W ™.
These packages, 3BodyXSections and 3BodyDecays, with real examples, can be obtained from my web page [1].
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