Modern Techniques for One-Loop Calculations

J. C. Romao

Departamento de Fisica and CFTP, Instituto Superior Técnico
Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

jorge.romao@tecnico.ulisboa.pt

May 14, 2020

Abstract

We review the techniques used for one-loop calculations with emphasis on practical
applications. QED is used as an example but the methods can be used in any theory.
The aim is to teach how to use modern techniques, like the symbolic package FeynCalc
for Mathematica and the numerical package LoopTools for Fortran or C++, in one-
loop calculations.

Note Added:

This is a new version of an old text that I wrote mostly for my personal use
and of my students. Some years ago it went into an appendix of my text on
Advanced Quantum Field Theory[l]. From that moment all corrections were
done in the appendix and not in this text, which made the texts to diverge. To
avoid that I decided to synchromize them, so now they are completely equal.
I did not delete this text as it appears if you make a search on Google.

Lisbon, 14/05/2020
Jorge C. Romao

Contents

1

2

3

4 parameter

Feynman parameterization

Wick Rotation

Scalar integrals in dimensional regularization
Tensor integrals in dimensional regularization
I" function and useful relations

Explicit formulae for the 7-loop integrals

7.1 Tadpoleintegrals
7.2 Self-Energy integrals
7.3 Triangle integrals L
74 Boxintegrals

Divergent part of /-loop integrals

8.1 Tadpoleintegrals
8.2 Self-Energy integrals
8.3 Triangle integrals
8.4 Boxintegrals

Passarino-Veltman Integrals

9.1 The general definition
9.2 Thedivergences
9.3 Useful results for PVintegrals
9.3.1 Explicit expression for Ag
9.3.2 Explicit expressions for the B functions
9.3.3 Explicit expressions for the C functions
9.3.4 The package PVzem

9.3.5 Explicit expressions for the D functions

10 Examples of 1-loop calculations with PV functions

10.1 Vacuum Polarization in QED
10.2 Electron Self-Energy in QED
10.3 QED Vertex

10

12

14

15
16
16
17
17

18
18
18
19
19

19
19
22
22
23
23
26
29
32

11 Modern techniques in a real problem: py — ey
11.1 Neutral scalar charged fermion loop

11.2 Charged scalar neutral fermion loop

1 u parameter

The reason for the p parameter introduced in section 10.1 is the following. In dimension
d =4 — ¢, the fields A, and v have dimensions given by the kinetic terms in the action,

1 _
/ dlx [—1(8MAV — 0, A+ iy - O (1)
We have therefore
0 =—-d+2+2[4,] =[4,) =3d-2)=1-§
(2)
0 =-d+1+42] =[] =id-1)=3-5%
Using these dimensions in the interaction term
Sr= /dd:E ey, A* (3)
we get
[S1] = —d+[e] +2[¢] + [4]
- —4+e+[e]+3—6+1—§
€
= leJ-3 (4)

Therefore, if we want the action to be dimensionless (remember that we use the system
where h = ¢ = 1), we have to set

[e] =5 (5)

We see then that in dimensions d # 4 the coupling constant has dimensions. As it is more
convenient to work with a dimensionless coupling constant we introduce a parameter p
with dimensions of a mass and in d # 4 we will make the substitution

e — eps (e=4—4d) (6)

while keeping e dimensionless.

2 Feynman parameterization

The most general form for a 1-loop is !

. d%k A ST
TH ”PE/ 7
(27r)d DoD1---D,_1 (7)

where
D; = (k+1;))* —m? +ie (8)

and the momenta r; are related with the external momenta (all taken to be incoming)
through the relations,

i
o= Y.p o j=1,..n-1
i=1

ro = Zpizo (9)
=1

as indicated in Fig. (1). In these expressions there appear in the denominators products

k DPn

Pi

Figure 1: Conventions for the momenta in the loop.

of the denominators of the propagators of the particles in the loop. It is convenient to
combine these products in just one common denominator. This is achieved by a technique
due to Feynman. Let us exemplify with two denominators.

1 ! dz
ab /0 [az + b(1 — z)]? (10)

The proof is trivial. In fact

1 x
/ﬁxMx+w1—@P:bua—wm+m a

and therefore Eq. (10) immediately follows. Taking successive derivatives with respect to
a and b we get

1 Tip+4q) [* 2Pl —)9t
ww‘r@wwﬂdx[(12)

- az + b(1 — x)]Pt?

1We introduce here the notation 7" to distinguish from a more standard notation that will be explained
in subsection 9.

and using induction we obtain a general formula

1 1 1—z1
e — :F(n)/ d:nl/ dxg---
aiaz---ap 0 0

l-zy——n_2 d
/ ot - (1)
0 [ala:l—l—aga:g—i-”'—kan(l—a:l—---—a:n_l)]

Complement 2.1

Let us take a closer look at Eq. (13) and derive it in a different way that will make more clear the
range of variation of the Feynman parameters. We follow closely the argument of Gross [2].

We start with the definition of the I function,

I'(a) = / dt t*le™? (14)
Making a change of variables we also get
1’\ o0
(S) = / dt t* temte (15)
a 0

We consider first the case of two denominators using Eq. (15) with o = 1. We get

1 oo o0
— = dty dty e (frattzb) 16
ab /0 /0 Latze (16)

Now we introduce 1 in the form

1:/ dt 5(t —ty — to) (17)
0
in Eq. (16) to get
1 oo oo oo
— = / / / dtdty dty 6(t — ty — to) e~ (rattzb) (18)
ab o Jo Jo
To continue we scale the variables t; = tx1 and to = taxs. We then get
1 > > > —t(z1a+z2b)
— = dxy dxs (1 — 1 — x2) dt t etz (19)
ab 0 0 0

Now we use the definition in Eq. (15) to obtain

1
[x1a + z2b)?

! 1
:/0 day [x1a + (1 — z1b)? (20)

in agreement with Eq. (10). The nice thing about this procedure is that it can generalized easily
to obtain

n
aias---a a1x1 + aso + - - + anxy)

i :F(2)/ / d.fCl dZCQ 5(1 — X1 — ZCQ)
ab o Jo

1 11—z xp_1 1
") 0 ' 0 1[(11201 +asxo+ -+ an(l—a1---zp_1)]

6

where the limits in the last equation can be understood by the fact that the delta function defines
an hyperplane that constrains the variables. For instance consider the case of n = 3. One gets the
condition that defines a plane in the 3 dimensional space,

1—171—172—173:0, (22)

as can be seen in Fig. 2. As the x; are positive, we immediately see that they obey, for the case of

3
Z2

" hN

0 1 =z

x1

Figure 2: Graphical representation of the constraint of Eq. (22) on the Feynman parame-
ters. On the right panel the projection on the x1x5 plane.

n denominators,

1 <1, zo<l—m, 23<1—27 -9, ++, T 1 <1l—2x1—++ —Tp_o (23)

Before closing the section let us give an example that will be useful in the self-energy
case. Consider the situation with the kinematics described in Fig. (3).

Figure 3: Kinematics for the self-energy in ¢?.

We get

dk 1
L= / (2m)d [(k + p)? — m? + ie] [k? — m3 + ie]

/1 / d?k 1
= dx d 2
0 @M k24 2p-ka+p2x—miz —md (1 —)+ ie]

ddk: 1
= da: R —
[k2 + 2P - k — M2 + i€]

d
= /dx/ dkd ! 5 (24)
[(k+ P)? — P2 — M? + i

where in the last line we have completed the square in the term with the loop momenta
k. The quantities P and M? are, in this case, defined by

P=uxp (25)

and
M? = —zp*+miz+mi(l—2) (26)

They depend on the masses, external momenta and Feynman parameters, but not in the
loop momenta. Now changing variables k — k — P we get rid of the linear terms in k£ and

finally obtain
d
1—/cm/’dk (27)
— C i)

where C' is independent of the loop momenta k and it is given by

C = P? + M? (28)

Notice that the ie factors will add correctly and can all be put as in Eq. (27).

3 Wick Rotation

From the example of the last section we can conclude that all the scalar integrals can be

reduced to the form 4 o
d®k k
b= [Gyt T 2

It is also easy to realize that also all the tensor integrals can be obtained from the scalar
integrals. For instance

/ dk B
(2m)d [k2 — C +ig™

/ % R 1, / dk k2 (30)
emi k2 —C+iq” d’ 2r)d k2 —C +ig"

and so on. Therefore the integrals I, ,, are the important quantities to evaluate. We will
consider that C > 0. The case C' < 0 can be done by analytical continuation of the final
formula for C > 0.

To evaluate the integral I, ,, we will use integration in the complex plane of the variable
kO as described in Fig. 4. We can then write

d—1 2"
Lrm :/_d f/dko g k _ (31)
(2m) [/cg — B2 —C+ z‘e]

Im k%%

Re £°

Figure 4: Integration contour path for the Wick rotation.

The function under the integral has poles for

K=+ <\/\E\2+C—ie> (32)

as shown in Fig. 4. Using the properties of functions of complex variables (Cauchy theo-
rem) we can deform the contour, changing the integration from the real to the imaginary
axis plus the two arcs at infinity. This can be done because in deforming the contour we
do not cross any pole. Notice the importance of the ie prescription to be able to do this.
The contribution from the arcs at infinity vanishes in dimension sufficiently low for the
integral to converge, as we assume in dimensional regularization (see the details below in
Complement 3.1). This means that

+o00 —100 +00 +100
/ dk® + / dk’ =0 = / dk® = / dk® (33)
—00 +1i00 —00 —100

We can then change the integration along the real axis into an integration along the
imaginary axis in the plane of the complex variable k°. If we write

+0o0 +0o0
kO = ik, com / dk® — i / dk; (34)
and k2 = (k°)2 — |k|]? = — (k%)% — k|2 = —k%, where kg = (k:OE,E) is an euclidean

vector. By this we mean that we calculate the scalar product using the euclidean metric
diag(+, +,+,+),

Kp = (k%) + [k (35)
We can them write ; o
) _ d°kg kg
L =i(=1)"™ m
m =4 / @) k% +C] (36)

where we do not need the ie because the denominator is strictly positive (C' > 0). This
procedure is known as Wick Rotation. We note that the Feynman prescription for the

propagators that originated the ie rule for the denominators is crucial for the Wick rotation
to be possible.

Complement 3.1

In the argument that allowed for the Wick rotation it was claimed that the integrals over the circles
at infinite vanish. Let us be more careful on this point. We just start with the simplest integral,

dk 1
Tom = = 37
0 / 2m) k2 — C + ie] (37)
We begin by using the following representation for the denominator,
1 ° . 2 .
— (—; d —iz(C—k*—ie) 38
eprerunECD) M (38)

which can verified by direct integration noticing the crucial role of the ie prescription. This
representation is related to the Schwinger proper time method [3]. Now we differentiate both sides
with respect to C' to obtain,

1 _ (_z)m > m—1_—iz(C—k*—ie)
k2—C+ig" T(m) /0 dz2e (39)

Now introduce this in Eq. (37) and separate the integral in k°. We get,

di—1k 1
o= | —— [dk® ——nr—5
%, / (2m)d / k2 —C +ied™

d—1 \m [e'e)
:/?2)Zj/dko (F_(Z)) / dz zM—1e—i2(C—k>—ie)
s m 0

_/wﬂ/oo d mel/dko o1 2(C—(K0)*+k-E—ie) (40)
(2m)¢ T'(m) Jo
We now go to the plane of complex k% = [k°|(cos 6 + isinf). Therefore
(k9% = |£9)? (cos 260 + i sin 26) (41)
and the integral in k° will be
/dko ot 2(C—(K*) > +h-k—ic) _ ,—iz(C+F-k—ic) /dkoefz\ko\zsin2967iz\k0|200529 (42)

and it will vanish in the circle at infinity for any value of . This shows that for Iy ,, we can perform
the Wick rotation. This is also true for the general case of I, ,, as the exponential vanishes faster
than any power. This concludes the proof that we are allowed to perform the Wick rotation that
lead to Eq. (36). We also note that the integration on the circles also vanish for finite values of
|k%|, as they are equal and with opposite signs.

4 Scalar integrals in dimensional regularization

We have seen in the last section that the scalar integrals to be calculated with dimensional
regularization had the general form of Eq. (36). We are now going to find a general formula

10

for I, ,,. We begin by writing
d — 5 d—1
/d kg = /dk‘ k dQg—1 (43)

where k =/ (k%)2 + k|2 is the length of the vector kg in the euclidean space in d dimen-
sions and df24_1 is the solid angle that generalizes spherical coordinates in that euclidean
space. The angles are defined by

kg = k(cos 1, sin 0, cos 0, sin 01 sin fo, sin Oy sin B cos A3, . . . ,sin by - - - sin Og_1) (44)

We can then write

T 27
/ dQq_1 = / sin 992 df - - - / dfg_y (45)
0 0
Using now
/W o™ dg = 7 L) (46)
sin =7
0 r(m2)
where I'(2) is the gamma function (see section 6) we get
T2
dQg 1 =2 — (47)
/ (4)
The integration in k is done using the result
+1 Lp—2m+1 1
/Ood o D(5) R (g m) "
0o @O 20(m)
and we finally get
r—m Ql — — d
I = icr-mg CD T4) Tm —r = 5) (49)

(477)% F(%l) I'(m)

Before ending the section we note that the integral representation for I,,,, Eq. (29), is
valid only for d < 2(m — r) to ensure convergence when k — oo. However the final form
in Eq. (49) can be analytically continued for all values of d except for those where the
function I'(m — r — d/2) has poles, that is for (see section 6),

m—r—g#o,—l,—l... (50)

For the application in dimensional regularization it is convenient to rewrite Eq. (49) using
the relation d =4 — e. We get

B ‘(_1)r—m (4_7-‘-); C2+T—m F(Q—I—T‘—%) F(m—r—2—|—§) (51)

lrm =15\ @ T(2- %) T(m)

11

5 Tensor integrals in dimensional regularization

We are frequently faced with the task of evaluating the tensor integrals of the form of

Eq. (7),
o :/ R R R (52)
") @m)?* DDy Dy

The first step is to reduce to one common denominator using the Feynman parameteriza-
tion technique. The result is,

A 1 1—z1——Tp_o ddk kML ... e
Tﬁl.uup = T / dx - - / d n— /
) o s] Cr)d 2k P— M2+ id”
1

1-z1——xp_2
= F(n)/ dxl---/ dx,_1 IK M (53)
0 0

where we have defined

d%k JH1 .. ek
- / (2m)d [k2 + 2k - P — M2 + i€]"

I = (54)

that we call, from now on, the tensor integral. In principle all these integrals can be
written in terms of scalar integrals. It is however convenient to have a general formula for
them. We start with the result,

I _/ d’k 1
0n = | m)d (k2 +2k-P — M? +ie"

i JT(n—dj2) (1\"?
~a () (55)

where we used the result in Eq. (49) and use the definition of the I function,

(é)z = ﬁ /OOO dtt7~le ¢ (56)

to write

/ ddk 1 N) (_1)11 1 /OO dt tn—l—d/Ze—tC (57)
(2m)d [k2+2k- P — M2 +ie]” (4m)d/2 T'(n) Jo

Now we use

0 ! =-n 2hy (58)
oPr [kK2+2k-P—M2+ie" " [k2+2k-P — M2 +ie]"
to show that
ki ke _(-1)PT(n-p) 0 9 1
(k2 +2k-P—M?+iel" 20 T(n) 0P, 0P, [k2+2k-P— M?2+ie"?
(59)

12

We then use Eq. (57) to write

(2m)d (k2 + 2k - P — M2 + ie]"™? (47)d/2 T'in—p) Jo

i n—p (47T)E/2
~Tg2 I(n—p)

Inserting Eq. (59) and Eq. (60) into Eq. (54) we finally get the result

/ dt 7jn—p—3+e/2e—tC (60)
0

I#l"'ﬂp — i (477)5/2 (_1)n /OO i tn—3+e/2 9 . i e~ tC (61)
1672 T'(n) o (2t 0P, oP,,

where C = P? + M?. After doing the derivatives the remaining integrals can be done

using the properties of the T' function (see section 6). Notice that P, M? and therefore

also C' depend not only in the Feynman parameters but also in the exterior momenta.

The advantage of having a general formula is that it can be programmed [4] and all the

integrals can then be obtained automatically.

Complement 5.1

The steps that lead to Eq. (59) and Eq. (60) might pose some questions when n < p, as for this
case the Gamma function has poles. The other question is how are these results related to those
of section 47 We will just give an example that illustrates this relation and shows that the final
result in Eq. (61) is correct.

Consider, in the notation of Eq. (54), the integral

dok kHEY
L' = / 7 : (62)
(2m)® [k2 42k - P — M2 + i€

that is n = p = 2. With the method of section 4 we complete the square and shift the integration
momentum k — k — P. Then

dk kP kY dk PHPY
i / n / 63
? 2m)d [k2 — C + i€ 2m)? [k2 - C + i) (63)

where we have used the fact that the odd terms in k& vanish. We obtain therefore,
w1 wpv
IQ = Eg 1172 + P P IO_’Q (64)

Now we use Eq. (51) and the properties of the I" function (see section 6) to obtain

1 i C

i
1072 = W [AE —InC + O(E)] y 311)2 = WS [Ag +1-— InC + 0(6)] (65)
where)
Ac=—-—vy+Indn (66)
€
Putting everything together we finally obtain,
1
= 1; 55 (09" (Ac+1 -1 C) +2(Ac =l C)P*P*] + 0(c) (67)
™

13

We now use Eq. (61) that for our case reads

i (4m)/2 > odt g 0 _
IHV _ ¢ 1+e/2 Y tC 68
2 T 1672 T(2) /0 (21)? ap, 0P, ° (68)
Now 5 o
—tC v 2 v] ,—tC
— = |(-2t)g" —2t)°P*P 69
o5 o< = (200 + (PP e (69)
and therefore
b i €/2 _l uu/oo —24€/2_—tC o V/OO —1+€/2 —tC
I 62 (4m) [59 ; dt t e + P*P ; dtt e
_ T (47‘()6/2 —lgchl_e/2r(—1+E)+P”PUO_E/2F(E)
1672 2 2 2
1
:# 509" (A +1-1nC) +2(A ~ I O)P*P'] + O(¢) (70)
us

where we have used the definition of the I' function, Eq. (72). This coincides exactly with what
we have obtained before in Eq. (67).

6 [function and useful relations

The I' function is defined by the integral

I(z) = /OOO t* e~ tdt (71)

or equivalently

/ e dt = T T (2) (72)
0

The function I'(z) has the following important properties

I'z+1) = z2I(2)

C(n+1) = n! (73)

Another related function is the logarithmic derivative of the I' function, with the proper-
ties,

Y1) = () + (76)

where v is the Euler constant. The function I'(z) has poles for z = 0, —1,—2,---. Near
the pole z = —m we have (¢ — 0)
_ =1 =y
M(—m+e€) = e P(m+ 1) 4+ O(e) (77)

From this we conclude that when ¢ — 0

P(5) =240 +06@ T(n+ 5= (_7# [% —|—1,Z)(n+1)] (78)

For positive integers the function I'(z) has no poles. But as we have to expand everything
up to order e, before making ¢ — 0, we need the expansion near the positive integers.
Using the definition in Eq. (74) we get for a general n, up to order e

[(n+e€) =T(n) +T(n)y(n)e (79)
giving, in particular,
ra+§):1—7§+0@% (80)

Using these results we can expand our integrals in powers of € and separate the divergent
and finite parts. For instance for the one of the integrals of the self-energy,

o2 = (4;)2 (%) r;)

= [g—’y+ln4ﬂ—ln0+0(e)
€

1672

_ 16% (A —InC + O(e)] (81)

where we have introduced the notation

2
Ac=2—~+lIndr (82)
€

for a combination that will appear in all expressions. In a similar way,

i ar\7 TB-$5T(-1+5%)
ha =gz ()€ 1 5 T®
:(4;)2 2C [AE + % —In C] + O(e) (83)

7 Explicit formulae for the 71-loop integrals

Although we have presented in the previous sections the general formule for all the in-
tegrals that appear in I-loop, Eqgs. (51) and (61), in practice it is convenient to have

15

expressions for the most important cases with the expansion on the e already done. The
results presented below were generated with the Mathematica package OneLoop [4] from
the general expressions. In these results the integration on the Feynman parameters has
still to be done (see Eq. (53)). This is in general a difficult problem and we will present in
section 9 an alternative way of expressing these integrals more convenient for a numerical
evaluation.

7.1 Tadpole integrals

With the definitions of Eqs. (51) and (61) we get

)
[()71 = 16? C(l + AE —1In C)
=0
1
" o= L2 02g(342A, — 21 4
i 1677280 g (3 + nC) (84)

where for the tadpole integrals
P=0 ; C=m? (85)

because there are no Feynman parameters and there is only one mass. In this case the
above results are final.

7.2 Self-Energy integrals

For the integrals with two denominators we get,

i

Ins = T6.2 (Ac—1InC)
o= 16% (—A. +1nC)P*
o= 16;2 % [C’g’w(l +A—InC)+2(A, —1In C)P“PV]
e 16;2 % [— Cg™ (14 A — InC)P* — Cg"(1 + A, — InC)P"
— Cg" (14 A, —InC)P” —2(A, —In C)P“P“PV] (86)

where, with the notation and conventions of Fig. (1), we have

Pr=zrf ; C=2ri+(1-o)m}+ami—orf (87)

16

7.3 'Iriangle integrals

For the integrals with three denominators we get,

P
03 7 T6x2 20
) 1
IH — __PH
3 1672 2C
) 1
o= L 0g™(A, —InC) — 2P*PY
3 1672 4C [09 (Ae—InC) }
) 1
e — L~ og(—A, +InC)PY va(_A, +1nC)P"
4 1672 40 [C’g (+InC)P* + Cg"(+1InC)
+ Cg"*(—Ac+InC)P” + 2PaP“P”]
) 1
I/u/aﬁ _ ? L 02 1 AE_I C (ua vp uB va af ,uu)
3 16-2 8C (1+ nC)(g"g"” +g"g"* + 979

+20 (A —InC) (g“”PO‘Pﬁ + gBpaph 4 grapBpu y ghapBpr

+g"fpapy 4 gO‘BP”P”) — 4P°‘P5P”PV] (88)
where
Pt = 1 T‘iL + T2 7‘5
C = 23ri4a3rd+ 2z 29 - 1o+ 21 M3 + Ty M3
+(1 — 21 — x2) M3 — 21 17 — 297 (89)

7.4 Box integrals

g i1
047 16m2 602
1 —1
IM — _ PH
1 1672 6C2
) - & -1 Cg — 2P+ pY
1 1672 12C2
) 1
Ifua — 16271-2 1202 |:C (g,uupa + gl/aP,u + g,uOéPl/) _ 2PaP,uPu

17

) 1
quaﬁ G 02 Ae —InC (uo v upB vo af ul/)
4 162 2402 (nC) (g"g"" + g""g"* + g™ g
—2C (g PP + P PPl + g PP PP o g' PO P
+ g"P PPy + gO‘BP”P”> + 4P°‘P5P“P”} (90)
where
Pt = l’l’r"f+l’27‘5+l’37‘g
_ 2.2 2.2 2.2
C = ziri+ayry+azr;+2x1x9r) -ro+2v1 2371 - T3+ 2022372 - T3

—l—a:lm%—kxgm%—i-a:gm%—k(l—a:l—xg—xg)mz

-1 r? — X9 r2 — T3 r2 91
1 2 3

8 Divergent part of 7-loop integrals

When we want to study the renormalization of a given theory it is often convenient to have
expressions for the divergent part of the one-loop integrals, with the integration on the
Feynman parameters already done. We present here the results for the most important
cases. These divergent parts were calculated with the help of the package OneLoop [4].
The results are for the functions 7)***"*" defined in Eq. (52).

8.1 Tadpole integrals

. 1
Di [T = L Aom?
v 1_ 167‘(2 m
Div 7] = 0
. ij‘ i 1 4 pv
Div [Tl | = 621 Acm™g (92)

8.2 Self-Energy integrals

T)
Div |:T2- = W Ae
Div {T” - (-2 Acry
27 16m2 \ 2) Tt
. 1 1
Div [TQMV_ = 1672 12 Ac [(3771% + 3m% - T%)gwj + 47’%%

18

~ y 1
biv [T;m] = oo <__> Ac [(47”1 +2m3 — r}) (" + g + ghry)

1672 \ 24
+ 6r‘f‘rfrf] (93)
8.3 Triangle integrals
Div [Tg =0
Div 7] = 0
Div [Té‘" = 16% E A g
_ > 4
Div [17] = oo (~q5) e [05 +08) 4 700 4)+ 4)
Div [T = 16% % A [(2m% +2m3 + 2m3) (9" + g™ g + ¢ 9"
g0 [2rtiry 4 rling + (0 m)] 0 (2080t 0+ (6)]
[rirl +rirh + (< 7‘2): + g 2r1 7"1 + rf‘rg +(ry < 7‘2)}
gHe [riry —|—r1r2 +(r1 & 7‘2)_ + g’ 27‘17"1 —|—r1r2 + (r1 < rg)}
+ (=1 +r1-ra —13) (g”ag”ﬁ +g* g + g”ﬁg”o‘)] (94)

8.4 Box integrals

Div|Ti| = Div |7}| = Div 7" = Div [7{**] = 0
. 1
Di |:T,uuaﬁ:| _ ? _Ae uv o3 uBb ov uo v 95
iv |1} Ton2 222 [979% + 99" + 9" (95)

9 Passarino-Veltman Integrals

9.1 The general definition

The description of the previous sections works well if one just wants to calculate the
divergent part of a diagram or to show the cancellation of divergences in a set of diagrams.
If one actually wants to numerically calculate the integrals the task is normally quite

19

complicated. Except for the self-energy type of diagrams the integration over the Feynman
parameters is normally quite difficult.

To overcome this problem a scheme was first proposed by Passarino and Veltman [5].
These scheme with the conventions of [6, 7] was latter implemented in the Mathematica
package FeynCalc [7, 8] and, for numerical evaluation, in the LoopTools package [9]. The
numerical evaluation follows the code developed earlier by van Oldenborgh [10].

We will now describe this scheme. We will write the generic one-loop tensor integral

2m)44 R
#1 Hp (/ d
T =—-5— [d% DDy D, (96)

where we follow for the momenta the conventions of section 2 and Fig. 1 and defined
Dy = D,, and m,, = mg so that Dy = k* — m% (remember that r, = 19 = 0. The
main difference between this definition and the previous one Eq. (7) is that a factor of
1oz is taken out. This is because, as we have seen in section 3 these integrals always
give that prefactor. So with our new convention that prefactor has to included in the
end. Factoring out the i has also the convenience of dealing with real functions in many
cases.? From all those integrals in Eq. (96) the scalar integrals are, has we have seen, of
particular importance and deserve a special notation. It can be shown that there are only
four independent such integrals, namely (4 — d = ¢)

oy mp) [4 1
Ao(mp) =—— /d k‘m (97)
B (2 2 2)_ (271-#)5 ddk’ ﬁ 1 (98)
01710, 0, 1) =70 20 [k 47i)2 = m7]
2

9o 2 9 9 o o (2mu) [4 1
Co(Tloarlzarzoamoamlymz)—7m2 /d k g [(k—I—ri)? _mg] (99)

2 2 2 2 2 2 2 2 2(27W)Ed3 1
Do(rlo,r12,r23,r30,r20,r13,m0,m1,...,m3):m72 d°k 11 [(k+7‘,-)2 _m?] (100)

where

ry = (ri—r)? 5 Vij=(0n—1) (101)

Remember that with our conventions rg = 0 so 7‘220 = Z2 In all these expressions the e

part of the denominator factors is suppressed. The general one-loop tensor integrals are
not independent. Their decomposition is not unique. We follow the conventions of [7, 9]
to write

1
(QWM)A‘_d/ d
BY = ——~%— [d°kEk* 102
in? Eo[kw] (102)
(2mp)t= / d 1
BY = d k‘k‘“k‘y 103
Cin? [(k +13)2 —mZ] (103)

2The one loop functions are in general complex, but in some cases they can be real. These cases
correspond to the situation where cutting the diagram does not corresponding to a kinematically allowed
process.

20

(0L

cH

CHvp

D

DHve

DHvpo

2
(2mp)* / d 1
——— [d°k KV
im? H [(k +7:)? — m?]

i=

(2mp)= d 1
—— [d% k“k”
im? / [(k: +77)2 —m?]

)

(2mp)*~ / d 1
R
im? @R RR H [(k +7:)? — m?]

_ (mpt / B 2
= — kEH
in? H [(k+7;)? —m?]

=0
3
(27TM)4_d/ d
= ——— | d°kEMEY
iT? Zl_g[kﬂ-m —mf]
3
(27W)4_d/ d
= = [d°kEkMEVEKP
im? g k+1r;)? mf]

3
(2mp)* / d 1
——F— [A"k KPEVKPEC
im? E) [(k +7:)? — m?]

(104)

(105)

(106)

(107)

(108)

(109)

(110)

These integrals can be decomposed in terms of (reducible) functions in the following way:

Bt =
B =
o =

o =

oHvp —

D" =

pDHve

DHreo

’r"f Bl
g"" Boo + ity B
rf Ch + 7"5 (s

2
g Coo + err]” C
i—

2
(g 7] 4 g"ri + g"'rY) Cooi + ji: ririry Cig

M-

.
Il
—
-
<.
ES
Il
—

T‘ZH Dz

M-

Il
—

(2

3
v n
" Doo + g i 17 Dij
ij=1

M

(9" rf + g"Prl" + g"rY) Dooi + Z rt Dij
1 i,5,k=1

7
(g/wgpa + Gup9vo + guagup) DOOOO

+ Z (g’“’r SN ngr + gty + g“"rfrf
4,7=1

+gVJT T +gp0 i V) DOOZ]

21

(111)
(112)
(113)

(114)

(115)

(116)

(117)

(118)

(119)

+ Z T Tle Z]kl (120)
i,5,k,l=1

All coefficient functions have the same arguments as the corresponding scalar functions
and are totally symmetric in their indices. In the FeynCalc [11] package one generic
notation is used,

PaVe [iaja R {r%07 r%27 e '}7 {m(2)7 m%? e }] (121)
for instance

All these coefficient functions are not mdependent and can be reduced to the scalar func-
tions. FeynCalc provides the command PaVeREducel[...] to accomplish that. This is
very useful if one wants to check for cancellation of divergences or for gauge invariance
where a number of diagrams have to cancel.

9.2 The divergences

The package LoopTools provides ways to numerically check for the cancellation of diver-
gences. However it is useful to know the divergent part of the Passarino-Veltman integrals.
Only a small number of these integrals are divergent. They are

Div [Ao(mg)] = A.m} (123)

Div [Bo(11y, mj, m7)] = A. (124)

Div By (17, m§, m})] = —% A (125)

Div [Bgo(r7, m§, m7)] = % Ac (3m§ + 3mi — i) (126)

Div [By1 (17, m, m7)] = %Ae (127)

Div [Coo(rlo, 125,13, m2, m?, m3))] = iAe (128)
Div [Cooi (1T, 175, 139, mg, mf, m3)] = —% A (129)
Div [0002(T1OaT12,1"207m0,m1,m2 } = —11—2 A (130)
Div [Dogoo(13g, - - - ,m, ...)] = i A, (131)

(132)

These results were obtained with the package LoopTools, after reducing to the scalar
integrals with the command PaVeReduce, but they can be verified by comparing with our
results of section 8, after factoring out the i/(1672).

9.3 Useful results for PV integrals

Although the PV approach is intended primarily to be used numerically there are situations
where one wants to have explicit results. These can be useful to check cancellation of

22

divergences or because in some simple cases the integrals can be done analytically. We
note that as our conventions for the momenta are the same in sections 9 and 7 one can read
immediately the integral representation of the PV in terms of the Feynman parameters
just by comparing both expressions, not forgetting to take out the i/(1672) factor. For
instance, from Eq. (114) for C* and Eq. (88) for I}" we get

2 2 2.2 9 9 2 ! R T2
Col by rdommd,md) = @) [doy [das (133)
with
C = x%r%+x§r§+w1w2(r%+r§—r%2)+x1m%+x2m§
+(1— 21 —x2) m% —x r% — T 7‘% (134)

9.3.1 Explicit expression for A

This integral is trivial. There is no Feynman parameter and the integral can be read from
Eq. (84). We get, after factoring out the i/(167%),

2
Ag(m?) = m? (Ae +1—In %) (135)

9.3.2 Explicit expressions for the B functions

Function B

The general form of the integral By(p?, m?, m3) can be read from Eq. (86). We obtain

1 2 2 2
—x(1 — 1_
Bo(p?,m2,m?) = A, — / dzIn [(= o)p”+ o T (L= 2)mg (136)
0 ©
From this expression one can easily get the following results,
21, 7% 21, ™M
mgln —2 —m7In —4
Bo(0,m2,m2) = Ac+1- T (137)
my — My
Ao(mg) — Ao(m3)
BO(()’m(z)’m%) = 02 2 ! (138)
2 A 2
Bo(0,m?,m?) = A, —In"o = 0(”;) 4 (139)
1 m
2 A 2
Bo(m?,0,m%) = A +2-In= = 0(”;) 1 (140)
I m
2 2
m* _ Ap(m?)
By(0,0,m?) = A +1-1n T e (141)

Function B|

The derivative of the By function with respect to p? appears many times. From Eq. (136)
one can derive an integral representation,

1 _
Bé(pZ,m?),m?)Z/ dx =1~ 1) (142)

0 —p2x(l —x) +am? + (1 —z)m3

An important particular case corresponds to B{](mz, mg, m?) that appears in the self-
energy of the electron. In this case m is the electron mass and mg = A is the photon mass
that one has to introduce to regularize the IR divergent integral. The integral in this case
reduces to

! 1—x)
Bl (m2.)\2.m2) — / d a(
O(m) , M) 0 z m2$2+(1_$)>\2
1 1 A2

It is clear that in the limit A — 0 this integral diverges. Another limit that it is useful
(for instance is needed in the vacuum polarization, see section 10.1), is

1
Bé(o7m27m2) = 6m2 (144)

that can be easily obtained from Eq. (142).

Function B;

The explicit expression can be read from Eq. (86). We have

1 1 (] —)2 24 (1_ 2
By (p*,mé,m?) = _§AE +/ dxxIn [(1= 2)p +$gn1 (= 2)mg (145)
0 H
For p? = 0 this integral can be easily evaluated to give
1 1 mé —3+4t —t* —4tlnt + 2% Int
Bi(0,m2,m?) = —=Ac+=In <—0> + 146
10m) = mp Aty o {2 A(—1+1)° (146)
where we defined
mi
my

From Eq. (146) one can shown that even for p? = 0 Bj is not a symmetric function of
the masses,
Bi(p*,mg, mi) # Bi(p*,m, mg) (148)

As this might appear strange let us show with one example how the coefficient functions
are tied to our conventions about the order of the momenta and Feynman parameters. Let

24

Figure 5:

us consider the contribution to the self-energy of a fermion of mass my of the exchange of
a scalar with mass m,. We can consider the two choices in Fig. 5,

Now with the first choice (diagram on the left of Fig. 5) we have

)]
T = o [mp)Bolpmd m3) + By (7 m,md)|
]
= o [ﬁ(BO(pz,mim?”)+Bl(p2,m§,m?f))+me0(p27m§,m3c)} (149)

while with the second choice we have
) 7
—iYy = o2 {— ﬁBl(pQ,m?c,mg) + meo(p2,m?c,m§)} (150)

How can these two expressions be equal? The reason has precisely to do with the non
symmetry of B; with respect to the mass entries. In fact from Eq. (145) we have

1 1 —x(1 = 2 2 1— 2
Bl(p27m(2)7m%) = _§Ae +/0 d:E:Eln |: .Z'(.Z')p +z';nl +(x)m0:|
1 1 (1 —)2 (1 — 2 2
0 J

1 1
= _§Ae + (Ae - BO(pzam%m?))) - <§A€ + Bl(pzam%7m3)>
= — (Bo(p?*,mi,md) + Bi(p*,m}, mj)) (151)

where we have changed variables (x — 1 — z) in the integral and used the definitions of
By and B;. We have then, remembering that Bo(pz,mg,m?) = Bo(p2,m§c,m§),

Bi(p?,m},m3) = — (Bo(p?,m2,m}) + Bi(p*,m3, m})) (152)

and therefore Egs. (149) and (150) are equivalent.

25

9.3.3 Explicit expressions for the C' functions

In Eq. (133) we have already given the general form of Cj2. The other functions are very
similar. In the following we just present the results for the particular case of p?> = 0.
This case is important in many situations where it is a good approximation to neglect the
external momenta in comparison with the masses of the particles in the loop. We also
warn the reader that the coefficient functions Cj, C;; obtained from LoopTools are not
well defined in this limit. Hence there is some utility in given them here.

Function ()

1
(1 -2 — a:g)mg

1 1 1—x1
C(0,0,0,m2, m?,m2) = —TI(3)= / dx / dx
0(0 1 2) ()2 0 1 0 2x1m%+x2m%_’_

1 1 1—x1 1
= ——2/ dxl / dajg
mg Jo 0 x1t1 + X2t + (1 — T — l’Q)

1 —t1Inty +titoInty +tolnty — t1taInty

1 153
e | (153)

where m% m%
i1 = CRNE to = 2 (154)

0 0

Using the properties of the logarithms one can show that in this limit Cj is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal, as it happens in the p — ey problem. Then t = t; = to,

1 —1+¢t—1Int
C0(0,0,0,mg, mi,m}) = —— ——————
mg (—1+1t)

(155)
in agreement with Eq.(20) of [12]. In the case of equal masses for all the loop particles we

have
1

00(07 07 07 mgv m%v m%) = "5 2
ng

(156)
Before we close this section on Cy there is another particular case when it is useful to have
an explicit case for it. This in the case when it is IR divergent as in the QED vertex. The
function needed is Cy(m?,m?,0,m?, A2, m?). Using the definition we have

1 1-z1
1
Co(m?,m?,0,m?, N2, m?) = —/ d:n/ dx
o) o 2m2(1—2x1 + 22) + 1 \2
1

/ d 1 — X1
= - T
o Tm2(1 = z1)% + A2

! T
- [a4
/0 m2a? + (1—x)\2

1 A2 L2 22 2
= %ln—:—BO(m,)\,m)—— (157)

We have verified numerically, using LoopTools[9, 10], that Eqgs. (157), (143) and (144) are
verified.

Function Cy,

1 1 1—(21 C
Con(0,0,0,md,m,md) = T(3); / das / iz [Ae—ln (F)]
0 0

= 1A _1/1da:1/1_xlda:21n xlm%+w2m%+(1_x1_x2)m%
47° 2 J, 0

112
1 m2 3 t2
= —(Ac—In—2)+=— L Int
4(‘ nu2>+8 At — 1)t —t)
t
Int
Aty — Dt —t) 2
where, as before
2 2
m m
my my

Using the properties of the logarithms one can show that in this limit Cyg is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal. Then t =t = to,

1 ma —3+4t —t? — 4t Int + 2t Int
2 2 2 _ 0
C(]O(O, 0, 0, mo, ml, ml) = Z <AE — ln F) — 8(t — 1)2
1
= _§B1(07m(2)7m%) (160)

Functions C; and Cj;

We recall that the definition of the coefficient functions is not unique, it is tied to a
particular convention for assigning the loop momenta and Feynman parameters, as shown
in Fig. 1. For the particular case of the C' functions we show our conventions in Fig. 6.

With the same techniques we obtain,

5 5 5 1 1 1—x1 x1
C1(0,0,0,m5, m7, m = —/ da:l/ dxo
(0 1 2) m% 0 0 x1t1 + xoty + (1 — T — 332)
1 t1 tl(tl — 2ty + tltg)
- T2 - 2 7 Inty
mg [2(=14t1)(t —t2) 2(=1+t1)*(t1 — t2)

to? — 2t1t9? + t12t5>
2(—1+t1)2(t1 — t2)*(—1 + t2)

In £ (161)

27

(158)

P1 (@mo) P2

(O+r1,my) (q+r2,my)
P3
Figure 6:
1 1 1—x1 To
C5(0,0,0,m2, m2,m2) = —/ dx / dx
2(0 1 2) m% 0 ! 0 2l’1t1+l’2t2—|—(1—$1 —:Eg)
_ 1 |: t2 + In tl
my [20t —t2)(~1+1t2) 2(—1+t)(~1 +t2)°

ity — 212ty — to? + t12t92 t
I 1t2 1712 22-1-1 22111(_1)] (162)
2(—=1+t1)(t1 — t2) (=1 + t2) ta

XTqlj
2x1t1 + xoty + (1 —x — x9)

1 1—x1
C;;(0,0,0,m2,m3,m3) = —iz/ dry / dx (163)
mg Jo 0

where we have not written explicitly the C;; for 7, j = 1,2 because they are rather lengthy.
However a simple Fortran program can be developed [4] to calculate all the three point
functions in the zero external limit case. This is useful because in this case some of
the functions from LoopTools will fail. Notice that the C; and Cj; functions are not
symmetric in their arguments. This a consequence of their non-uniqueness, they are tied
to a particular convention. This is very important when ones compares with other results.
However using their definition one can get some relations. For instance we can show

C1(0,0,0,m3,m? m3) = (C1(0,0,0,m3,m? m?) (164)
CQ(O,O,O,mg,m%,m%) = —C’O(O,O,O,mg,m%,mg)—Cl(O,O,O,mg,m%,m%)
—C5(0,0,0,m3, m?, md) (165)

In the limit m; = mo we get the simple expressions,

C1(0,0,0,m, m3,m3) = C2(0,0,0,m, m?, m?)

1 3—4t+t2+2Int
= - 5 (166)
my A(=1+¢)

C11(0,0,0,mZ, m3,m?) = Ca2(0,0,0,m3, m? m?) =2 C12(0,0,0,m&, m3, m?)

28

1 —11+4 18t —9t2 4+ 2t3 —61nt
= - . (167)
my 18(—1+t)

in agreement with Eqgs. (21-22) of [12]. The case of masses equal gives

1
C1(0,0,0,m3,m3, m2) = 02(0,0,0,771(2),77L3,m(%):W (168)
my
1
Cll(0,0,0,mS,mg,m%) = CQQ(O,O,O,m%,mS,mS):— 5 (169)
12mg
1
012(070707m(2)7m37m(2)) = _m (170)

9.3.4 The package PVzem

As we said before, in many situations it is a good approximation to neglect the external
momenta. In this case, the loop functions are easier to evaluate and one approach is
for each problem to evaluate them. However our approach here is more in the direction
of automatically evaluating the one-loop amplitudes. If one does that with the use of
FeynCalc, has we have been doing, then the result is given in terms of standard functions
that can be numerically evaluated with the package LoopTools. However this package has
problems with this limit. This is because this limit is unphysical. Let us illustrate this
point calculating the functions C1(m?,0,0,m%, m%, m%) and Cz(m?,0,0,m%, m3%, m%) for
mp = 100 GeV, mp = 80 GeV and msy ranging from 1076 to 100 GeV. To better illustrate
our point we show two plots with different scales on the axis.

mS=100 GeV, mF:SO GeV mS:IOO GeV, mF=80 GeV
030y 400 : : :
" 0285_] o | Ex
g D20 i E)
. 26; 2.00F 3
. ; C Ex
E H 1
0.24F i :
E 000! 7
0.22F s]
E ClAP: CzAP
020E— v 0 22,00t ' ' ']
10° 10' 10° 10° 10" 10° 100 10
m, (GeV) m, (GeV)

Figure 7:

In these plots, C’Z-EX are the exact C; functions calculated with LoopTools and C’Z-A P are the
C; calculated in the zero momenta limit. We can see that only for external momenta (in
this case corresponding to the mass ms) close enough to the masses of the particles in the

29

loop, the exact result deviates from the approximate one. However for very small values
of the external momenta, LoopTools has numerical problems as shown in the right panel
of Fig. 7. To overcome this problem I have developed a Fortran package that evaluates
all the C functions in the zero external momenta limit. There are no restrictions on the
masses being equal or different and the conventions are the same as in FeynCalc and
LoopTools, for instance,

c12zem(m02, m12, m22) = c0i(ccl2,0,0,0,m02, m12, m22) (171)

where c0i(ccl2,---) is the LoopTools notation and cl2zem(---) is the notation of my
package, called PVzem. It can be obtained from the address indicated in Ref.[4]. The
approximate functions shown in Fig. 7 were calculated using that package. We include
here the Fortran code used to produce that figure.

sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk ok sk ok ok ok sk ok sk
Program LoopToolsExample

* *
* *
* *
* This program calculates the values used in the plots *
* of Figure 20. For the exact results the LoopTools *
* package was used. The package PVzem was used for the *
* approximate results. *
* *
* Version of 14/05/2012 *
* *
* *
* *
* *

Author: Jorge C. Romao
e-mail: jorge.romao@ist.utl.pt
ok o ok ok ok ok ok ok ok sk ok

program LoopToolsExample
implicit none

LoopTools has to be used with FORTRAN programs with the
extension .F in order to have the header file "looptools.h"
preprocessed. This file includes all the definitions used
by LoopTools.

Functions clzem and c2zem are provided by the package PVzem.

* X X X X X X ¥

#include "looptools.h"

integer i

real*8 m2,mF2,mS2 ,m

real*8 lgmmin,lgmmax,lgm,step
real*8 rcl,rc2

real*8 clzem,c2zem

mS2=100.d0**2
mF2=80.d0**2

* Initialize LoopTools. See the LoopTools manual for further

30

details. There you can also learn how to set the scale MU
and how to handle the UR and IR divergences.

call 1ltini

lgmmax=10g10(100.d0)
lgmmin=log10(1.d-6)
step=(lgmmax-1lgmmin)/100.d0
lgm=1lgmmin-step

open (10, file=plot.dat, status=unknown)

do i=1,101
lgm=1gm+step
m=10.d0**1gm
m2=m**2

In LoopTools the cO0i(...) are complex functions. For the
kinematics chosen here they are real, so we take the real
part for comparison.

* X ¥ X *

rcl=dble (c0i(ccl1,m2,0.d0,0.d0,mS2,mF2,mF2))

rc2=dble (c0i(cc2,m2,0.d0,0.d0,mS2,mF2,mF2))
write(10,100)m,rc1*mS2,rc2*mS2,clzem (mS2,mF2,mF2)*mS2,
& c2zem (mS2 ,mF2 ,mF2)*mS2

enddo

100 format (5(e22.14))
call ltexi

end
*kkkxkkkkkk*xx*x End of Program LoopToolsExample .F kkkkaskkokokk*x

When the above program is compiled, the location of the header file looptools.h
must be known by the compiler. This is best achieved by using a Makefile. We give
below, as an example, the one that was used with the above program. Depending on the
installation details of LoopTools the paths might be different.

31

FC =

LT = /usr/local/lib/LoopTools
FFLAGS = -c -0 -I$(LT)/include
LDFLAGS =

LINKER = $(FC)

LIB = -L$(LT)/1ib

LIBS = -looptools

.f.o:

$(FC) $(FFLAGS) $x*.F
files = LoopToolsExample .o PVzem.o

all: $(files)
$ (LINKER) $(LDFLAGS) -o Example $(files) $(LIB) $(LIBS)

9.3.5 Explicit expressions for the D functions
Function Dy

The various D functions can be calculated in a similar way. However they are rather
lengthy and have to handled numerically [4]. Here we just give Dy for the equal masses
case.

1

Dy(0,--- ,0,m2,m2,m2,m2) = 1“(4)1 /1 dxq /l_m1 dxo /l—rl—rz drs ——
6 Jo 0 0 (m?)?

1 1 1—x1 l1—xz1—xo
= —4/ dl‘l/ dl‘g/ dl‘g
m=.Jo 0 0
1

10 Examples of 1-loop calculations with PV functions

In this section we will work out in detail a few examples of one-loop calculations using the
FeynCalc package and the Passarino-Veltman scheme.

10.1 Vacuum Polarization in QED

We have done this example in section 10.1 using the techniques described in sections 3, 4

and 5. Now we will use FeynCalc. The first step is to write the Matematica program 3.

We list it below:

30ne should check which version of Mathematica and FeynCalc is used, as conventions may change. We
will indicate in which version these programs were verified. Also the output may change as Mathematica
can order the terms differently. We will try to maintain in my web page [13] a version of the programs as
updated as possible.

32

(koo ok kR kokok kR kR kxR kkkxx Program VacPol .m sk kskokskk sk kokskok ok kok ok kkokkokokkok k)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017
Author: Jorge C. Romao
email: jorge.romao@tecnico .ulisboa.pt

*)

(*# First input FeynCalc *)

(* Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(¥ Now write the numerator of the Feynman diagram. We define the
constant

C=alpha/(4 pi)

I also use the FCE notation available since FeynCalc 6. See manual
for explanations.

*)
num:= - C Tr[GA[mu] . (GS[q] + m) . GA[nul . (GS[ql+GS[k]l+m)]
(* Set some Options. This changed from previous versions *)

SetOptions [PaVeReduce ,A0ToBO->True]
$LimitTo4 = True;

(* Define the amplitude *)

amp:=num * FeynAmpDenominator [PropagatorDenominator [q+k,m], \
PropagatorDenominator [q,m]]

(*x Calculate the result *)

res:=(-I / Pi~2) OnelLoopl[q,amp]
ans=PaVeReduce [res ,PaVeAutoReduce ->True] //Simplify

(kkkxkkrxkrkkxkkxkkx*x End of Program VacPol.m #kkkskkskkkkkkkkkkkkkxkk)

The output from Mathematica is:

2 2 2 2 2 2 2 2 2
Qut[2]= (4 C (k + 6 m BO[O, m , m] -3 (k +2m) Bo[k , m, m])
2 2
(k glmu, nul] - k[mul] k[nul)) / (9 k)

33

Now remembering that,

@ 1
C g (173)
and
il (k,e) = —i kK> PLII(k,) (174)
we get
a [4 8m? 4 2m?
(k&)= — |- — —— B 2m?) + = (14 =5) Bo(k?,m? m? 1
(k,e) |79 32 O(O,m,m)+3<+k2> o(k%,m*,m?) (175)

To obtain the renormalized vacuum polarization one needs to know the value of II(0, ¢).
To do that one has to take the limit £ — 0 in Eq. (175). For that one uses the derivative
of the By function

B0 md) = 5 B, md) (176)
to obtain
110,) = % —g + %Bo(o,m2,m2) + §m2B6(0,m2,m2)} (177)
Using
B}(0,m?,m?) = 6—;2 (178)
we finally get
11(0,¢) = —025 = % [g Bo(o,m2,m2)] (179)
and the final result for the renormalized vertex is:
8 (k) = % [—é + <1 + 2%;) (Bo(k2,m?, m?) — Bo(O,m2,m2))} (180)

If we want to compare with our earlier analytical results we need to know that

m2
Bo(0,m*,m*) = A, —In— (181)
1
Then Eq. (180) reproduces the result of Eq. (?7). The comparison between Eq. (180) and
Eq. (??) can be done numerically using the package LoopTools[9, 10].

10.2 Electron Self-Energy in QED

In this section we repeat the usual calculation of using the Passarino-Veltman scheme. We
start with the Mathematica program,

(kxkkkkkkkkkxkkkkxkxxk Program SelfEnergy .M sk ks kskkkkokskkkkokkkkkokkkk)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017

Author: Jorge C. Romao
email: jorge.romao@tecnico .ulisboa.pt

34

*)

(* First input FeynCalc *)

(* Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(¥ Tell FeynCalc to reduce the result to scalar functions x)

SetOptions [PaVeReduce ,A0ToBO->False,PaVeAutoReduce ->True]
$LimitTo4 = True;
(* Now write the numerator of the Feynman diagram. We define the
constant
C= - alpha/(4 pi)

The minus sign comes from the photon propagator. The factor
i/(16 pi~2) is already included in this definition.

I also use the FCE notation available since FeynCalc 6. See manual
for explanations.

*)

num:= C GA[mul] . (GS[p]+GS[k]+m) . GA[mu]

(* Define the amplitude *)

amp:= num \

FeynAmpDenominator [PropagatorDenominator [p+k,m], \
PropagatorDenominator [k]]

(* Calculate the result *)

res:=(-I / Pi~2) OneLoop[k,amp]

ans=-res;
(*
The minus sign in ans comes from the fact that -i \Sigma = diagram
*)

(¥ Calculate the functions A(p~2) and B(p~2) *)

A=Coefficient [ans,DiracSlash [p],0];
B=Coefficient [ans,DiracSlash[p],1];

(* Calculate deltm *)

35

delm=A + m B /. ScalarProduct [p,pl->m~2//Simplify

(x Calculate delZ2 *)

Ap2 = A /. ScalarProduct [p,p]l->p2
Bp2 = B /. ScalarProduct [p,pl->p2
aux=2 m D[Ap2,p2] + Bp2 \

+ 2 m"2 D[Bp2,p2] /. D[BO[p2,0,m"2],p2]->DBO[p2,0,m"2]
aux2= aux /. p2->m~2
aux3= aux2 /. AO[m~2]->m~2 (BO[m~2,0,m"~2] -1)

delZ2=Simplify [aux3]
(ko xkkkkkkkk*** End of Program SelfEnergy .m ks skskskokskkk k%% kkkokkokok)

The output from Mathematica is:

2 2
A = C (2m-4mBO[p, 0, m 1)
2 2 2 2 2 2 2
C(-p -m BO[O, O, m] + (m + p) BO[p , O, m 1)
e cocoocooococoocooococoocoococoocooooooocoooonooooooos
2
p
2 2 2
delm = -(Cm (-1 + BO[O, O, m] + 2 BO[m , O, m]))
2 2 2 2
delz2 = C (-1 + BO[0O, O, m] - 4 m DBO[m , O, m 1)
We therefore get* (in this case C = —4&)
T
1
4 = 47 {——+Bo(p2,0,m2)] (184)
us 2
B = 2lisla (m?) — 1+ﬁ2 Bo(p?,0,m?) (185)
- 47T p2 0 p2 0p77
3am | 1 1 2
o = —— |—=+ =—5Ao(m?) + ZBy(m?,0,m? 186
wo= B s atn) 4 2 Bl 0.m) (156)

40ne should notice that the PV functions Ao and By with one or two zero arguments are not indepen-
dent. Different versions of FeynCalc, or different options, can give the output in different forms. To make
the connections the following relations (see Eqgs. (138)-(141)) are useful,
A 2
Bo(0,0,m*) = —1+ Bo(m?,0,m?), Bo(0,0,m?) = 0751“;), (182)
Bo(0,m* m*) = =2+ Bo(m?,0,m?), Bo(0,0,m?) =1+ Bo(0,m*m?) (183)

36

One can check that Eq. (186) is in agreement with Eq. (?7). For that one needs the
following relations,

Ag(m?) = m* (Bo(m? 0,m*) — 1) (187)

2 2 m’
By(m*,0,m*) = A€+2_IDF (188)

1 m2a? 5 3. m?

1 1 = ——+-lh— 1
/Odzn(+:L')Il,u2 2+2n,u2 (189)
For 075 we get

73 = (2 Bo(m,0,m2) + dmByon?, 2, m) (190

47

This expression can be shown to be equal to Eq. (??) although this is not trivial. The
reason is that B|) is IR divergent, hence the parameter A that controls the divergence.

10.3 QED Vertex

In this section we repeat the usual calculation for the QED vertex using the Passarino-
Veltman scheme. The Mathematica program should by now be easy to understand. We
just list it here,

(kkkkkokkkkkokxkkkkxkkkxk Program QEDVertex .m ks kkkokkokskkokkokkkokkokkkkx)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017
Author: Jorge C. Romao
email: jorge.romao@tecnico .ulisboa.pt

*)

(¥ First input FeynCalc *)

(* Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(¥ Tell FeynCalc to reduce the result to scalar functions x)

SetOptions [PaVeReduce ,A0ToBO->True]
$LimitTo4 = True;

(* Useful Function x*)
TakeDTo4 = Function[exp, expauxl = exp /. D -> 4 - eps;
expaux2 = Normal[Series[expauxl, {eps, 0, 1}1];

c0 = Coefficient [expaux2, eps, 0]; cl = Coefficient [expaux2, eps, 1];
cldiv = c1 /. PaVelO, {z1_3}, {z2_, z3_3}] -> 2/eps;

37

expaux3 = cO0 + eps cldiv // Simplify;
Simplify [expaux3 /. eps -> 0]]

(¥ Now write the numerator of the Feynman diagram. We define the
constant
C= alpha/(4 pi)
The kinematics is: q = pl -p2 and the intermal momenta is k.
*)
num:=Spinor [pl,m].GA[ro].(GS[pl]-GS[k]+m).GA[mul.(GS[p2]-GS[k]+m).GA[ro].

Spinor [p2,m]

amp :=C num \

FeynAmpDenominator [PropagatorDenominator [k,1bd], \
PropagatorDenominator [k-pl,m], \
PropagatorDenominator [k-p2,m]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m~2,ScalarProduct [p2,p2]->mn~2, \
ScalarProduct [pl,p2]->m~2-q2/2}

(x Define the divergent part of the relevant PV functions*)

div={PaVe [0,{a_},{b_,c_}]->Div}

resl=(-I / Pi~2) OneLoop [k, amp]

res=resl /. onshell

auxV1i= res /.onshell

auxV2= PaVeReduce [auxV1]

auxV3= PaVeReduce [auxV2] /. div

divV=Simplify [Div*Coefficient [auxV3,Div]]

(* Check that the divergencies do not cancel *)

testdiv:=Simplify [divV]

ansl=res;

var=Select [Variables [ans1], (Head [#]===StandardMatrixElement)&]
Set @@ {var, {ME[1],ME[2],ME[3],ME[4]}}

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 4 Standard Matrix

Elements. To have a simpler result we substitute these elements

by simpler expressions (ME[1],ME[2],ME[3],ME[4]).

PR=GA [6]
PL=GA[7]

38

{StandardMatrixElement [ul[pl, m1] . PR. ulp2, m2]],
StandardMatrixElement [u[pl, m1] . PL. ul[p2, m2]],
StandardMatrixElement [ul[pl, mi1] . gal[mu]l . PR . ulp2, m2]],
StandardMatrixElement [u[pl, m1] . ga[mul] . PL . ulp2, m2]]}

*)

(* We substitute PL and PR by scalar and vector Matrix Elements

ME [5] = StandardMatrixElement [u[pl, m1] . ulp2, m2]1]1}
ME[6] = StandardMatrixElement [u[pl, m1] . GA[mul]. wul[p2, m2]1]1}
*)

(*# We use Gordon Identity *)

ans2=PaVeReduce [PaVeReduce [ans1]]/.
{ME[1]->ME[5]-ME[2] ,ME[3]->ME[6]1-ME[4]}//FCE//Simplify

CES5=Coefficient [ans2, ME[5]]

CE6=Coefficient [ans2, ME[6]]

CE51=Coefficient [CE5,FV[pl,mull

CE52=Coefficient [CE5,FV[p2,mull

ans3=CE51 (FV[pl,mul]+FV[p2,mul]) ME[5] + CE6 ME[6]

testl:=Simplify [CE51-CE52]
test2:=Simplify [ans2-ans3]

ans4= ans3 /. {(FV[pl,mul]+FV[p2,mul]) ME[5] -> 2 m ME[6] -2m ME[7]}
ans5=TakeDTo4 [ans4]

CGamma :=Coefficient [ans5,ME[6]]
CSigmaAux :=Coefficient [ans5 ,ME[7]]

test3:=Simplify [ans5-CGamma ME[6] -CSigmaAux ME[7]]
F2:=CSigmaAux /. 1bd->0//Simplify

delZlaux= - CGamma /. 92->0 //Simplify

delZl:= delZlaux /. 1bd->0//Simplify

F1:=CGamma + delZl /. 1bd->0 //Simplify

(k*kxkxkxxkkxxxxx* End of Program QEDVertex .m #kkkkskikkskkkkkkxkxkx*)

From this program we can obtain first the value of §Z7. We get

2 2 2 2 2 2 2 2 2
delZi= C (BO[O, m , m] - 2 (BO[m , O, m] + 2 m CO[O,m ,m ,m ,m , O]))

39

which can be written as
57, = 43 [1— By(0,0,m?) + 2By (0, m?,m?) — 2By(m?,0,m?)
T

—4m2C’0(m2,m2,0,m2,)\2,m2)] (191)

where we have introduced a small mass for the photon in the function Co(m?, m?2,0,m?, A2, m?)
because it is IR divergent when A — 0 (see Eq. (157)). Using the results of Egs. (139),
(140), (141) and Eq. (157) we can show the important result

571 = 62 (192)

where §Z5 was defined in Eq. (190). After performing the renormalization the coefficient
Fy(k?) is finite and given by

2 2 2 2 2
2 C g2 C (8m - qg2) BO[O, m , m] 2 Cqg2 BO[m , 0, m]
F1 B cocoooooo I e e e e e L L L e Lt =
2 2 2
4 m - g2 4 m - g2 4 m - g2
2 2 2
C (8m -3 qg2) BO[g2, m , m] 2 2 2 2 2
—————————————————————————————— -4Cm CO[0, m , m , m , m , O] +
2
4 m - q2
2 2 2 2 2
2C(2m -g492) CO[m , m , g2, m , O, m]

In[5]:= F1 /. q2->0

Out [6]1= 0

or, expanding

2 2 2
q2 q2 BO[0, 0, m] 2 q2 BO[O, m , m]
F1 = © (=(==——=====) = coccccccccoosos P cocccoccooocccosas =
2 2 2
q2 - 4 m q2 - 4 m q2 - 4 m
2 2 2 2 2 2 2 2
8 m BO[O, m , m] 3 g2 BO[g2, m , m] 8 m BO[g2, m , m]
______________________________________ b
2 2 2
q2 - 4 m q2 - 4 m q2 - 4 m

40

2 2 2 2 2 2 2

e et e +
2 2
q2 - 4 m q2 - 4 m
4 2 2 2 2 2 2 2 2 2
16 m CO[m , m , O, m , O, m] 2 g2 CO[m , m, g2, m , O, m]
__ +
2 2
q2 - 4 m q2 - 4 m
2 2 2 2 2 4 2 2 2 2
12 g2 m CO[m , m , g2, m , O, m] 16 m CO[m , m , g2, m , O, m]
__)
2 2
q2 - 4 m q2 - 4 m

while the coefficient F»(¢?) does not need renormalization and it is given by,

2 2 2 2 2 2 2

-4 Cm (2 +B0[0O, m , m] -2 BO[m , O, m] + BO[g2, m , m])

FO = m oo
2
4 m - g2
and for F»(0) we get
2 2 2 2

F2[0] = -2 C (1 + BO[O, m , m] - BO[m , O, m])

Using the results of the Appendix (see Egs. (138)-(141)) we can show that,
F3(0) = — (193)
a well known result, first obtained by Schwinger even before the renormalization program

was fully understood (Fy(q?) is finite).

11 Modern techniques in a real problem: y — ey

In the previous sections we have redone most of the QED standard textbook examples
using the PV decomposition and automatic tools. Here we want to present a more complex
example, the calculation of the partial width u — ey in an arbitrary theory where the
charged leptons couple to scalars and fermions, charged or neutral. This has been done in
Ref.[12] for fermions and bosons of arbitrary charge Qr and @ g, but for simplicity T will
consider here separately the cases of neutral and charged scalars.

11.1 Neutral scalar charged fermion loop

We will consider a theory with the following interactions,

41

|- F-
sO. g0.
--= 1 (ALPL+ ARPR) --2 1 (BLP_.+BgrPRr)

F- |-
where F~ is a fermion with mass mp and S° a neutral scalar with mass mg. In fact
By, r are not independent of Ay, g but it is easier for our programming to consider them
completely general. The Feynman rule for the coupling of the photon with the lepton is
—ie Q" where e is the positron charge (for an electron @y = —1). £; can be any of the

leptons but we will omit all indices in the program, the lepton being identified by its mass
and from the assumed kinematics

la(p2) — L1(p1) + (k) (194)

The diagrams contributing to the process are given in Fig. 8,

D, D;
k
1) 2) 3)
Figure 8:
where
Dy = ¢-m& 5 Dy=(pa+9°-m% ; Dz=(q+p2—k)>—mfp (195)
Dy = D3y ; Dg=Ds ; Ds=(pa—k)?—m3=—2p-k (196)
Dr = (p+k)*—mi=2p-k=—Ds (197)
The amplitudes are
. e _
iMy = L () (ALPy + ApPr) (4 + 2 — F+mp) P (d+ o+ mp)
D1 Dy D3
(BLPL + BRPR) u(pg) Eu(k) (198)
. € _
iMy = &u(pl) (ALPL + ARPR) (4 + p2 — ¥ + mp) (BLPL + BgrPr)
Dy Dy D5

42

(P — K2 + ma) Y'u(p2) €.(k) (199)

eQy

I
s Dy DD~

a(pi)y" (ol + ¥ +mr) (ALPL + ArPr) (4 + P2 + m1)
(BLPL + BRPR) u(pg) €u(k’) (200)

On-shell the amplitude will take the form (we have p; - k = py - k)

iM = 2py-e(k) | Cra(p)Pru(ps) + CRU(pl)PRu(pg)]
+Dru(pr)¢Pru(pz) + Dru(pr)# Pru(p2) (201)
If we write the amplitude as
M =M, e"(k) (202)
then gauge invariance implies

M,k =0 (203)

Imposing this condition on Eq. (201) we get the relations

DL = —mQCR—mch (204)
DR = —mlCR—mQC'L (205)

Assuming these relations the amplitude can be written as

iM =Cp [2ps - e(k)u(p1) Pru(p2) — mati(pr)¢ (k) Pru(pe) — mou(p1)#(k) Pru(ps))
+CRr [2p2 - e(k)u(p1) Pru(p2) — moti(p1)¢ (k) Pru(p2) — miti(p1)¢(k) Pru(p2)] (206)
and the decay width will be

1 3
L= o (78— mD)" (0" + 1) (207)

As the coefficient of py - €(k) only comes from the 3-point function (amplitude M;) this
justifies the usual procedure of just calculating that coefficient and forgetting about the
self-energies (amplitudes My and Mj3). However these amplitudes are crucial for the can-
cellation of divergences and for gauge invariance. Now we will show the power of the
automatic FeynCalc [11] program and calculate both the coefficients Cr g and Dy g,
showing the cancellation of the divergences and that the relations, Eqgs. (204) and (205)
needed for gauge invariance are satisfied. We start by writing the mathematica program:

43

(ko k kR kR ok kR kR kb kokkkkkx Program MUeg —IS I k% k sk k ok ok ok ok ok kok ok ok ok koK ko k ok ok k)
(*

This program calculates the COMPLETE (both the 3 point amplitude and
the two self energy type on each external line) amplitudes for

\mu -> e \gamma when the fermion line in the loop is charged and the
neutral line is a scalar. The \mu has momentum p2 and mass m2, the
electron (pl,ml) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are,
1) Electron-Scalar-Fermion:

Spinor [pl1,m1] (AL P_L + AR P_R) Spinor [pf,mf]
2) Fermion-Scalar-Muon:

Spinor [pf,mf] (BL P_L + BR P_R) Spinor [p2,m2]
*)

dm[mu_]:=DiracMatrix [mu,Dimension ->D]
dm [5] :=DiracMatrix [5]
ds[p_]l:=DiracSlash [p]

mt [mu_,nu_]:=MetricTensor [mu,nu]
fv[p_,mu_]:=FourVector [p,mul
epsilonfa_,b_,c_,d_]l:=LeviCivita[a,b,c,d]
id[n_]:=IdentityMatrix [n]
splp_,q_]l:=ScalarProduct [p,q]
li[mu_]:=LorentzIndex [mul

L:=dm[7]

R:=dm [6]

(*
SetOptions [{BO,B1,B00,B11},BReduce ->True]
*)

gA:= AL DiracMatrix [7] + AR DiracMatrix [6]
gB:= BL DiracMatrix [7] + BR DiracMatrix [6]

numl :=Spinor[pl,m1] . gA . (ds[ql+ds[p2]-ds[k]+mf) . ds[Polarization [k]]\
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]

num2 :=Spinor [pl,m1] . gA . (ds[ql+ds[p1]l+mf) . gB . (ds[p1]l+m2) . \
ds [Polarization [k]] . Spinor[p2,m2]

num3 :=Spinor [pl,m1] . ds[Polarization[k]] . (ds[p2]+m1l) . gA . \
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]

SetOptions [OnelLoop ,Dimension ->D]

44

ampl :=numl \

FeynAmpDenominator [PropagatorDenominator [q+p2-k,mf], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

amp2 :=num?2 \

FeynAmpDenominator [PropagatorDenominator [q+pl,mf], \
PropagatorDenominator [p2-k,m2], \
PropagatorDenominator [q,ms]]

amp3 :=num3 \

FeynAmpDenominator [PropagatorDenominator [pl+k,m1], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m1~2,ScalarProduct [p2,p2]->m2°2, \
ScalarProduct [k,k]->0,ScalarProduct [pl,k]->(m2°2-m1°2)/2,\
ScalarProduct [p2,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,Polarization [k]]->p2epk, \
ScalarProduct [pl,Polarization [k]]->p2epk}

(x Define the divergent part of the relevant PV functions*)
div={BO[m1~2,mf"2,ms~2]->Div,B0[m2°2,mf"2,ms"2]->Div, \
BO[O,mf"2,ms~2]->Div,BO[0,mf"~2,mf 2] ->Div,BO[0,ms"2,ms 2] ->Div}

resl:=(-I / Pi~2) Oneloopl[q,ampl]
res2:=(-I / Pi~2) Oneloopl[q,amp2]
res3:=(-I / Pi~2) Oneloopl[q,amp3]
res:=resl+res2+res3 /. onshell

auxT1:= resl /.onshell

auxT2:= PaVeReduce [auxT1]

auxT3:= auxT2 /. div

divT :=Simplify [Div*Coefficient [auxT3,Div]]

auxS1:= res2 + res3 /.onshell

auxS2:= PaVeReduce [auxS1]

auxS83:= auxS2 /. div

divS:=Simplify [Div*Coefficient [auxS3,Div]]

(* Check cancellation of divergences
testdiv should be zero because divT=-divS *)

testdiv:=Simplify [divT + divS]

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 8 Standard Matrix Elements.
To have a simpler result we substitute these elements by simpler
expressions (ME[1],...ME[8]). But they are not all independent. The
final result can just be written in terms of 4 Matrix Elements.

{StandardMatrixElement [p2epk ulpl,ml1] . gal6] . ulp2,m2]],

StandardMatrixElement [p2epk ulpl,m1] . gal[7] . ulp2,m2]],

45

StandardMatrixElement [p2epk ulpl,m1] . gs[k] . gal6] . ulp2,m2]],
StandardMatrixElement [p2epk ulpl,m1] . gs[k] . gal7] . ulp2,m2]],
StandardMatrixElement [ul[pl,m1] . gslepl[k]] . gal6] . ulp2,m2]],
StandardMatrixElement [u[pl,m1] . gs[epl[k]] . gal7] . ulp2,m2]],
StandardMatrixElement [u[pl,m1] . gs[k] . gslep[k]] . gal6] . ulp2,m2]1],
StandardMatrixElement [ulpl,m1] . gs[k] . gsleplk]] . gal7]. ulp2,m2]1]1} *)
ansl=res;
var=Select [Variables [ans1], (Head [#]===StandardMatrixElement)&]
Set @@ {var, {ME[1],ME[2],ME[3],ME([4],ME[5],ME[6],ME[7],ME[8]}}
identities={ME[3]->-m1 ME[1] + m2 ME[2], ME[4]->-ml ME[2] + m2 ME[1],
ME[7]->-m1 ME[5] - m2 ME[6] + 2 ME[1],

ME[8]->-m1 ME[6] - m2 ME[5] + 2 ME[2]}

ans2 =ansl /. identities ;
ans=Simplify [ans2];

CR=Coefficient [ans ,ME[1]]/2;
CL=Coefficient [ans ,ME[2]]/2;
DR=Coefficient [ans,ME[5]];
DL=Coefficient [ans ,ME[6]];

(¥ Test to see if we did not forget any term *)

testl:=Simplify[ans-2 CR*ME[1]1-2 CL*ME[2]-DR*ME[5]-DL*ME[6]]

(* Test that the divergences cancel term by term x*)

auxCL=PaVeReduce [CL] /. div ;
testdivCL :=Simplify[Coefficient [auxCL,Div]]

auxCR=PaVeReduce [CR] /. div ;
testdivCR :=Simplify[Coefficient [auxCR,Div]]

auxDL=PaVeReduce [DL] /. div ;
testdivDL :=Simplify[Coefficient [auxDL ,Div]]

auxDR=PaVeReduce [DR] /. div ;
testdivDR :=Simplify[Coefficient [auxDR,Div]]

(x Test the gauge invariance relations %)
testGIl:=Simplify[PaVeReduce [(m2°2-m1~2)*CR - DR*ml + DL*m2]]

testGI2:=Simplify [PaVeReduce [(m2°2-m1~2)*CL + DR*m2 - DL*m1]]

(kxkokkokkokkkokxokkkkkkkkkx End Program Mueg—NS .M ok kokskokokkokkok ok kokkok ok kok ok ok ok ok ok ko)

We first do the tests. The output of mathematica is

46

(% kskokkokok kR kokokkkkkkkkk*x Mathematica output ook ok K ok oK o ok K oK oK K ok K oK koK KK Rk Kk K)
In[3]:= << FeynCalc.m

FeynCalc4.1.0.3b Type 7FeynCalc for help or visit
http://www.feyncalc.org

In[4]:= << mueg-ns.m
In[5]:= testl

Out [6]= O

In[6]:= testdiv
Out [6]= O

In[7]:= testdivCL
Out [7]= O

In[8]:= testdivCR
Out [8]= O

In[9]:= testdivDL
Out [9]= O

In[10]:= testdivDR
Out [10]= O
In[11]:= testGI1l
Out [11]= O
In[12]:= testGI2

Out [12]= 0
(*kkkkkkkkkkkkk*kk*x*x* End of Mathematica output ok ok ok ok ok ok ok ok ok K K K K K K kK k)

Now we obtain the results for C7,

(kkkkkkkkkkkkkkkkkkkkk*x Mathematica output IO ™™
In[13]:= CL

2 2 2 2 2
Out [13]= (-4 AL BL mf CO[0, m2 , m1 , mf , mf , ms] +

2 2 2 2 2
4 AL BR m2 PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AL BL mf PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

47

2 2 2 2 2
4 AR BL ml1 PaVel[1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AL BR m2 PaVel1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AL BR m2 PaVel[2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4

and for Cg

In[15]:= CR
2 2 2 2 2
Out [15]= (-4 AR BR mf CO[0, m2 , m1 , mf , mf , ms] +

2 2 2 2 2
4 AR BL m2 PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AR BR mf PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AL BR m1 PaVel[1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AR BL m2 PaVel[1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AR BL m2 PaVel[2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4
(koskokokkmokokokokokokokokokokkkk End of Mathematica oULPUL sk k sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok)

The expressions for Dy, g are quite complicated. They are not normally calculated because
they can be related to Cp, g by gauge invariance. However the power of this automatic
program can be illustrated by asking for these functions. As they are very long we calculate
them by pieces. We just calculate Dy, because one can easily check that Dr = D (L <> R).

(ksxkkkxkkkkkkxkxkx*x**x* Mathematica output 5K % 5k % 5k K ok % >k % >k K * K K k K K Kk Kk %k)

In[12]:= Coefficient [PaVeReduce [DL],AL BL]

2 2 2 2 2 2
ml mf BO[m1 , mf , ms] ml mf BO[m2 , mf , ms]
Out [12]= —-—--—-—=—=—"——————————————— e +
2 2 2 2
ml - m2 ml - m2
2 2 2 2 2

ml mf CO[m1 , m2 , 0, mf , ms , mf]
In[13]:= Coefficient [PaVeReduce [DL],AL BR]

2 2 2 2

48

Out [13]= ———===—mmmmmmm e -
2 ml m2
2 2 2 2 2 2
(m1 m2 - m2 mf + m2 ms) BO[ml1 , mf , ms]
__ +
2 2
2 m1 (m1 - m2)
2 2 2 2 2 2
(m1 m2 - ml mf + ml ms) BO[m2 , mf , ms]
2 2
2 m2 (m1 - m2)
In[14]:= Coefficient [PaVeReduce [DL], AR BL]
2 2 2 2 2
1 (-2 m1 mf + 2 ml1 ms) BO[ml , mf , ms]
0ut [14]= = = === m e e e +
2 2 2
2 m1 (m1 - m2)
2 2 2 2 2
(-2 m2 mf + 2 m2 ms) BO[m2 , mf , ms]
2 2
2 m2 (m1 - m2)
2 2 2 2 2 2
+ mf CO[ml , m2 , 0, mf , ms , mf]
In[15]:= Coefficient [PaVeReduce [DL], AR BR]
2 2 2 2 2 2
m2 mf BO[m1 , mf , ms] m2 mf BO[m2 , mf , ms]
OQut [16]= ----------ccmmmem e R
2 2 2 2
ml - m2 ml - m2
2 2 2 2 2

+ m2 mf CO[m1 , m2 , O, mf , ms , mf]

(kxskxkxkxkxkxkxkxx*x End of Mathematica output s kkkkskkkokkokkkkkkkokxk*k)

From these expressions one can immediately verify that the divergences cancel in Dy, g
and that they are not present in Cf, g. To finish this section we just rewrite the Cr, g in
our usual notation. We get

eQy

Cr 1672

ALBLmF (_00(07 m%? m%? m%? m%v m?@) - 02(07 m%> m%v m%ﬁ m%«“v m?@))

49

2 2 2 2 2 2 2 2 2 2
+ALBRm2 <C2(07 my, My, Mp, Mg, mS) + 012(07 my, Mo, Mp, Mg, mS)

+C22(07 m%v m%» m%‘v m%‘» m%‘))
+ ArBrm 012(07m%7m%7m%'7m%7m%) (208)

Cr = COL(L <+ R) (209)

These equations are in agreement with Eqgs. (32-34) and Egs. (38-39) of Ref. [12], although
some work has to be done in order to verify that®. This has to do with the fact that the
PV decomposition functions are not independent (see the Appendix for further details on
this point). We can however use the power of FeynCalc to verify this. We list below a
simple program to accomplish that.

(o koxkokkkokkkkkokkkkkkk Program 1avoura —NS .M kkskkokkokskokokkokkok ok kokkokkokok ok ok k%)
(*

This program tests the results of my program mueg-ns.m against the
results obtained by L. Lavoura (hepph/0302221).

*)

(¥ First load FeynCalc.m and mueg-ns.m *)

<< FeynCalc.m
<< mueg-ns.m

(*
Now write Lavoura integrals in the notation of FeynCalc. Be careful
with the order of the entries.

*)

cl:=PaVe[1,{m2°2,0,m1"2},{ms"2,mf"2,mf ~2}]
c2:=PaVe[2,{m272,0,m1°2},{ms"2,mf"2,mf "2}]

di:=PaVe[1,1,{m2°2,0,m1"2},{ms"2,mf "2, mf "2}]
d2:=PaVe[2,2,{m272,0,m1"2},{ms"2,nf 2, mf "2}]

f:=PaVe[1,2,{m2°2,0,m1°2},{ms"2,mf"2,mf ~2}]
(* Write Egs. (32)-(34) of hepph/0302221 in our notation *)
k1 :=PaVeReduce [m2*x(cl+d1+£f)]

k2:=PaVeReduce [m1*(c2+d2+f)]
k3:=PaVeReduce [mf*(cl1+c2)]

(*

Now test the results. For this we should use the equivalences:
\rho -> AL BR

\lambda -> AR BL

\xi -> AR BR

\nu -> AL BL

5 An important difference between our conventions and those of Ref.[12] is that p; and p2 (and obviously
ma and m2) are interchanged.

50

*)

testCLALBR
testCLARBL
testCLALBL

testCRALBR
testCRARBL
testCRARBR

(k*kkkkxkk*kkk*xx*k*xx** End of Program lavoura-ns.m

:=Simplify [PaVeReduce [Coefficient [CL, AL
:=Simplify [PaVeReduce [Coefficient [CL, AR
:=Simplify [PaVeReduce [Coefficient [CL, AL

:=Simplify [PaVeReduce [Coefficient [CR, AL
:=Simplify [PaVeReduce [Coefficient [CR, AR
:=Simplify [PaVeReduce [Coefficient [CR, AR

BR]-k11]]
BL]-%k2]]
BL]-k3]]

BR]-%k2]]
BL]-k1]]
BR]-%k3]]

**********************)

One can easily check that the output of the six tests is zero, showing the equivalence
between our results. And all this is done in a few seconds.

11.2 Charged scalar neutral fermion loop

We consider now the case of the scalar being charged and the scalar neutral. The general
case of both charged [12] can also be easily implemented, but for simplicity we do not
consider it here. The couplings are now

|- FO

ST (APL+ ARPR) -5 i (BLPL+BrPR

FO | -

and the diagrams contributing to the process are given in Fig. 9, where all the denominators

Figure 9:

are as in Egs. (195)- (197) except that

D} =

Also the coupling of the photon to the charged scalar is, in our notation,

2

@ —mp 5 Dy=(q—p)*—mes ; Dy=(q—p1—k)?’—m}

—ie Qo (—2q + p1 + p2)"*

o1

(210)

(211)

The procedure is very similar to the neutral scalar case and we just present here the
mathematica program and the final result. All the checks of finiteness and gauge invariance
can be done as before.

(ko ok ok ok ok ok ok ok ok kR ok ok k ok ok kokk Program MU —CS .M ok ko k ok kok ok k ok ok ok ok ok ok ok ok ok ok % ok ok %)
(*

This program calculates the COMPLETE (both the 3 point amplitude and

the two self energy type on each external line) amplitudes for

\mu -> e \gamma when the fermion line in the loop is neutral and the
charged line is a scalar. The \mu has momentum p2 and mass m2, the
electron (pl,ml) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are,
1) Electron-Scalar-Fermion:

Spinor [p1l,m1] (AL P_L + AR P_R) Spinor [pf,mf]
2) Fermion-Scalar-Muon:

Spinor [pf,mf] (BL P_L + BR P_R) Spinor [p2,m2]
*)

dn[mu_J]:=DiracMatrix [mu,Dimension ->4]

dm [5] :=DiracMatrix [5]
ds[p_]l:=DiracSlash [p]

mt [mu_,nu_]:=MetricTensor [mu,nu]
fv[p_,mu_]:=FourVector [p,mul
epsilonfa_,b_,c_,d_]l:=LeviCivital[a,b,c,dl]
id[n_]:=IdentityMatrix [n]
splp_,q_]:=ScalarProduct [p,q]
li[mu_]:=LorentzIndex [mu]

L:=dm[7]

R:=dm [6]

(*

SetOptions [{BO,B1,B00,B11},BReduce ->True]
*)

gh:= AL DiracMatrix [7] + AR DiracMatrix [6]

gB:= BL DiracMatrix [7] + BR DiracMatrix [6]

numl := Spinor[pl,mi1] . gA . (ds[ql+mf) . gB . Spinor[p2,m2] \
PolarizationVector [k,mu] (- 2 fv[q,mu] + fv([pl,mu] + fv[p2,mul])

numll:=DiracSimplify [numl];
num2 :=Spinor [pl,m1] . gA . (ds[ql+ds[p1]l+mf) . gB . (ds[p1]l+m2) . \

ds [Polarization [k]] . Spinor[p2,m2]

num3 :=Spinor [pl,m1] . ds[Polarization[k]] . (ds[p2]+m1l) . gA . \
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]

52

SetOptions [OneLoop ,Dimension ->D]

ampl :=numl \

FeynAmpDenominator [PropagatorDenominator [q,mf],\
PropagatorDenominator [q-pl,ms],\
PropagatorDenominator [q-pl-k,ms]]

amp?2 :=num?2 \

FeynAmpDenominator [PropagatorDenominator [q+pl,mf], \
PropagatorDenominator [p2-k,m2], \
PropagatorDenominator [q,ms]]

amp3 :=num3 \

FeynAmpDenominator [PropagatorDenominator [pl+k,m1], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m1~2,ScalarProduct [p2,p2]->m2°2, \
ScalarProduct [k,k]->0,ScalarProduct [pl,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,Polarization [k]]->p2epk, \
ScalarProduct [pl,Polarization [k]]->p2epk}

(x Define the divergent part of the relevant PV functions*)

div={BO[m1~2,mf"2,ms~2]->Div,B0[m2°2,mf"2,ms"2]->Div, \
BO[O,mf"2,ms~2]->Div,BO[0,mf"2,mf 2] ->Div,BO[0,ms"2,ms"2]->Div}

resl:=(-I / Pi~2) Oneloopl[q,ampl]
res2:=(-I / Pi~2) Oneloopl[q,amp2]
res3:=(-I / Pi~2) Oneloopl[q,amp3]

res:=resl+res2+res3 /. onshell

auxT1:= resl /.onshell

auxT2:= PaVeReduce [auxT1]

auxT3:= auxT2 /. div

divT :=Simplify [Div*Coefficient [auxT3,Div]]

auxS1:= res2 + res3 /.onshell
auxS2:= PaVeReduce [auxS1]
auxS83:= auxS2 /. div

divS:=Simplify [Div*Coefficient [auxS3,Div]]

(* Check cancellation of divergences
testdiv should be zero because divT=-divS

*)

53

testdiv:=Simplify [divT + divS]

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 6 Standard Matrix Elements.
To have a simpler result we substitute these elements by simpler
expressions (ME[1],...ME[6]). Not all are independent.
{StandardMatrixElement [p2epk ulpl, m1] . gal6] . ulp2, m2]1],
StandardMatrixElement [p2epk ulpl, mi1] . gal7] . ulp2, m2]],
StandardMatrixElement [p2epk ulpl, mi] . gs[k] . gal6] . ulp2, m2]],
StandardMatrixElement [p2epk ulpl, m1] . gs[k] . gal7] . ulp2, m2]],

StandardMatrixElement [u[pl, m1] . gs[ep[k]] . gal6] . ulp2, m2]],

StandardMatrixElement [u[pl, m1] . gs[ep[k]l] . gal7] . ulp2, m2]]1}
*)

ansl=res;
var=Select [Variables [ans1], (Head [#]===StandardMatrixElement)&]

Set @@ {var, {ME[1],ME[2],ME[3],ME[4],ME[5],ME[6]}}
identities={ME[3]->-m1 ME[1] + m2 ME[2],ME[4]->-ml1 ME[2] + m2 ME[1]}

ans2 =ansl /. identities ;

ans=Simplify [ans2];

CR=Coefficient [ans ,ME[1]]/2;
CL=Coefficient [ans ,ME[2]]/2;
DR=Coefficient [ans ,ME[5]];
DL=Coefficient [ans ,ME[6]];

(x Test to see if we did not forget any term x*)

testl:=Simplify [ans-2*CR*ME [1] -2*xCL*ME [2] -DR*ME [5] -DL*ME [6]]

(¥ Test that the divergences cancel term by term *)

auxCL:=PaVeReduce [CL] /. div ;
testdivCL :=Simplify[Coefficient [auxCL ,Div]]

auxCR:=PaVeReduce [CR] /. div ;
testdivCR :=Simplify[Coefficient [auxCR,Div]]

auxDL:=PaVeReduce [DL] /. div ;
testdivDL :=Simplify[Coefficient [auxDL ,Div]]

auxDR:=PaVeReduce [DR] /. div ;
testdivDR :=Simplify[Coefficient [auxDR,Div]]

(¥ Test the gauge invariance relations *)

o4

testGI1l:=PaVeReduce [(m2"2-m1~2)*CR - DR*ml + DL*m2]
testGI2:=PaVeReduce [(m2"2-m1~2)*CL + DR*m2 - DL*m1]

(kxokkokkrkkkkxkrkkxkrkkx End Program Mueg-—CsS .M kkkkkkokokkokkokkokokkokkkokkok k)

Note that although these programs look large, in fact they are very simple. Most of it are
comments and tests. The output of this program gives,

(kxkkkkkkkkkkkxkkkkxxkx*x Mathematica output 3 ok o ok ok ok K ok ok ok ok ok ok o ok ok ok o ok ok kK ok ok)
In[3]:= CL

2 2 2 2 2
Out [3]= (-2 AR BL mi1 CO[0, m1 , m2 , ms , ms , mf] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2
4 AR BL m1 PaVe[1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AL BL mf PaVe[l, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AL BR m2 PaVe[2, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2
2 AL BR m2 PaVe[2, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, 1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, 2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2
2 AL BR m2 PaVel[l, 2, {m1 , m2 , 0}, {ms , mf , ms }]) / 2

(Hkkxkkkkkkkkxkkkxxx*x End of Mathematica output skkkskkskkkkkkokkkkkkkkk)

To finish this section we just rewrite the Cr, g in our usual notation. We get

eQy

CL = 5.2

2 .2 2 2 2
|:ALBLmF (=Ci(mi,m3,0,mg, mz, ms))
2 2 2 2 2 2 2 2 2 2
—|—ALBR’I’)’L2 < - 02(m1707m27mF7m57m5) + 02(m1>m27 0>mS>mF7m5)
2 2 2 2 2
+012(m17m2707mS>mF7m5))
2 2 2 2 2 2 2 2 2 2
+ ARBLml (_00(07m17m27m37mS7mF) - Cl(m17 07m27mF7mS7mS)

95

2 2 2 2 2 2 2 2 2 2
_201(m17m2707mS7mF7mS) - 02(m17m2707mS7mF7mS)

_Cll(m% m%v 0, m2S’ m%v m%) - 012("71'%7 m%, 0, m%v m%) m%‘))]

CR = CL(L — R) (212)

It is left as an exercise to write a mathematica program that proves that these equations
are in agreement with Egs. (35-37) and Egs. (38-39) of Ref. [12].

References

[1] J. C. Romao, Advanced Quantum Field Theory (IST, 2019), Available online at
http://porthos.tecnico.ulisboa.pt /Public/textos/tca.pdf.

[2] F. Gross, Relativistic quantum mechanics and field theory (, 1993).

[3] M. D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge Univer-
sity Press, 2014).

[4] J. C. Romao, Utilities for One Loop Calculations (IST, 2004), Available online at
http://porthos.ist.utl.pt/OneLoop/.

[5] G. Passarino and M. J. G. Veltman, Nucl. Phys. B160, 151 (1979).
[6] A. Denner, Fortschr. Phys. 41, 307 (1993).

[7] R. Mertig, M. Bohm and A. Denner, Comput. Phys. Commun. 64, 345 (1991),
Available at https://www.feyncalc.org/.

[8] V. Shtabovenko, R. Mertig and F. Orellana, Comput. Phys. Commun. 207, 432
(2016), [1601.01167].

[9] T. Hahn and M. Perez-Victoria, Comput. Phys. Commun. 118, 153 (1999), [hep-
ph /9807565].

[10] G. J. van Oldenborgh, Comput. Phys. Commun. 66, 1 (1991).
[11] R. Mertig, http://www.feyncalc.org .
[12] L. Lavoura, Eur. Phys. J. C29, 191 (2003), [hep-ph/0302221].

[13] J. C. Romao, http://porthos.ist.utl.pt/CTQFT/ .

56

