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Abstract

Minimal R-parity violating supergravity predicts a value forαs(MZ) smaller than in the case with
conserved R-parity, and therefore closer to the experimental world average. We show that the R-parity
violating effect on theαs prediction comes from the larger two-loop b-quark Yukawa contribution to
the renormalization group evolution of the gauge couplings which characterizes R-parity violating
supergravity. The effect is related to the tau neutrino mass and is sensitive to the initial conditions
on the soft supersymmetry breaking parameters at the unification scale. We show how a few percent
effect onαs(MZ) may occur even withντ masses as small as indicated by the simplest neutrino
oscillation interpretation of the atmospheric neutrino data from Super-Kamiokande. 2000 Elsevier
Science B.V. All rights reserved.

1. Introduction

The prediction for the strong gauge coupling constantαs(MZ) is one of the milestones
of unification models [1–3]. Recent studies of gauge coupling unification in the context of
minimal R-parity conserving supergravity [4–6] agree that using the experimental values
for the electro-magnetic coupling and the weak mixing angle the prediction obtained for
αs(MZ)≈ 0.129± 0.010 [4] is about oneσ larger than indicated by the most recent world
average valueαs(MZ)

W.A. = 0.1186± 0.0013 [7]. While this too small a discrepancy to
be taken seriously it is hoped that the relatively large theoretical error may improve in the
future. We are also encouraged by the smallness of the experimental error (for a detailed
discussion of the reliability of the averaging procedures involved forαs determined from
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different experiments at very different energies, see Ref. [8]) to reanalyse theαs prediction
in supersymmetric theories.

Here we reconsider theαs prediction in supergravity (SUGRA). In addition to the
standard MSUGRA we consider simplest supergravity version with a bilinear breaking
of R-parity [9–21]. This model is theoretically motivated by the fact that it provides
parameterization of many of the features of a class of models in which R-parity breaks
spontaneously due to a sneutrino vacuum expectation value (VEV) [22–24]. Moreover,
in the simplest case where R-parity violation lies only in the third generation, the model
coincides with the most general explicit R-parity violating model and provides its simplest
description.

One of the main features of R-parity violating models is the appearance of masses for the
neutrinos [22–32]. As a result, these models have attracted a lot of attention [33–38] since
the latest round of Super-Kamiokande results [39,40]. As shown in Ref. [41], irrespective
of any assumption about Yukawa textures, one obtains a very predictive pattern of neutrino
mass and mixing which leads naturally to the maximal mixing indicated by the atmospheric
neutrino data.

In this paper we show that in the simplest SUGRA R-parity breaking model, with the
same particle content as the MSSM and with no new interactions (such as trilinear R-parity
breaking couplings), there appears an additional negative contribution toαs , which can
bring the theoretical prediction closer to the experimental world average. This additional
contribution toαs comes from two-loop b-quark Yukawa effects on the renormalization
group equation (RGE) forαs . Moreover, we show that this contribution is related to the
tau-neutrino mass which is induced by R-parity breaking and which controls the R-parity
violating effects. We also discuss this relation within different models for the initial
conditions on the soft supersymmetry breaking parameters at the unification scale. We
show how to obtain a sizable effect onαs(MZ) even withντ masses as small as indicated
by the simplest neutrino oscillation interpretation of the atmospheric neutrino data from
Super-Kamiokande.

2. The MSSM renormalization group equations

The two-loop renormalization group equations [42–46] for the gauge coupling constants
in the MSSM have the form
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wheregi , i = 1,2,3, are the gauge couplings of theU(1), SU(2), and SU(3) groups
respectively, andhl , l = t, b, τ , are the quark and lepton Yukawa couplings of the third
generation. The numerical coefficientsbi , bij , andb′il are given in Refs. [42–46].

It is useful to obtain an approximate analytical solution to the gauge coupling constants
from Eq. (1). This is done by neglecting the two-loop Yukawa contribution in first
approximation. The result is [47]
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wheret = 1
2π ln(MU/µ), αU is the unified gauge coupling constant,MU is the unification

scale,µ is an arbitrary scale, and∆i are corrections due to several effects, mainly threshold
corrections. Although GUT-type threshold corrections are potentially sizable, we neglect
them here since they are in general model-dependent. For a discussion see Refs. [4,5,48].
Leading logarithms from supersymmetric spectra threshold corrections toαS(MZ) can be
summarized in the following formula [5,6]:
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This scale is not simply an average of SUSY masses since it can be smaller than all the
masses of the supersymmetric particles [5,6]. Large values ofTSUSY are experimentally
preferred because in general they contribute negatively to1αSUSY

s , bringing αs(MZ)

closer to the experimental average by an estimated|1αSUSY
s | 6 0.003 [4]. There is in

addition, a finite contribution from supersymmetric threshold corrections which may be
important if the supersymmetric spectrum is light [49–51]. Moreover there is also a small
conversion factor fromMS to DR [52–55], as well as possible contributions coming from
non renormalizable operators which can be induced from physics between the Planck to
the GUT-unification scale [56,57].

Let us now turn to the important issue of the two-loop Yukawa contribution to the gauge
coupling constants RGE. This contribution is not included in Eq. (2) and is crucial for our
purposes, providing a correction which is negative and can be important ifht orhb are large
(tβ ≈ 1 or tβ ≈ 50, respectively). Making a leading logarithm approximation we obtain the
expression

1αYUK
s ≈− α2
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}
. (5)

In the small tanβ region, the bottom Yukawa coupling is negligible compared to the top
Yukawa, then we get1αYUK

s ≈−0.1α2
s h

2
t , giving us an estimate of the magnitude of this

correction. Note that this correction is not bigger in the high tanβ scenario, where both
Yukawas are large, since they are not as large as the top Yukawa in the low tanβ case.

In contrast, in the/R–MSSM model, the bottom Yukawa coupling can be nonnegligible
for any value of tanβ [58]. As a result we cannot neglect the bottom-quark Yukawa
coupling, since it can be as large as the top-quark Yukawa, especially if the R-parity
violating parameters are large.
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3. The/R-MSUGRA model

In order to illustrate the essential features of the model, it is enough to consider a one
generation/R-MSSM [9,14–21], since it contains the main ingredients relevant for our
present discussion. Of course, the correct prediction of neutrino masses and mixings
require R-parity violation in the three generations [41]. Nevertheless, it is not the purpose
of this paper to predict neutrino mixings. Furthermore, it is known that BRpV in three
generations produce only one massive neutrino at tree level, whose mass is equivalent
to the tree level tau neutrino mass in the case of BRpV only in the third generation.
Therefore, the one generation BRpV approach considered in this paper is justified because
it has been checked in [41] that BRpV parameters smaller than about 1 GeV in the three-
generation model produce a tree level tau neutrino mass which dominates over the one-loop
contributions. The tau neutrino mass calculated here, then, is a good approximation of the
heaviest neutrino mass in the complete three-generation model.

The superpotentialW is

W =WMSSM+W/R, (6)

whereWMSSM is the familiar superpotential of the MSSM:

WMSSM=
[
htQ̂3ĤuÛ3+ λD0 L̂0Q̂3D̂3+ hτ L̂0L̂3R̂3−µ0L̂0Ĥu

]
. (7)

Here we are using the notation̂L0 ≡ Ĥd , µ0≡ µ, andλD0 ≡ hb in the superpotential, and
v0≡ vd for theĤd vacuum expectation value. This notation is justified becauseĤd andL̂3

have the same quantum numbers. The piece of the superpotential which breaks R-parity is
given by

W/R =−µ3L̂3Ĥu, (8)

whereµ3 is the bilinear R-parity violating term (BRpV), denoted−ε3 in Refs. [9–13].
Notice that we do not generate a trilinear R-parity violating (TRpV) term in models

that arise from spontaneous breaking of R-parity. In fact, even if explicit trilinear terms
were present, for the simple one-generation case they can always be rotated away into the
bilinear term given in Eq. (8). In other words, the most general one-generation explicit
SUGRA R-parity violation model is characterized by a single parameter, which may be
chosen either asµ3, or asλD3 (defined below) or the sneutrino VEV. The converse is not
true, BRpV cannot be rotated away in favour of TRpV.

Although the above presentation would be in some sense the simplest and sufficient for
our purposes, it will be useful for us in what follows to keep a redundant parameterization
in which the bilinear and trilinear R-parity violating terms coexist.

The scalar potential contains the following relevant soft terms:
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)†( M2
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L03
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L30
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)
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)
, (9)

whereM2
Li

are the soft-mass terms and mixing for the down type Higgs and slepton fields,
Bα , α = 0,3, are the bilinear soft-mass parameters (B0 corresponds to the usualB term in
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the MSSM), whileADα are the trilinear soft-mass parameters (AD0 is the usualAD term in
the MSSM).

The equality of the quantum numbers of the down-type Higgs and tau leptonSU(2)⊗
U(1) superfields opens the possibility to work in different basis [17,59–62]. This field
redefinition is(

L̂′0
L̂′3

)
=
(

cosαL sinαL

−sinαL cosαL

)(
L̂0

L̂3

)
, (10)

whereαL is the angle of rotation, which in turn induces a rotation of theµ-terms. Under
this change of basis the Lagrangian parameters are redefined and, because of this, it is
impossible to eliminate completely the effects of the bilinear terms [9–13,61,62]. Note that
different basis may be convenient for different applications [60].

Here we are specially interested to express R-parity violating effects through basis
independent parameters:

vd ≡
√
v2

0 + v2
3 , (11)

µ≡
√
µ2

0+µ2
3 , (12)

λD ≡
√
(λD0 )

2+ (λD3 )2. (13)

From the above we can deduce that the natural generalization of the MSSM definition of
tanβ is given by

tanβ = vu
vd
, (14)

which is also a basis invariant. This definition differs from the one used in Refs. [9,58],
namely tanβ = vu/v0. There are other invariants which turn out to be very useful [63–65]
and are defined as

cosζ = µαvα
µvd

, (15)

cosγ = λ
D
α µα

λDµ
, (16)

cosχ = λ
D
α vα

λDvd
. (17)

Note that these three parameters are not independent due to the trigonometric relation

cosχ = cos(γ − ζ ). (18)

The remaining R-parity violating variables sinζ and sinγ determine theντ mass at tree
level and the R-parity violating effects in general in the fermionic sector, while sinχ

characterizes the R-parity violating effects onαs . As we will see below there is only one
of these parameters which survives, owing to the minimization conditions of the theory.

In this model the top- and bottom-quark masses are given by

Mt = ht√
2
vu = sβht

√
2MW

g
, (19)
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Mb= 1√
2

(
λD0 v0+ λD3 v3

)= cβcχλD√2MW

g
. (20)

This formula for the bottom-quark mass is specially interesting, since it is expressed in
terms of basis-independent R-parity violating parameters.

As in the MSSM, to connect the phenomenology at the electroweak scale with the
SUGRA parameter space we need to use the renormalization group equations. A question
immediately arises as to the number of additional parameters necessary to characterize the
model. For a one-generation model with universality of soft parameters at the unification
scale only one additional parameter is needed in addition to the MSUGRA parameters [9].
We have, however, some freedom in this choice. To compute the Lagrangian parameters at
the electroweak scale we can follow two different approaches [60]:
• the bilinear orµ3-approach, in which the parameters which fix the model are:(

A0,M0,M1/2, tβ,µ
GUT
3

)
.

Because of the form of the RGE forλD3 : dλD3 /dt ∝ λD3 , if λD3 is zero at the unification
scale it will be zero at the electroweak scale;
• the second possibility is theλD3 -approach, in this case the fundamental parameters of

the model are(
A0,M0,M1/2, tβ,

(
λD3
)GUT)

.

In contrast to the previous case here one arrives at the electroweak scale to the
coexistence of bilinear and trilinear R-parity breaking parameters.

It does not matter which approach we follow because both are equivalent. Notice that,
while in the bilinear approach one can ignore trilinear terms without loss of generality, the
converse is not true: one cannot neglect bilinear terms consistently due to the structure of
the RGEs. One can change from one basis to another and thus compare calculations which
have been performed in different basis. These results have to be the same.

Now we are ready to understand how R-parity violation can affect the gauge coupling
unification through the two-loop Yukawa contribution to the RGES forαs . One finds,

1αYUK
s ≈− α2

s

32π3 ln

(
MGUT

Mt

){
b′3th

2
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where one notes the appearance of the R-parity violating couplingλD3 . Clearly this term
combines withλD0 to form the basis invariantλD as follows:

1αYUK
s ≈− α2
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.

Using the formulas (20,19) for the top and bottom masses we obtain

1αYUK
s ≈− α2

s
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ln
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)
g2

2M2
W

(
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b
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χ

}
. (22)

We are now set to demonstrate the relation between the last term in Eq. (22) and the
magnitude of R-parity violation which, as already mentioned, is characterized by a unique
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parameter in this model. To see this we must make use of the three minimization equations
of the scalar potential of the theory, the two analogous to the MSSM plus a third equation
related to the tau sneutrino field. Using this equation one can find a relation between sinζ

and sin2γ which finally reduces the extra number of parameters to simply one, when
compared with the R-parity conserving supergravity model. At first order inµ3/µ it can
be simplified to

sinζ = µ0µ3

µ2 (δBtβ ± δM)= 1

2
sin(2γ )(δBtβ ± δM), (23)

where

δB = µ1B(
M2
ν̃3
− µ2

3
µ21M

2
) , δM = 1M2(

M2
ν̃3
− µ2

3
µ21M

2
) ,

and we have defined

1B = B3−B0, 1M2=M2
3 −M2

0,

with the parameters given at the weak scale.
We notice that the double sign in Eq. (23) is the result of the solution to a quadratic

equation in the minimization conditions of the scalar potential. In models with universality
of soft terms,δM is positive butδB can take either sign.

Thus Eq. (23) shows that, as anticipated, only one of the three parametersζ, γ,χ is
independent. This parameter, together with the rest of the SUGRA parameters, determines
the Majorana mass for the tau neutrino. The latter is induced by the mixing of the original
tau neutrino field with the neutralinos [22–32] and is determined mainly by the parameter
sinζ through the approximate relation

Mντ =
M2
ZMγ̃ µs

2
ζ c

2
β(

M2
ZMγ̃ s2βcζ −M1M2µ

) (24)

valid at tree level, which depends on the SUGRA parameters, and where we have defined
the parameterMγ̃ ≡ cWM1+ sWM2. From Eqs. (18), (23) and (24), it is evident that we
can get an expression for cosχ whose exact form is unimportant for our present argument,
except for the property that

cosχ→ 1 as Mντ → 0.

Thus the maximum valuecχ = 1 corresponds to the R-parity conserving case. From
Eq. (17) we see that in the basis where there is no trilinear term,sχ is proportional to
the sneutrino vevv3, thus it is clear that the larger the R-parity violating parameterv3 the
larger will be the additional contribution coming from the ratio Mb/cχ in Eq. (22). The
above equation establishes a relationship that the basis-independent parametercχ bears
with the tau neutrino mass.

We now turn to the implications of R-parity violation on theαs predictions derived from
Eq. (22) and to our numerical results. We have used the two-loop renormalization group
equations for the gauge coupling constants and the Yukawa couplings and the one-loop
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Fig. 1.αs(MZ) versusŝZ for the MSSM

RGE forµ-terms and for the rest of the soft parameters [66–69]. We study the prediction
for the gauge coupling constants at the MZ scale in a model with universality of the soft
terms at the unification scale.1 We compare masses and couplings at the MZ scale with
their experimental values (see appendix for a detailed description of the method we have
used for the running of the effective masses to their pole values and the running of the
gauge couplings to theirMS values at the MZ scale).

As a first step in our study of the supersymmetricαs(MZ) and ŝ2
Z predictions we have

updated the standard MSUGRA prediction taking into account the latest PDG experimental
values for̂α(MZ)

−1 [7]:

α̂(MZ)
−1= 127.88± 0.09.

On the other hand for the top, bottom and tau pole masses we have used [7] are:

Mpol
t = 173± 5.2 GeV, Mpol

b = 4.1–4.4 GeV, Mpol
τ = 1777.05

+0.29
−0.26

MeV.

In Fig. 1 we display a scatter plot with the updated MSUGRA prediction forαs(MZ) and
ŝ2
Z , where each point corresponds to a different choice of SUGRA parameters, varying over

a wide range:

1 For the sake of generality and in order to simplify the discussion we will neglect possible GUT threshold
contributions, as well as nonrenormalizable operator contributions.
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Fig. 2.αs(MZ) versusŝZ for the/R-MSSM model.

0<M0< 500 GeV, 0<M1/2< 500 GeV,
−1000< A0< 1000 GeV, 2. tβ < 60.

(25)

In this figure we display with error bars the present world average forαs(MZ):

αs(MZ)
W.A. = 0.1186± 0.0013,

and the 1999 average of the LEP measurements [7]:

αs(MZ)
LEP98= 0.1192± 0.0028.

For a discussion on the question of the average of values ofαs deduced at different energy
scales, see Refs. [5,70–72]. We notice that if we fixŝ2

Z inside its experimental range,(
ŝ2
Z

)W.A. = 0.23124± 0.00024,

the MSUGRAαs(MZ) prediction lies in the rangeαs(MZ)≈ 0.127±0.003, which is a bit
more than oneσ higher than the most recent world average.

Now we turn to discuss the results we obtain in our bilinear R-parity breaking model,
/R-MSSM for short, displayed in Fig. 2. The method we have used is similar to the previous
procedure. In this case, additional complications appear because of the mixing between
charginos and the tau lepton, and the necessity to ensure that the tau mass corresponds to
the experimentally measured value. On the other hand, the mixing between the neutralinos
and the neutrino generates a mass for the tau neutrino, as indicated by Eq. (24), which
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must lie below the experimental bound [73,74]. As we have already seen, the nonzero tau
sneutrino VEV implies an additional constraint given by the third minimization equation.
Once we satisfy these constraints, we find that/R-MSUGRA predictsαs(MZ) values closer
to its experimental average, as compared to the R-parity conserving MSUGRA. This is
due to the enhanced negative two-loop bottom-quark Yukawa contribution to the RGE’s.
Indeed, taking the world average experimental value ofs̃2

Z , one can moveαs(MZ) from a
minimum value of approximately 0.125 in the MSUGRA case down to a minimum value
of 0.122 or so in the/R-MSSM model, bringing it closer to the W.A. and within oneσ
from the most recent average of LEP measurements given in Ref. [7]. These results can be
clearly seen from Fig. 2, where each point represents a different parameter choice in the
/R-MSUGRA model. Notice that the/R-MSUGRA model is totally fixed if we know theντ
mass, in addition to the other MSSM–SUGRA parameters. We have varied the tau neutrino
mass below the laboratory bound Mντ < 18.2 MeV [73,74].

As it can be seen from Figs. 1 and 2, the net improvement of theαs prediction in our
BRpV model is 1σ compared to the MSSM. We note however that this is the result of a
global scanning over the supersymmetric parameter space, and that the improvement on the
αs prediction at specified individual points in parameter space can be larger. In addition, it
should be stressed out that the corrections toαs are not directly governed by the parameter
cosζ in Eq. (15), which controls the tree level neutrino mass, but by the parameter cosχ

in Eq. (17), which in the original basis is proportional to the tau-sneutrino VEV. In other
words, large corrections toαs are not necessarily associated to largeντ masses (see the
next section).

4. Discussion:1αs versusmντ

Although νµ to ντ oscillations provide the preferred interpretation for the recent
atmospheric neutrino data from underground detectors [75], other mechanisms such as
conversion to sterile neutrinos [76–78], flavour-changing neutrino–matter interactions
[79,80] orνµ decay [81,82] could also play an important role. For example, in the presence
of a light sterile neutrino it is conceivable that even a very heavy tau-neutrino scenario (in
which it decouples from the oscillations) would be acceptable by present underground data,
which would be accounted for by oscillations among the three light neutrinosνe, νµ and the
sterile neutrino. Oscillations amongst the latter would account for the conversions required
to explain solar and atmospheric neutrino data. A non-supersymmetric scheme of this type
has actually been suggested in Ref. [83]. Clearly in this case large negative corrections to
αs(MZ) naturally emerge, as the ones displayed in Fig. 2.

However, even in the preferred low neutrino-mass regime withντ mass in the range
close to few×10−2 eV, indicated by the best fit of the oscillation hypothesis [76–78] (for
previous analyses see, e.g. [77,78]), one can have a sizable decrease inαs(MZ). This is
possible provided there is some degree of cancellation as we explain below. We stress that
the tree levelντ mass calculated in this paper is a good approximation of the heaviest
neutrino mass calculated in the three generations case [41].
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To better understand these statements we make a few approximations. Consider first
Eq. (22). As we mentioned before, in BRpV the term proportional tomt and the term
proportional tomb can be simultaneously large. In this case, with the two terms of similar
magnitude, we have

cosχ ≈ Mb

Mt
tβ ≈ 0.017tβ (26)

which is a necessary condition for large Yukawa contributions toαs in BRpV. On the other
hand, it is convenient to rewrite the formula for the neutrino mass in Eq. (24) by introducing
the mass parameterΛ defined by the equation

sinζ ≡ 1

cβ

√
Mν

Λ
(27)

where the neutrino mass Mν is in Eq. (24) andΛ=O(M2
Z/M1/2). Therefore, for a neutrino

mass of the order of 0.1 eV we need sinζ ≈ 10−5/cβ
√
Λ with Λ in GeV, indicating that

the parameter sinζ is very small. In this way, from Eq. (18) we see that small neutrino mass
implies cosχ ≈ cosγ . Using this last relation in Eq. (23) we find a second expression for
sinζ :

sinζ ≈ sχ cχ (δB tβ ± δM) (28)

where theδ’s are defined below Eq. (23). The quantity in parenthesis is a good measure
of the amount of cancellation necessary in order to have a sizable effect onαs with small
neutrino mass. The cancellation can occur with either sign since the sign ofδB is not fixed.
We have that

δ ≡ (δB tβ ± δM)≈ 1

sχ cχcβ

√
Mν

Λ
. (29)

We note that in SUGRA with universality of soft SUSY breaking parameters at unification
δB is usually smaller thanδM . As a result, the cancellation necessary in order to obtain
small neutrino mass favours large tanβ values. For example, for tanβ = 40,cχ ≈ sχ ≈ 0.7,
and a 0.1 eV neutrino mass we have that for M1/2= 200 GeV the amount of cancellation
is δ ≈ 1× 10−4. If the gaugino mass parameter is increased to M1/2 = 1000 GeV, the
cancellation isδ ≈ 3× 10−4. Our approximation is conservative since we have assumed
δM of order 1. However,δM can be smaller because it is zero at the unification scale and
arises only from the RGE evolution from unification to the weak scale. We do not think
that this is a fine tuning. In fact we remind the reader that a similar amount of cancellation
between VEV’s is already present in the MSSM at high values of tanβ .

In short, while large negative corrections toαs(MZ) are easier to find for large
ντ masses, there is a range of parameters, motivated by universality of the soft breaking
terms, where the effect is present even if theντ mass is rather low. This guarantees also that
the lightest neutralino would typically decay inside the detectors now under discussion,
changing completely the phenomenology of supersymmetry from that expected in the
MSSM.



14 M.A. Díaz et al. / Nuclear Physics B 590 (2000) 3–18

5. Conclusion

In conclusion, we have shown how minimal R-parity violating supergravity can lower
theαs(MZ) prediction with respect to the case with conserved the R-parity, as suggested
by the present experimental world average. We have identified the source of this effect on
theαs prediction as coming from the two-loop bottom Yukawa coupling contribution to
the renormalization group evolution of the gauge couplings. We have also shown how this
effect on theαs prediction is related to the value of the tau neutrino mass which is generated
by the mixing of neutralinos and neutrinos. We have also discussed to which extent this
relation depends on the initial conditions for the soft supersymmetry breaking parameters
at the unification scale. We showed how to obtain a sizable effect onαs(MZ) even in
the case that theντ mass lies in the range indicated by the simplest neutrino oscillation
interpretation of the atmospheric neutrino data.

Note added in proof

This paper has appeared in preprint form in June of 1999. Since then new experimental
values of gauge coupling constants have appeared and been compiled in the last edition of
the Particle Data Group 2000 (D.E. Groom et al., Eur. Phys. J. C15 (2000) 1). We have
checked that the new values do not affect the conclusions of our paper.

Acknowledgements

This work was supported by DGICYT under grant PB98-0693 and by the TMR network
grant ERBFMRXCT960090 of the European Union. M.A.D. was supported partly by the
US Department of Energy under contract number DE-FG02-97ER41022, and partly by
CONICYT grant 1000539. J.F. was supported by a Spanish MEC FPI fellowship.

Appendix A. Numerical procedure

In this appendix we describe with some detail the method we follow to predict the strong
gauge coupling constant at the MZ scale. We have used the 2-loop RGE’s for the gauge
coupling constants and for the Yukawa couplings including R-parity violating couplings
[66–69]. We neglect the Yukawa couplings of the first two generations. For the rest of
the parameters of the/R-MSSM model we have used 1-loop RGE’s [66–69]. We have
imposed universality of soft parameters and gauge coupling unification at a scale MU.
We have explored between two values of the unification scale, MU, 1.2× 1016<MU <

3.6×1016 GeV, and the gauge coupling constant at the unification scaleαU, 23.5< α−1
U <

24.5. Using the RGE’s we have found the gauge coupling constants at Mt and then we have
evolved down to MZ scale as explain below. On the other hand we have computed the pole
masses from the running masses at Mt following the same procedure as Ref. [84]. First
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of all we have to explain how we compute the Yukawa couplings at Mt at the SM side.
We have to use the right matching conditions at Mt which are easy to compute from the
formulas (19) and (20) for theht, λD , y hτ Yukawas. In the/R-MSSM model are [58]

ht(Mt)
SM= sβht(Mt)

/R,

hb(Mt)
SM= cχcβλD(Mt),

hτ (Mt)
SM= cβ(

1− s2
ζ f (M2, tβ,µ, cζ )

)1/2hτ (Mt)
/R,

where the functionf can be found in Ref. [58]. These conditions reduce to the MSSM
matching conditions in the limitcζ ,cχ→ 1.

In order to run of masses and couplings to their experimental values we use known
relations. First we have evolvedα1 andα2 from scale Mt to scale MZ to computeα(MZ)

andŝ2
Z . Forαs , given the valueαs(Mt), which we get from the running of the RGE’s from

the unification to the Mt scale, we can computeΛQCD at Mt using the approximate solution
for αs in the SM [85–87] which includes 3-loop QCD contributions

αs(µ)= π

β0t

[
1− β1

β2
0

ln(t)

t
+ β2

1

β4
0t

2

((
ln(t)− 1

2

)2

+ β2β0

β2
1

5

4

)]
, where

t = ln

(
µ2

Λ2

)
, β0=

(
11− 2

3nf
)1

4
,

β1=
(
51− 19

3 nf
) 1

8, β2=
(
2857− 5033

9 nf − 325
27 n

2
f

) 1
128.

Later using the same formula we can extrapolateαs at MZ . To compute the top-quark pole
mass we use [88]

Mpol
t =Mt(Mt)

[
1+ 4

3π
α3(Mt)

]
.

On the other hand to compute the bottom-quark pole mass we use the quark effective mass
formula which includes 1-loop QED and 3-loop QCD contributions

Mb(Mt)=Mb(Mb)

(
α(Mt)

α(Mb(Mb))

)γQED
0 /b

QED
0 F(α3(Mt))

F (α3(Mb(Mb)))
,

where the QED beta function and the anomalous dimension,γ
QED
0 andbQED

0 , are given
by[47]

γ
QED
0 =−3Q2

f , b
QED
0 = 4

3

(
3
∑

Q2
u + 3

∑
Q2
d +

∑
Q2
e

)
,

and the sum runs over all the active fermions at the relevant scale. The formulaF(αs(µ))

is given by [85–87]

F
(
αs(µ)

)= (2β0αs(µ)

π

)γ0/β0

×
{

1+
(
γ1

β0
− γ0β1

β2
0

)
αs(µ)

π
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+ 1

2

[(
γ1

β0
− γ0β1

β2
0

)2

+
(
γ2

β0
+ γ0β

2
1

β3
0

− β1γ1+ β2γ0

β2
0

)](
αs(µ)

π

)2

+O

(
α3
s (µ)

)}
,

where

γ0= 1, γ1=
(202

3 − 20
9 nf

) 1
16,

γ2=
(
1249− (2216

27 + 160
3 ζ(3)

)
nf − 140

81 n
2
f

) 1
64.

Finally to compute tau lepton pole mass from the tau running mass at Mt we use

mpol
τ =mτ (µ)

[
1+ α(µ)

π

(
1+ 3

4
ln

(
µ2

m2
τ (µ)

))]
.

In summary, starting with the basic parameters M0, A0, M1/2, tβ , µ3, MU andαG we
have required thatα(MZ) as well as the top, bottom and tau pole massesτ were inside
their experimental measurements in order to obtain a prediction for the variablesŝ2

Z and
αs(MZ) which can be seen in figures.
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