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Abstract
We consider a Majorana neutrino mass matrix Mν with (Mν)µµ = (Mν)ττ =
0, in the basis where the charged-lepton mass matrix is diagonal. We show
that this pattern for the lepton mass matrices can be enforced by extending the
standard model with three scalar SU(2) triplets and by using a horizontal
symmetry group Z4. The type-II seesaw mechanism leads to very small
vacuum expectation values for the triplets, thus explaining the smallness of
the neutrino masses; at the same time that mechanism renders the physical
scalars originating in the triplets very heavy. We show that the conditions
(Mν)µµ = (Mν)ττ = 0 allow both for a normal neutrino mass spectrum and
for an inverted one. In the first case, the neutrino masses must be larger than
0.1 eV and the atmospheric mixing angle θ23 must be practically equal to 45◦.
In the second case, the product sin θ13|tan 2θ23| must be of order one or larger,
thus correlating the large or maximal atmospheric neutrino mixing with the
smallness of the mixing angle θ13.

1. Introduction

Assuming the neutrinos to be Majorana particles, the neutrino mass term is given by

Lν mass = 1
2νT

LC−1MννL + h.c., (1)

with a symmetric mass matrix Mν . It has been shown in [1] that, in the basis where the
charged-lepton mass matrix is diagonal, there are seven possibilities for a Mν with two
‘texture’ zeros which are compatible with the present neutrino data3. The phenomenology of
those seven mass matrices has been discussed in [1, 4, 5]. Some of those matrices have various
embeddings in the seesaw mechanism [6], by placing zeros in the Majorana mass matrix MR

of the right-handed neutrino singlets νR and in the Dirac mass matrix MD connecting the νR

with the νL [7–9].

3 See, for instance, [2] for a global fit to that data, and [3] for a general review.
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In this paper we concentrate on the specific neutrino mass matrix called ‘case C’ in [1],
which is

Mν ∼

× × ×

× 0 ×
× × 0


 , (2)

where the crosses denote non-zero matrix elements. The purpose of this paper is twofold.
Firstly, we present a model, based on the horizontal symmetry group Z4, which leads to
(2). Secondly, we provide a comprehensive analytical discussion of the phenomenological
predictions following from (2).

Texture zeros in mass matrices may in general be explained by Abelian symmetries [8],
at the expense of an extended scalar sector. We shall use the second method of [8] in order to
generate the texture zeros of case C. That general method prescribes that a horizontal symmetry
group Zn can enforce any desired texture zeros, provided n ∈ N is sufficiently large. For the
specific case C we have found that n = 4 is sufficient; with Z4, case C can be embedded in a
model with a scalar sector consisting of one single SU(2)L doublet—the standard model (SM)
Higgs doublet—and three SU(2)L triplets. The use of scalar triplets for generating models
for the neutrino masses and mixings has been advocated in [10]; in that paper, case C was
built into a model based on the non-Abelian group Q8, with a scalar sector consisting of two
doublets and four triplets, hence much larger than that of the Z4 model presented here. The
merits of scalar triplets are that they can be made very heavy while, at the same time, their
vacuum expectation values (VEVs) become very small, through the so-called ‘type-II seesaw’
mechanism [11, 12]. The smallness of the triplet VEVs explains the smallness of the neutrino
masses, as an alternative to the ordinary (‘type-I’) seesaw mechanism [12, 13].

In section 2 we present the Z4 model for case C. In section 3 we discuss the phenomenology
of the mass matrix (2). Section 4 contains our conclusions. In the appendix we show that the
remaining six viable cases of [1] can be incorporated in models with scalar triplets, through
the use of appropriate horizontal symmetry groups Zn.

2. The model

The Yukawa couplings of scalar triplets �j —which we write in a 2 × 2 matrix notation—are
given by

L� Yukawa = 1

2

∑
j

∑
α,β=e,µ,τ

h
j

αβDT
αLC−1(iτ2�j)DβL + h.c., (3)

whence one obtains

Mν =
∑

j

wjh
j , where 〈0|�j |0〉 =

(
0 0
wj 0

)
. (4)

Let us assume a horizontal symmetry such that the lepton doublets DαL and charged-lepton
singlets αR (α = e, µ, τ) transform according to

DαL → pαDαL, αR → pααR, (5)

respectively, with |pα| = 1. We furthermore assume that the three phase factors pe, pµ and pτ

are all different. This guarantees, if all Higgs doublets transform trivially under the horizontal
symmetry, that the charged-lepton mass matrix is diagonal. With the choice

pe = 1, pµ = i, pτ = −i, (6)
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the bilinears DT
αLC−1DβL transform as
 1 i −i

i −1 1
−i 1 −1


 . (7)

Then, assuming the existence of only three scalar triplets transforming as

�1 → �1, �2 → −i�2, �3 → i�3, (8)

we are able to generate the Mν of case C. The transformation in (6) and (8) corresponds to a
group Z4. We have thus constructed a model which incorporates the mass matrix (2). Besides
the three scalar triplets, the scalar sector of our model only has the sole Higgs doublet φ of
the SM.

The triplet �1 transforms trivially under Z4. Therefore, the term φ†�1φ̃ plus its Hermitian
conjugate—where φ̃ ≡ iτ2φ

∗—is allowed in the scalar potential V . Furthermore, respecting
the transformation (8), only the bilinears tr

(
�

†
j�k

)
with j = k are allowed in the potential.

For reasons to be explained below, one must break (8) softly, through terms of dimension two,
by allowing all possible bilinears tr

(
�

†
j�k

)
. We thus obtain the scalar potential

V = µ2φ†φ +
3∑

j,k=1

(
µ2

�

)
jk

tr
(
�

†
j�k

)
+ (mφ†�1φ̃ + h.c.) + · · · , (9)

where the dots indicate the quartic terms which respect Z4, and the 3 × 3 matrix µ2
� is

Hermitian and positive. Applying the type-II seesaw mechanism [12], we stipulate that the
eigenvalues of µ2

�, and all its matrix elements, are of an order of magnitude µ2
T such that µT

is much larger than the electroweak scale, represented by the VEV v of the lower component
of φ (v ≈ 174 GeV). Furthermore, we require that |m| � µT , whereas |µ2| ∼ v2; all quartic
couplings are assumed to be of order one or smaller. One then obtains [12]

wj 
 −m∗v2
[(

µ2
�

)−1]
j1, (10)

hence |wj | � v. This shows that in our scenario, with one trilinear term together with all
possible quadratic terms in the scalar potential, the type-II seesaw mechanism is operative.
In order that the triplet VEVs are of the order of the neutrino masses, 0.1 eV, the scale µT

must be around 1013 GeV [12]. Such a scale could be an intermediate scale in a grand unified
theory based on SO(10), E6, or some other large group.

Without the soft-breaking quadratic terms in V , i.e. without the
(
µ2

�

)
jk

for j �= k, both w2

and w3 vanish. The soft breaking of the horizontal symmetry is necessary in order to obtain
non-zero VEVs w2 and w3 and thus the full mass matrix (2).

3. Phenomenology of the model

The mass matrix Mν is diagonalized by U = eiα̂Ūdiag(eiρ, eiσ , 1), where eiα̂ is a physically
meaningless unitary diagonal matrix and

Ū =

 c13c12 c13s12 s13 e−iδ

−c23s12 − s23s13c12 eiδ c23c12 − s23s13s12 eiδ s23c13

−s23s12 + c23s13c12 eiδ s23c12 + c23s13s12 eiδ −c23c13


 , (11)

with cij ≡ cos θij and sij ≡ sin θij , the θij being angles of the first quadrant. The information
on the mixing angles θij can be summarized as [2]
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θ12 
 33◦ ± 3◦ at 90% CL,

θ23 
 45◦ ± 8◦ at 90% CL, (12)

s2
13 < 0.047 at 3σ level.

The best-fit values for the mass-squared differences are

�m2
atm ≡ ∣∣m2

3 − m2
2

∣∣ = 2.2 × 10−3 eV2,

�m2
 ≡ m2

2 − m2
1 = 8.1 × 10−5 eV2.

(13)

Denoting tij ≡ tan θij , a crucial feature is that t12 < 1 while m1 < m2. We do not know yet
whether m1,2 < m3 (normal spectrum) or m1,2 > m3 (inverted spectrum). Let us define

R ≡ m2
2 − m2

1

m2
3 − m2

2

. (14)

Then,

|R| = �m2


�m2
atm

≈ 3.7 × 10−2 (15)

is small, but the sign of R is unknown: R > 0 corresponds to a normal spectrum, R < 0 to an
inverted one.

From UT MνU = diag(m1,m2,m3), the two defining relations for case C are given by

(Mν)µµ = 0 ⇔ (c23s12 + εs23c12)
2m̃1 + (c23c12 − εs23s12)

2m̃2 + s2
23c

2
13m3 = 0,

(Mν)ττ = 0 ⇔ (s23s12 − εc23c12)
2m̃1 + (s23c12 + εc23s12)

2m̃2 + c2
23c

2
13m3 = 0,

(16)

where ε ≡ s13 eiδ, m̃1 ≡ m1 e2iρ , and m̃2 ≡ m2 e2iσ . This is a system of two linear equations
for the two variables m̃1/m3 and m̃2/m3, which has the solution [4, 9]

m̃1

m3
= 1

u

(
1 − 1

t12z

)
,

m̃2

m3
= 1

u

(
1 +

t12

z

)
, (17)

where

z ≡ ε tan 2θ23, (18)

u ≡ −1 + 2ε cot 2θ23 cot 2θ12 − ε2

c2
13

. (19)

Note that, while s13 is known to be small, |tan 2θ23| is possibly large, because the atmospheric
mixing angle θ23 could be close to 45◦. Therefore, |z| = s13|tan 2θ23| is totally unknown. For
precisely the same reason—|ε| is small while |tan 2θ23| is possibly large—the parameter u
must be close to −1.

It follows from (17) that

s2
12

m̃1

m3
+ c2

12
m̃2

m3
= 1

u
, (20)

which effectively eliminates z from (17). Since u 
 −1, (20) indicates that an inverted
neutrino mass spectrum, for which both |m̃1/m3| and |m̃2/m3| are larger than 1, is in general
compatible with case C. Conversely, a normal neutrino mass spectrum can only be compatible
with (20) if |m̃1/m3| and |m̃2/m3| are very close to 1. Thus, case C is compatible with a
normal neutrino mass spectrum only if the neutrinos are almost degenerate.

The special case s13 = cos 2θ23 = 0. The derivation of (17) from (16) breaks down when the
latter system of equations is singular. This happens when s13 = 0, in which case system (16)
is rewritten as

0 = (Mν)µµ + (Mν)ττ = s2
12m̃1 + c2

12m̃2 + m3,

0 = (Mν)µµ − (Mν)ττ = (
c2

23 − s2
23

)(
s2

12m̃1 + c2
12m̃2 − m3

)
,

(21)
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whence it follows that cos 2θ23 = 0 too. System (16) then reduces to only one equation for
the two complex unknowns m̃1/m3 and m̃2/m3:

s2
12

m̃1

m3
+ c2

12
m̃2

m3
+ 1 = 0. (22)

It follows from (22) that s13 = cos 2θ23 = 0 implies an inverted mass spectrum for the
neutrinos. Indeed, if both |m̃1/m3| and |m̃2/m3| are smaller than 1, then (22) cannot hold.

The general solution to (22) is

m̃1

m3
= −1 +

1

t12z′ ,
m̃2

m3
= −1 − t12

z′ , (23)

where z′ is a free complex parameter. Let us compare (23) with (17). Starting from (17),
we perform the limit |ε| → 0, |tan 2θ23| → ∞ while keeping z = ε tan 2θ23 fixed. In that
limit, the quantity u of (19) becomes equal to −1 and one obtains (23) with z′ = z. Thus, the
special case (23) is obtained as a smooth limit of the general case (17), with an inverted mass
spectrum.

The general case. We define

ζ ≡ tan 2θ12 Re z − 1

= tan 2θ12 tan 2θ23s13 cos δ − 1. (24)

We then derive

|u|2 = 1 +
4s2

13ζ
(
ζ + c2

13

)
c4

13 tan2 2θ12|z|2
. (25)

Solution (17) allows one to compute

m2
2 − m2

1

m2
3

= 1

|uz|2
(

1

t2
12

− t2
12

)
ζ. (26)

Therefore, ζ must be positive. From (26) one further sees that

m2
3 = �m2


sin2 2θ12

4 cos 2θ12

|u|2s2
13 tan2 2θ23

ζ
. (27)

Solution (17) also allows one to derive a quadratic equation

aζ 2 − bζ − c = 0 (28)

for ζ . Its coefficients are functions of θ12, θ13, and R:

a = 4s2
13R

c4
13 tan2 2θ12

,

b = 1

t2
12

− t2
12 + R

(
1 − t2

12

) [
1 +

s2
13

c2
13

(
1 − 1

t2
12

)]
, (29)

c = R.

Note that b is positive and of order 1, while ac ∝ s2
13R

2 is also positive but very small. Hence,√
b2 + 4ac > b > 0. For each sign of R, there is one positive and one negative solution of

(28). Since ζ must be positive, the negative solutions are discarded and we end up with

ζ1 =
√

b2 + 4ac + b

2a

 b

a
for R > 0 and ζ2 =

√
b2 + 4ac − b

−2a

 − c

b
for R < 0.

(30)
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The solution ζ1 � 1 corresponds to a normal spectrum (R > 0), the solution ζ2 ≈ 0
corresponds to an inverted spectrum (R < 0).

We shall assume the mixing angles, the atmospheric mass-squared difference �m2
atm and

the solar mass-squared difference �m2
 to be known—see (12) and (13). These are five

quantities. On the other hand, after removing unphysical phases from the mass matrix (2),
for instance by assuming its first row and first column to be real, we see that mass matrix
contains five physical parameters—four moduli and one phase. This suggests that, from the
known mass-squared differences and mixing angles, we should be able to predict the absolute
neutrino mass scale [5] and also the phases δ, ρ and σ [1, 4]. The phase δ, or at least its cosine,
is determined from ζ through (24). The absolute mass scale is given by m3 and determined
from (27), using |u| ≈ 1. As far as the phases ρ and σ are concerned, the only observable
which is realistically sensitive to them is the effective mass mββ in neutrinoless ββ decay [14].
This effective mass is given by

mββ = m3

∣∣∣∣c2
13c

2
12

m̃1

m3
+ c2

13s
2
12

m̃2

m3
+ (ε∗)2

∣∣∣∣
= m3

∣∣∣∣c
2
13

u

(
1 − 2

z tan 2θ12

)
+ (ε∗)2

∣∣∣∣ . (31)

Our strategy may thus be summarized in the following way:

�m2
atm, �m2

, θ12, θ23, θ13 → δ, m3, mββ. (32)

Normal spectrum. In this case, using (30) we obtain

ζ1 + 1 = tan 2θ12 tan 2θ23s13 cos δ 
 c4
13

Rs2
13 cos 2θ12

. (33)

According to our strategy, (33) determines δ. This is not very useful, since that phase will be
very difficult to measure; but a useful inequality following from (33) is

|tan 2θ23| � c4
13

Rs3
13 sin 2θ12

. (34)

Using the 3σ bound on s13 and the best-fit value of θ12 in (12), together with the approximate
value of R in (15), we find |tan 2θ23| � 2640; for a smaller s13 the lower bound on |tan 2θ23|
is even larger. Therefore,

θ23 = 45◦ (35)

for all practical purposes.
In order to determine m3, we may reformulate |u|2 of (25) by writing

|u|2 = 1 +
4s2

13ζ1
(
ζ1 + c2

13

)
c4

13(ζ1 + 1)2
cos2 δ 
 1 +

4s2
13 cos2 δ

c4
13

, (36)

where we have used ζ1 � 1. Therefore, to a good approximation |u|2 
 1 and, with (27) and
(33), we obtain

m3 
 sin 2θ12

2
t2
13|tan 2θ23|

�m2
√

�m2
atm

. (37)

According to our strategy, (37) determines the absolute neutrino mass scale. It is again
instructive to convert this into an inequality. Using (34) we find

m3 � c2
13

√
�m2

atm

2s13
. (38)
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With the best-fit value for �m2
atm and the 3σ bound on s13, one obtains m3 � 0.1 eV. Thus,

for a normal spectrum case C predicts quasi-degeneracy of the neutrinos [10] and maximal
atmospheric neutrino mixing. The lower bound on m3 is in such a range that

∑
j mj 
 3m3

might eventually be extracted from the large-scale structure of the universe and the cosmic
microwave background [15–18]. If m3 is larger than 0.3 eV, then the neutrino masses lie in
the sensitivity range of the KATRIN experiment [19].

Turning at last to mββ , with the methods and approximations used before we find, from
(31),

mββ 
 m3, (39)

possibly in the sensitivity range of present, and certainly in the sensitivity range of future,
neutrinoless ββ decay experiments [20].

Inverted spectrum. For this spectrum we find from (30) that

ζ2 + 1 = tan 2θ12 tan 2θ23s13 cos δ 
 1 +
sin2 2θ12|R|
4 cos 2θ12

. (40)

Since R is small, tan 2θ12 tan 2θ23s13 cos δ is close to 1 [1]. From (40) one derives the
approximate inequality

|tan 2θ23|s13 � 1

tan 2θ12
, (41)

which may be useful in the future for testing case C.
We turn to the absolute neutrino mass scale [5]. Because ζ2 ∼ |R| is small, and because

of inequality (41), |u| as computed from (25) is, to a good approximation, equal to 1. Then
(27) leads to

m3 

√

�m2
atms13|tan 2θ23|. (42)

From �m2
 � �m2

atm and from the definition of �m2
atm we then have

m1 
 m2 

√(

1 + s2
13 tan2 2θ23

)
�m2

atm (43)

and

3∑
j=1

mj 

(

2
√

1 + s2
13 tan2 2θ23 + s13|tan 2θ23|

)√
�m2

atm. (44)

An important feature of the inverted spectrum is that s13|tan 2θ23| is of order 1 or larger, cf (41).
Therefore, just as in the case of the normal spectrum, the observable (44) has an order of
magnitude interesting for cosmology.

Using (31), with |u| 
 1 and neglecting (ε∗)2, we find

mββ 
 m3

∣∣∣∣1 − 2

z tan 2θ12

∣∣∣∣ = m3

[
1 − 4ζ2

(s13 tan 2θ23 tan 2θ12)2

]1/2


 m3. (45)

With (42) this produces the remarkable relation

mββ 

√

�m2
atms13|tan 2θ23|, (46)

which may in the future allow an experimental test of case C with an inverted spectrum.
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4. Conclusions

In this paper we have shown that all seven viable neutrino mass matrices with two texture zeros
which were found in [1] can be embedded in models with at most three scalar SU(2)L triplets,
without adding new fermions or Higgs doublets to the SM. Utilizing one of the methods of [8],
we have used horizontal groups of the type Zn. The model for the mass matrix (2), with three
scalar triplets and a symmetry Z4, was discussed in detail in section 2, whereas the symmetry
realizations of the other six cases were studied in the appendix. To make the triplet VEVs
small and the new scalars heavy, we have used the type-II seesaw mechanism [12]; the heavy
triplets are integrated out at about 1013 GeV.

It is interesting to note that texture zeros in the neutrino mass matrix are stable under the
renormalization group evolution of Mν , as long as there is only one (light) Higgs doublet
[9], which is the case in the models that we have produced. The reason is that in this case
the evolution of the mass matrix is described as Mν(µ) = I (µ,µ0)Mν(µ0)I (µ,µ0), where
I (µ,µ0) is a diagonal and positive 3 × 3 matrix [21]. If an element of Mν is zero at the
renormalization scale µ0, then it remains so for all other renormalization scales µ.

We have shown that the mass matrix (2), christened by [1] ‘case C’, leads to an interesting
phenomenology, possibly testable in the near future. It allows for both types of neutrino
mass spectra, either normal or inverted. For both spectral types the effective mass mββ in
neutrinoless ββ decay is approximately equal to m3.

The case with a normal spectrum is tightly constrained: the neutrinos must be quasi-
degenerate, with a mass larger than about 0.1 eV, and the atmospheric mixing angle is equal
to 45◦ for all practical purposes. The lower bound on the neutrino masses scales with the
inverse of s13, i.e. a smaller upper bound on s13 will require larger neutrino masses. Recently,
cosmology has become important in constraining the sum of all light-neutrino masses; current
results set an upper limit

∑
j mj 
 3m3 � 1 eV [15–18]. With (38) and the best-fit value of

�m2
atm, this upper limit translates into s2

13 � 0.005. The cosmological bound may be improved
by one order of magnitude in the near future [18]; lowering the bound on

∑
j mj will imply

a rise of the lower bound on s2
13. Thus, future measurements of s2

13 [22],
∑

j mj and mββ ,
together with the bound (38) and

∑
j mj/mββ 
 3, will test case C with the normal spectrum.

The case with an inverted spectrum is characterized by the product sin θ13|tan 2θ23| being
of order one or larger; thus, a tighter upper bound on s13 will imply a θ23 closer to 45◦. The
value of that product also determines the absolute neutrino mass scale. Though the neutrino
masses in the inverted-spectrum case do not need to be as large as those of the normal spectrum,
they still present a very good discovery potential, cf for instance mββ 
 m3 � 0.02 eV.4

In any case, there are good prospects that the predictions of case C are either confirmed
or disproved in the near future.
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Appendix. Realization of the other two-texture-zero cases through a symmetry

In section 2 we dealt with the realization of the case C of [1] in a triplet model. Here we
discuss the other six viable two-texture-zero cases of [1], defined as

4 This lower bound was calculated by using (41) and (42) together with the best-fit values for �m2
atm and θ12.
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Case A1: Mν ∼

0 0 ×

0 × ×
× × ×


 , Case A2: Mν ∼


 0 × 0

× × ×
0 × ×


 , (A.1)

Case B1: Mν ∼

× × 0

× 0 ×
0 × ×


 , Case B2: Mν ∼


 × 0 ×

0 × ×
× × 0


 , (A.2)

Case B3: Mν ∼

× 0 ×

0 0 ×
× × ×


 , Case B4: Mν ∼


 × × 0

× × ×
0 × 0


 . (A.3)

Cases B1 and B2. With ω = exp (2iπ/3), we fix pe = 1, pµ = ω and pτ = ω2, i.e. we assume
a horizontal symmetry Z3. The bilinears DT

αLC−1DβL transform according to
 1 ω ω2

ω ω2 1
ω2 1 ω


 . (A.4)

Two scalar triplets are then sufficient to realize textures B1 and B2 as models:

B1 : �1 → �1, �2 → ω2�2; (A.5)

B2 : �1 → �1, �2 → ω�2. (A.6)

Cases A1,2 and B3,4. We firstly make the following observation: two non-zero entries in the
same column (or row) of Mν cannot originate in Yukawa couplings to the same scalar triplet.
Indeed, if that were the case then we would have pα = pβ for two flavours α and β. The
Yukawa couplings to the relevant scalar triplet would then provide three non-zero entries in
Mν , at the positions (α, α), (α, β) = (β, α) and (β, β). Cases A1, A2, B3 and B4 all display
such a non-zero ‘square’, but one immediately sees that with pγ �= pα = pβ one cannot
generate those four textures.

Secondly, we note that the textures A1,2 and B3,4 (and C) all have one column (and row)
of non-zero matrix elements in Mν . Following the previous paragraph, those three matrix
elements must be generated by the Yukawa couplings to three different scalar triplets. Thus,
except for B1 and B2, all other textures of [1] require at least three SU(2)L triplets to be
realized within a model featuring an Abelian horizontal symmetry. In the following we will
see that three scalar triplets are indeed sufficient for textures A1,2 and B3,4; for texture C we
had explicitly demonstrated the same in section 2, by using a symmetry Z4.

One can check that the textures A1,2 and B3,4 cannot be realized through a symmetry Z4.
On the other hand, it is possible to use phase factors 1,−1 and p, provided p2 �= ±1. Let us
take pµ = 1 and pτ = −1, while leaving pe free for the moment. Since p2

e must be different
from ±1, we can take for instance pe = exp (2iπ/3); this, together with pτ = −1, means that
the horizontal symmetry is Z6. The bilinears DT

αLC−1DβL transform as
 p2

e pe −pe

pe 1 −1
−pe −1 1


 , (A.7)

and we realize textures A1 and A2 with three scalar triplets transforming as

A1 : �1 → �1, �2 → −�2, �3 → −p∗
e�3; (A.8)
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A2 : �1 → �1, �2 → −�2, �3 → p∗
e�3. (A.9)

An analogous method may be employed to enforce textures B3,4.
All these realizations of the two-texture-zero cases of [1] require only a single Higgs

doublet. One of the scalar triplets (in our notation, �1) can always be assumed to transform
trivially under the horizontal symmetry. Therefore, the discussion of the type-II seesaw
mechanism [12] at the end of section 2 applies to all these realizations.
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