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Abstract

I investigate viable textures with two texture zeros for the inverted neutrino mass matrix, and present the predictions
textures for the neutrino masses and for lepton mixing. By using an Abelian symmetry and one or two heavy scalar s
construct realizations of those textures in the context of seesaw models.
 2005 Elsevier B.V. All rights reserved.

Particle physics was highlighted in the last decade, among other achievements, by the discovery of
oscillations and, hence, of the massiveness of neutrinos. If one assumes the existence of only three light n
then lepton mixing should be parametrized by a 3× 3 unitary matrix

(1)U = diag
(
1, eiρ1, eiρ2

)
Ū diag

(
eiσ1, eiσ2, eiσ3

)
,

(2)Ū =

 −c2c3 c2s3 s2e

−iδ

c1s3 + s1s2c3e
iδ c1c3 − s1s2s3e

iδ s1c2

s1s3 − c1s2c3e
iδ s1c3 + c1s2s3e

iδ −c1c2


 ,

wheresj = sinθj andcj = cosθj for j = 1,2,3, theθj being angles of the first quadrant. The matrixU connects,
in the charged weak current�̄Uγ µ[(1 − γ5)/2]ν, the charged-lepton fields̄� = (ē, µ̄, τ̄ ) to the physical (mass
eigenstate) neutrino fieldsν = (ν1, ν2, ν3)

T . In (1), the phasesρ1 and ρ2 are unobservable, since they can
eliminated through rephasings of theµ andτ fields; observable phases are only the ‘Dirac phase’δ and—if the
νj are self-conjugate fields, as I shall assume—the ‘Majorana phases’ 2(σ1 − σ3) and 2(σ2 − σ3). If one denotes
the mass ofνj by mj , then we know[1] that (i) 	m2� ≡ m2

2 − m2
1 � 8.1 × 10−5 eV2; (ii) 	m2

atm ≡ |m2
3 − m2

1| �
2.2× 10−3 eV2; (iii) the solar mixing angleθ3 is large,s2

3 � 0.30, but far from the ‘maximal’ valueπ/4; (iv) the
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atmospheric mixing angleθ1 is most likely maximal, with 0.34< s2
1 < 0.68 at 3σ level; (v) θ2 may well vanish,

with s2
2 < 0.047 at 3σ level.

In the weak basis where the charged-lepton mass matrix is diagonal, the neutrino Majorana mass maMν ,
which is symmetric, is diagonalized byU as

(3)UT MνU = diag(m1,m2,m3).

In 2002 Frampton, Glashow, and Marfatia (FGM)[2] speculated thatMν may display a ‘texture’ such that tw
of its matrix elements are zero.1 This assumption encompasses several viable possibilities; FGM listed
together with the corresponding predictions for the neutrino masses and for the parameters of the mixing
Models which embody FGMs hypothesis have been constructed under the paradigm ofMν generated by the
vacuum expectation values of scalar triplets added to the Standard Model for that purpose[3], and under the
paradigm ofMν generated through the seesaw mechanism[4,5]. In this mechanism, which is much favour
on theoretical grounds,Mν = −MT

DM−1
R MD , whereMD is the Dirac neutrino mass matrix, which connects

flavour-eigenstate neutrinos to some right-handed neutrinos, andMR is the Majorana mass matrix of those (sup
heavy) right-handed neutrinos. In the context of the seesaw mechanism, it seems natural to assumea texture for
M−1

ν ;2 indeed, zeros ofM−1
ν are identical with zeros ofMR whenMD is a square diagonal matrix, and th

situation is easy to enforce in a seesaw model with an Abelian symmetry and a relatively small number o
Higgs fields[5]. It is the purpose of this Letter to study two-zero textures forM−1

ν .
Some textures ofMν with two zeros are equivalent to two-zero textures ofM−1

ν [4]. This happens, in particula
with four textures shown to be viable by FGM:

caseA1: Mν ∼
( 0 0 ×

0 × ×
× × ×

)
⇔ M−1

ν ∼
(× × ×

× × 0
× 0 0

)
,

caseA2: Mν ∼
( 0 × 0

× × ×
0 × ×

)
⇔ M−1

ν ∼
(× × ×

× 0 0
× 0 ×

)
,

caseB3: Mν ∼
(× 0 ×

0 0 ×
× × ×

)
⇔ M−1

ν ∼
(× × 0

× × ×
0 × 0

)
,

caseB4: Mν ∼
(× × 0

× × ×
0 × 0

)
⇔ M−1

ν ∼
(× 0 ×

0 0 ×
× × ×

)
,

where the symbol× denotes non-zero matrix elements, and the nomenclature in the first column is the
FGM. I remind that, besides these four viable cases, FGM found three other ones:

caseB1: Mν ∼
(× × 0

× 0 ×
0 × ×

)
,

caseB2: Mν ∼
(× 0 ×

0 × ×
× × 0

)
,

caseC: Mν ∼
(× × ×

× 0 ×
× × 0

)
.

1 SinceMν is necessarily symmetric,(Mν)αβ = (Mν)βα = 0 is counted asonly one zero matrix element wheneverα �= β .
2 I assumeMν to be non-singular.
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It turns out that, besides the casesA1,2 andB3,4 studied by FGM, there are three extra realistic two-zero text
for M−1

ν :

caseB5: M−1
ν ∼

(× 0 ×
0 × ×
× × 0

)
,

caseB6: M−1
ν ∼

(× × 0
× 0 ×
0 × ×

)
,

caseD: M−1
ν ∼

(× × ×
× 0 ×
× × 0

)
,

where the nomenclature in the first column is new.
It follows from (3) that, after discarding the unphysical phasesρ1,2,

(4)Mν = Ū∗ diag(m̄1, m̄2, m̄3)Ū
†,

wherem̄j ≡ mje
−2iσj . Clearly then,

(5)M−1
ν = Ū diag

(
1

m̄1
,

1

m̄2
,

1

m̄3

)
ŪT .

Therefore, each two-zero texture forMν or M−1
ν is equivalent to a set of two equations

(6)m̄1 = k1m̄3, m̄2 = k2m̄3,

wherek1 andk2 are functions of the parameters ofŪ . It follows from (6) that

(7)Rν ≡ 	m2�
	m2

atm
= |k2|2 − |k1|2

|1− |k1|2| .

This quantity is experimentally known to be small,Rν � 0.037.
In order to obtain simple expressions fork1 and k2 it is convenient to defineε ≡ s2e

iδ and to make serie
expansions in|ε|, since this parameter is experimentally known to be small. Using the notationtj = tanθj , one
then uses, to first order in|ε|,

(8)Ū ≈



−c3 s3 ε∗

c1s3
(
1+ εt1

t3

)
c1c3(1− εt1t3) s1

s1s3
(
1− ε

t1t3

)
s1c3

(
1+ εt3

t1

) −c1


 .

One finds that allB cases yield, to first order in|ε|,

(9)k1 ≈ k

(
1+ x

t3

)
, k2 ≈ k(1− t3x),

wherek = −t2
1 for casesB1, B3, andB5, while

(10)x = ε

t3
1

+ ε∗

t1
, for caseB1,

(11)x = − ε

t1
− ε∗t1, for caseB3,

(12)x = εt1 + ε∗t3
1, for caseB5.
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The results for casesB2, B4, and B6 are identical with those for casesB1, B3, and B5, respectively, witht1
substituted by−1/t1 in bothk andx [2]. All B cases yield

(13)Rν ≈ 2|k|2
(

t3 + 1

t3

)∣∣∣∣ Rex

1− |k|2
∣∣∣∣,

and this shows that the atmospheric mixing angle cannot be maximal in any of theB cases, sinceRν becomes too
large whent1 (and hence|k|) is too close to 1. On the other hand, a small|ε| = s2 has the power to suppressRν in
all B cases.

Let us now analyze caseD. The relevant equations are in this case

(14)
Ū2

21

m̄1
+ Ū2

22

m̄2
+ Ū2

23

m̄3
= 0,

Ū2
31

m̄1
+ Ū2

32

m̄2
+ Ū2

33

m̄3
= 0.

If

(15)s2 = 0, s1 = c1,

then Eqs.(14)are linearly dependent and read simply

(16)
s2
3

m̄1
+ c2

3

m̄2
+ 1

m̄3
= 0.

This condition has been studied in[6]. It leads to a mass spectrumm1 < m2 < m3. The massm1 may either be

of order
√

	m2� or be larger than a value of order
√

	m2
atm; in particular, an almost-degenerate mass spect

is allowed. If, for definiteness, one uses the central valuess2
3 = 0.3, m2

2 − m2
1 = 8.1 × 10−5 eV2, andm2

3 − m2
1 =

2.2× 10−3 eV2, then one obtains that

either 3.17× 10−3 eV< m1 < 8.28× 10−3 eV,

(17)or m1 > 1.44× 10−2 eV.

Next looking for a solution of(14)which does not satisfy the assumptions(15), one obtains

(18)m̄1 = u
t3z

t3z − 1
m̄3, m̄2 = u

z

z + t3
m̄3,

where

(19)u = −1+ 2ε cot2θ1 cot2θ3 − ε2

c2
2

,

(20)z = ε tan2θ1.

Eqs.(18)–(20)areexact. Note that|z| is not necessarily small, since| tan 2θ1| is experimentally known to be large
On the other hand, and for the same reason,u is certainly very close to−1. It follows from(18) that

(21)
s2
3

m̄1
+ c2

3

m̄2
− 1

um̄3
= 0,

an equation which is almost identical to(16) sinceu ≈ −1. Thus, the approximate range(17) still holds. The
mixing-matrix parameterz is given by

(22)z = t3m̄2

um̄3 − m̄2
.

With them̄j satisfying(21), one obtains

(23)|z| = m1m2√
s2
3|u|2m2

2m
2
3 + c2

3|u|2m2
1m

2
3 − m2

1m
2
2

,
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(24)Rez = 1

2c3s3

−s4
3|u|2m2

2m
2
3 + c4

3|u|2m2
1m

2
3 + (s2

3 − c2
3)m

2
1m

2
2

s2
3|u|2m2

2m
2
3 + c2

3|u|2m2
1m

2
3 − m2

1m
2
2

.

The effective mass relevant for neutrinolessββ decay is in caseD [6]

(25)〈m〉 = ∣∣m̄∗
1Ū

2
e1 + m̄∗

2Ū
2
e2 + m̄∗

3Ū
2
e3

∣∣ =
∣∣∣∣c2

2m̄1m̄2

um̄3
+ m̄3ε

2
∣∣∣∣ ≈ m1m2

m3
.

All the textures forM−1
ν in this Letter can be obtained in a simple way in models based on the seesaw m

nism; one just needs to follow the methods of[5]. Let there be three right-handed neutrinosνRj , which add to the
standard model’s right-handed charged leptons�Rj and lepton doubletsDLj = (νLj , �Lj )

T . Suppose for definite
ness that one wanted to produce a model withM−1

ν as in caseB5. One possibility (among others[5]) would consist
in introducing an Abelian symmetry groupZ4 under which the leptons of family 1, i.e., those withj = 1, remained
invariant, the leptons of family 2 changed sign, and the leptons of family 3 were multiplied byi. Assuming the
existence of only one (the standard model’s) Higgs doublet, and assuming that Higgs doublet to be invaria
Z4, it follows immediately from this arrangement that both the charged-lepton mass matrix and the neutrin

mass matrixMD are diagonal. Then, sinceM−1
ν = −M−1

D MRMT
D

−1
in the seesaw mechanism, zeros inM−1

ν are
equivalent to zeros in the right-handed neutrino Majorana mass matrixMR . The bilinearsνRj νRj ′ transform under
Z4 as

(26)

( 1 −1 i

−1 1 −i

i −i −1

)
.

Forj = j ′ = 1 andj = j ′ = 2 the bilinearνRj νRj ′ is Z4-invariant, hence the corresponding mass terms are dir
present in the Lagrangian. Further introducing in the theory one complex scalar singletS transforming underZ4
asS → iS, we see thatS has an Yukawa coupling toνR2νR3 while S∗ couples toνR1νR3. Hence, the vacuum
expectation value (VEV) ofS produces the(2,3) and(1,3) matrix elements ofMR . The matrix elements(MR)33
and(MR)12 remain zero, as required by the textureB5, since they violateZ4 and since there is no scalar sing
with Yukawa couplings appropriate to generate them.

CaseB6 can be produced in an analogous way to caseB5. For caseD, one needs once again a symmetryZ4
and a complex singletS transforming intoiS underZ4. The first-generation leptons areZ4-invariant, the second
generation ones transform withi, and the third-generation ones with−i. The bilinearsνRj νRj ′ now transform
as

(27)

( 1 i −i

i −1 1
−i 1 −1

)
,

and therefore the(2,2) and(3,3) matrix elements ofMR are zero.
CasesA1,2 andB3,4 are more demanding; I dwell on caseA1 for definiteness. I introduce a symmetryZ8 under

which the leptons of the first family remain invariant, those of the second family change sign, and those
third family are multiplied byω = exp(iπ/4). The Higgs doublet is, as before, unique and invariant under thiZ8
symmetry. TheνRj νRj ′ transform as

(28)

( 1 ω4 ω

ω4 1 ω5

ω ω5 ω2

)
.

The(1,1) and(2,2) matrix elements ofMR areZ8-invariant. The(1,2) matrix element requires the presence o
real scalar singlet which changes sign underZ8. The(1,3) matrix element is generated by the Yukawa coupling
a complex scalar singlet which gets multiplied byω7 underZ8. The other entries ofMR remain zero in the absenc
of any further scalar singlets.
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Thus, all the textures forM−1
ν advocated in this Letter can be easily justified by seesaw models supplem

with an Abelian symmetry and one or two scalar singlets with VEVs at the seesaw scale. This implement
the textures operates both at the seesaw scale and at any other scale. Indeed, in the standard modelwith only one
Higgs doublet, the matricesMν at any two energy scalesµ1 andµ2 are related by[7]

(29)Mν(µ1) = IMν(µ2)I,

where the matrixI (which depends onµ1 andµ2) is diagonal, positive, and non-singular. It follows from(29) that
any zero matrix element ofMν , or ofM−1

ν , at a given energy scale, remains zero at any other energy scale.
To summarize, I have shown in this Letter that two-zero textures for the inverted neutrino mass matrix a

easy to obtain in the context of seesaw models. There are seven such textures which are not in disagreeme
available data on neutrino masses and lepton mixing; four of those seven viable textures coincide with tex
Mν previously studied by FGM. The other three textures are new, and one of them in particular—called ‘cD’
in this Letter—produces the interesting prediction(16) for the neutrino masses and Majorana phases.
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