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The pion rescattering operator for pion production, derived recently in time-ordered perturbation theory, is
compared with the one following from the simple S-matrix construction. We show that this construction is
equivalent to the on-shell approximation introduced in previous articles. For a realistic NN interaction, the
S-matrix approach, and its simplified fixed threshold-kinematics version, work well near threshold.
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I. INTRODUCTION

The detailed analysis of the irreducible pion rescattering
operator was recently performed [1] for the reaction pp →
ppπ0. The pion rescattering is certainly part of the pion
production mechanism, but its importance relative to other
contributions varies considerably dependent on the approx-
imations made in evaluation of the effective operators (see
Ref. [1] and references therein). The nature and extent of this
uncertainty are reexamined in this article.

To this end we deal with retardation effects in the exchanged
pion propagator, that is, its energy dependence, as well as with
the energy dependence of the πN scattering amplitude in the
vertex, from which the produced pion is emitted. Although the
approximations employed in a previous article [1] yield rather
different results, we show here that the deviations between
them are significantly reduced when the approximations are
applied consistently in the whole effective operator.

We also show that the S-matrix approach, which has been
successfully used below the pion production threshold, also
yields above-threshold results rather close to those obtained
with the energy-dependent operator following from time-
ordered perturbation theory.

The article is organized as follows: after this introduc-
tion, Sec. II describes the S-matrix technique for deriving
effective nuclear quantum-mechanical operators, Sec. III
describes the results, and Sec. IV presents a summary and
conclusions.

II. PION RESCATTERING OPERATOR

To derive the effective pion production operators, and other
effective nuclear operators in general, one starts from the
relativistic (effective) Lagrangian written in terms of hadronic
fields. The interactions mediated by meson exchanges before
and after the production reaction takes place are included in
the effective NN (and nucleon-meson) interaction, whereas
from the irreducible parts connected to the reaction mechanism
(e.g., pion production), one obtains effective operators whose
expectation values are to be evaluated between the initial
and final nucleonic wave functions. One aims to get such

effective operators consistent with the realistic description
of the NN interaction, which can then be used in studies
of the corresponding reactions not only on the simplest
(one- or two-nucleon) systems but preferably also on heavier
nuclei.

The covariant techniques based on the Bethe-Salpeter
equation or its quasipotential rearrangements are these days
practically manageable only below the meson production
threshold. However, above the threshold the dressings of the
single hadron propagators and interaction vertices via the
meson loops have to be included explicitly. For this reason
the construction of the production operator is so far realized
mostly in the Hamiltonian quantum-mechanical framework
(usually nonrelativistic or with leading relativistic effects
included perturbatively within the decomposition in powers
of p/m, where p is the typical hadronic momentum and m
is the nucleon mass).

The derivation of the nuclear effective operators below
the meson production threshold within the Hamiltonian
framework—leading to Hermitian and energy-independent NN
and 3N potentials and conserved e.m. and partially conserved
weak current operators—can be done in many different ways
(see discussion in Ref. [2] and references therein). At the
nonrelativistic order the results are determined uniquely. As for
the leading-order relativistic contributions, they were shown
to be unitarily equivalent. The unitary freedom allows us to
choose the NN potentials to be static (in the c.m. frame of
the two-nucleon system) to identify them with the successful
static semiphenomenological potentials.

Also, above the threshold the static limit is commonly
employed, because more elaborate descriptions that include
the mesonic retardation and loop effects are technically
considerably more complex [3,4], especially for systems of
more than two nucleons. Both the static approaches and the
ones including “retardation” typically consider contributions
of several one-meson exchanges and the potentials are fitted
to describe the data. It is therefore difficult to assess how
well they approximate the covariant amplitudes (correspond-
ing to the same values of physical masses and coupling
constants) that are so far outside the scope of existing
calculational schemes but that we believe provide in principle
the consistent description of the considered reactions.
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FIG. 1. Feynman diagrams for pion rescattering. The pion field
is represented by a dashed line, the NN interaction by a solid double
line, and the nucleons by solid lines.

Thus, the ultimately exact approach to the description
of pion production (and in particular of the pion rescat-
tering contribution) would be the covariant Bethe-Salpeter
or quasipotential frameworks (extended above the pion
threshold) or the quantum mechanical coupled-channel tech-
nique, including retardation. In these approaches one has
to treat the non-Hermitian energy-dependent NN interaction
(fitted to the data also above pion production threshold) and
consider the effects of renormalization of vertices, masses, and
wave functions via meson loops.

In this article we instead (following Refs. [5]) numerically
estimate the range of the predictions from several commonly
used simplifying approximations [5,6] and compare them to
the result obtained from the reduction of the corresponding
covariant Feynman diagrams for the pion rescattering operator.
This reduction coincides with the time-ordered perturbation
theory [1].

A. Factorization of the effective rescattering operator

In a previous article [1] we made the connection to
the usual representation of the pion rescattering operator
for nonrelativistic calculations by following the approach of
Ref. [5]. We started from the covariant two-nucleon Feynman
amplitudes, including final and initial state interaction (FSI
and ISI, respectively), shown in Figs. 1(a) and 1(b).

To obtain the effective rescattering operator the negative
energy contributions in the nucleon propagators (to be included
in the complete calculations) were neglected. By integrating
subsequently over the energy of the exchanged pion the
resulting Feynman amplitudes were transformed into those
following from the time-ordered perturbation theory. We
have shown in Ref. [1] that the irreducible “stretched box
diagrams” (i.e., those with more than one meson in flight
in the intermediate states) give a very small contribution
and can therefore also be neglected. Thus, the full covariant
amplitude is in the lowest order Born approximation well
approximated by the product of the NN potential and the
effective pion rescattering operator, which can be extracted
from these time-ordered diagrams (Fig. 2).

F1 F2

E1 E2

ω1

ωπ

Eπ Eπω2 ω1

ωπ

ω2

E1 E2

F1 F2

(a) (b)

FIG. 2. The two time-ordered diagrams for FSI considered here;
additional stretched box diagrams are neglected.

The effective pion rescattering operator was in Ref. [1]
factorized into an effective pion rescattering vertex f̃ and
an effective pion propagator Gπ . For the diagram with FSI
(Fig. 2) this factorization reads as follows:

MFSI =
∫

d3q ′

(2π )3
Vσ

1

F1 + F2 − ω1 − ω2 + iε
Ôrs, (1)

Ôrs = − 1

2ωπ

[
f (ωπ )

E2 − ω2 − ωπ

+ f (−ωπ )

E1 − ω1 − Eπ − ωπ

]

= 1

2
f̃ Gπ, (2)

f̃ = 1

ωπ

[(E1 − ω1 − Eπ − ωπ )f (ωπ )

+ (E2 − ω2 − ωπ )f (−ωπ )], (3)

Gπ = − 1

(E1 − ω1 − Eπ − ωπ )(E2 − ω2 − ωπ )
, (4)

Vσ = 1

2ωσ

[
1

F2 − ω2 − ωσ

+ 1

F1 − ω1 − ωσ

]
, (5)

where, adopting the notation of Ref. [1], �q ′ is the momentum
of the exchanged pion, ω2

π = m2
π + �q ′2 is its on-mass-shell

energy, and f (ωπ ) is the product of the πN amplitude with
the πNN vertex (as in Ref. [1], the standard χPT rescattering
vertex is employed here). We note that f in fact depends on
the three-momenta and energies of both (the exchanged and
produced) pions and also on the nucleon spin. However, for
simplicity, we indicate explicitly only the dependence on the
exchanged pion energy, because it is the important variable
for the main considerations in this article. The variables
Ei, ωi, and Fi are the on-mass-shell energies of the ith nucleon
in the initial, intermediate, and final state, respectively, Eπ is
the energy of the produced pion, E1 + E2 = F1 + F2 + Eπ .

The inclusion of some pieces of the integrand of Eq. (1)
into the propagator Gπ and of others in the modified vertex f̃

is somewhat arbitrary. The appearance of the unusual effective
propagator Gπ and the effective vertex f̃ is the result of
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FIG. 3. Absolute values of the FSI + ISI amplitude as a function of the excess energy Q = 2E − 2M − Eπ (in units of mπ ). The right
(left) panels correspond to the amplitudes with σ exchange (Bonn B) for the NN interaction. The amplitudes are taken at the maximum
pion momentum qmax

π , determined by Q. The upper panels correspond to approximations for the whole operator Ôrs , the lower panels to
approximations for the pion propagator Gπ only. The solid line (Oex) is the reference calculation. The dashed, dotted, and cross-dotted lines
correspond to the static, fixed threshold-kinematics, and on-shell approximations, respectively. The corresponding operators are Ost , Of k,OS

and Gst , Gf k, Gon. All amplitudes were normalized by a factor defined by the maximum value of the reference result.

combining two time-ordered diagrams with different energy
dependence into a single effective operator.

The NN interaction is in Fig. 2 and in Eq. (1) simulated
by a simple σ -exchange potential. Though not realistic,
this interaction suffices for model studies of approximations
employed in derivations of the effective pion rescattering
operator, as done in Ref. [5]. Because some results do
depend on the behavior of the NN scattering wave function,
in particular in the region of higher relative momenta, we
perform our calculations (as in Ref. [1]) also with Vσ replaced
by a full NN T matrix, generated from the realistic Bonn B
potential.

We note that the meson poles are not neglected in the
integration over the energy Q′

0 of the exchanged pion, which
generates Eq. (1). A result similar to Eq. (1) can also be
obtained for the amplitude with the ISI. The two amplitudes
differ, however, in the contribution from the pion poles to
the remaining integration over the three-momentum. For the
amplitude with FSI there are no such poles. However, for the
ISI there are values of the exchanged pion three-momentum
for which the propagator Gπ has poles. These poles have
been considered in all our numerical calculations for the cross
section. As shown, they are one of the main reasons for

deviations between several approximations and the reference
results calculated from Eqs. (1)–(5).

It is worth mentioning that although the FSI and ISI
diagrams graphically separate the NN interaction and the pion
rescattering part (when the stretched boxes are neglected),
they do not define a single effective operator (as a function
of nucleon three-momenta and the energy of emitted pion).
Because in these time-ordered diagrams energy is not con-
served at individual vertices, each of these diagrams defines
a different off-energy shell extension of the pion rescattering
amplitude. This is an unpleasant feature, because one would
have to make an analogous construction for diagrams with both
FSI and ISI. Moreover, one would have to repeat the whole
analysis for systems of more than two nucleons. Only after
the on-shell approximation is made (in the next subsection) do
the pion rescattering parts of FSI and ISI diagrams coincide
and one can identify them with a single effective rescattering
operator.

B. Rescattering operator in the S-matrix technique

The S-matrix technique is a simple prescription to derive the
effective nuclear operators from the corresponding covariant
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FIG. 4. Convergence of the Taylor expansion for the pion propagator Gπ in the FSI amplitude as a function of the two nucleon relative
momentum [Eq. (12)]. (Left panel) At threshold; (right panel) above threshold at maximum pion momentum for an excess energy Q of 0.5mπ .
Bottom panels zoom into the region of low relative momentum.

Feynman diagrams [2]. For electromagnetic operators and also
for NN and 3N potentials the S-matrix approach reproduces the
results of more laborious constructions, based on time-ordered
or nonrelativistic diagram techniques.

The two-nucleon effective operators are by definition iden-
tified with the diagrams describing the irreducible mechanism
of the corresponding reaction. The only exceptions are the
nucleon Born diagrams from which the iteration of the
one-nucleon operator has to be subtracted. The operators
of the nuclear e.m. and weak currents, as well as the pion
absorption operators and nuclear potentials, are obtained by a
straightforward nonrelativistic reduction of the corresponding
Feynman diagrams, in which the intermediate particles are off-
mass-shell and energy is conserved at each vertex: therefore the
derived effective operators are also defined on-energy-shell.
The nuclear currents and other transition operators are defined
to be consistent with a Hermitian energy independent NN
potential, which has the usual one boson exchange form
employed in realistic models of the NN interaction and can be
used also in systems of more than two nucleons. This approach
is well defined and understood below the meson production
threshold, but as a simple tool it is employed also above the
threshold, for instance in Refs. [7,8], to derive the Z-diagram
operators.

For the σ exchange potential the S-matrix technique
in the lowest order of nonrelativistic reduction yields the
following:

Vσ → V on
σ = − 1

m2
σ + �q 2

σ − �2
, (6)

with � = �1 = −�2 and �i = ε′
i − εi ; ε′

i and εi being
the on-shell energies of the ith nucleon after and before
the meson exchange, respectively. As pointed out above,
this defines the potential only on-energy-shell. However, the
Lippmann-Schwinger equation and even the first-order Born
approximation to the wave function require the potential
off-energy-shell. The extended S-matrix approach [2] defines
the most general off-energy-shell continuation of Vσ as a
class of unitarily equivalent potentials parameterized by the
“retardation parameter” ν. The particular choice ν = 1/2 leads
to the static potential in the NN c.m. frame. This choice
corresponds to the substitution �2 = (�1 − �2)2/4. Most
realistic NN potentials, namely those fitted to the data below
the pion threshold, in particular the Bonn B potential used in
this article, are energy independent and static in the nucleon
c.m. frame and can be therefore considered to be consistent
with this construction.

For the pion rescattering diagram, the S-matrix prescription
leads to a single effective operator (for both FSI and ISI
diagrams) of the following form:

ÔS
rs = f (	)

m2
π + �q ′2 − 	2

, (7)

where 	 = ε′
2 − ε2 = ε1 − ε′

1.
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FIG. 5. Approximations for Gπ in the FSI diagram and the first term of the Taylor series. Left and right panels are designated as in Fig. 4.

Let us finally introduce approximations to the time-
ordered PT result given by Eqs. (1)–(5) and explain how the
S-matrix technique fits in. The first of them is the on-shell
approximation, in which the two nucleons in the intermediate
state are put on-energy shell. That is, we put ω1 + ω2 =
F1 + F2, which also implies E1 + E2 = ω1 + ω2 + Eπ . For
the scalar potential in the FSI diagram this leads to Eq. (6),
where now � = F1 − ω1 = ω2 − F2 is the energy transfer in
the corresponding vertices.

For the rescattering operator (2) the on-shell replacement
implies the following:

Ôrs → Ôon
rs = − 1

2ωπ

[
f (ωπ )

E2 − ω2 − ωπ

+ f (−ωπ )

ω2 − E2 − ωπ

]
.

(8)

Clearly, the S-matrix pion rescattering operator ÔS
rs follows

from Ôon
rs if one assumes the energy conservation at each

vertex. The exchanged pion is then no longer on-mass-shell
and we have to replace f (ωπ ) → f (E2 − ω2) and f (−ωπ ) →
f (E2 − ω2): in the first time-ordered diagram the virtual pion
is entering the rescattering vertex and in the second one it is
emitted from this vertex (as defined on Fig. 2).

The on-shell approximation as introduced in Refs. [5,6]
actually coincides with the S-matrix approximation defined
above. The rescattering operator in Eq. (7) can be obtained di-
rectly from Eqs. (3) and (4) by the substitutions following from
the on-energy-shell prescription and the energy conservation
in individual vertices ωπ = E2 − ω2 = − (E1 − ω1 − Eπ ) as

follows:

Ôrs → − 1

2 (E2 − ω2)

× −2 (E2 − ω2) × f (E2 − ω2) + 0 × f (ω2 − E2)

(E2 − ω2 − ωπ ) (ω2 − E2 − ωπ )

= ÔS
rs . (9)

In Ref. [1] the extra kinematical factors in Eq. (3) multiply-
ing the function f (ωπ ) were interpreted as form factors and
kept unaltered, that is, the substitution above was made only in
Gπ and f (ωπ ) of (2), not in the kinematical factors included
in the function f̃ .

In Eq. (9) the effective pion propagator Gπ is seen to take
its Klein-Gordon form as follows:

Gπ → Gon
π = 1

/[
(E2 − ω2)2 − ω2

π

]
. (10)

The replacement, Eq. (10), does not significantly alter the re-
sults, as show below, but the corresponding substitution alone
in the pion rescattering vertex f (±ωπ ) → f ( ± (E2 − ω2))
present in Eq. (3) leads to a large enhancement of the
amplitude (1). According to Ref. [6] it increases the cross
section by almost factor of 3. Because the splitting of Ôrs

is not defined unambiguously, in the work reported here
the on-shell replacement is made in the whole rescattering
operator. We demonstrate in this article that making the
on-shell replacement in the whole operator leads to a signifi-
cantly smaller deviation from the reference result compared to
the replacement f (±ωπ )→f (±(E2 − ω2)) involving f only.
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energy Q. The cross-section curves shown correspond to the FSI amplitude alone. The upper panels correspond to the rescattering operator Ô

given by Eq. (7) and the lower panels to fixed threshold-kinematics approximation. The solid line is the reference calculation (1). The dashed
line is the S-matrix calculation for the rescattering operator Ô given by Eq. (7) (upper panels) and the fixed threshold-kinematics approximation
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In our previous article [1] we considered also other
approximations (in addition to the on-shell one): the so-called
static and fixed threshold-kinematics approximations, defined
by the replacement of the energy of the exchanged pion
E2 − ω2 by zero and mπ/2 (its threshold value), respectively.
The static approximation in Ref. [1] was considered only
for Gπ , and the fixed threshold-kinematics one for Gπ and
also for f (±ωπ ) (the additional kinematical factors in f̃

were again kept unchanged). In this article we again make
these approximations in the full rescattering operator (7),
replacing 	 → 0 and 	 → mπ/2, respectively. For Vσ the
static approximation is defined by � → 0.

III. RESULTS

For numerical calculations we consider the NN → (NN )π
transition in partial waves 3P0 → (1S0)s0. Amplitudes and
cross sections are evaluated both with the simple interaction
Vσ and with the Bonn B potential. We test the S-matrix
prescription for the rescattering operator [Eq. (7)] and also

the fixed threshold-kinematics and the static approximations
discussed in the previous section. Moreover, to compare
to the previous articles we include also the results for the
on-shell [Eq. (10)], fixed threshold-kinematics, and the static
approximations for the effective pion propagator Gπ .

In Fig. 3 we show that the amplitudes with the S-matrix
operator OS (dotted line with crosses on the upper panels)
are the closest to the reference result (solid line). Using the
same approach both for the operator and for Vσ increases
slightly the gap from the reference result (dashed-dotted line
versus solid line on the upper left panel). The fixed threshold-
kinematics version of Ôrs , denoted as Ôf k , works well for
small values of the excess energy Q = 2E − 2M − Eπ but
starts to deviate rapidly with increasing Q (dotted line in
the upper panels of Fig. 3). The static approximation for
the rescattering operator (Ôst ) overestimates significantly the
amplitude [Eq. (1)] (dashed versus solid lines in the upper
panels).

From the lower panels of Fig. 3 one sees that all considered
approximations taken only for the effective pion propagator
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FIG. 7. The same as in Fig. 6, but for the total (FSI+ISI) cross section and considering only the approximations for Ô and Gπ .

do not differ much from each other. This had already been
found in Ref. [1]. It means that the choices for the energy
of the exchanged pion in the effective propagator alone are
not very decisive (solid line versus dotted, dashed, and cross-
dotted lines). We notice, however, that there is a considerable
deviation (dependent on the NN interaction employed) of all
these approximations from the reference result.

To understand this we considered the expansion of the
effective pion propagator Gπ in Eq. (4) in terms of an
“off-mass-shell” dimensionless parameter y:

y = −2E − Eπ − ω1 − ω2

ω1 − ω2 + Eπ

, (11)

which measures the deviation of the total energy from the
energy of the intermediate state with all three particles on-
mass-shell. This Taylor series expansion gives insight on the
small effect of retardation effects in the propagator, and it reads
as follows:

Gπ = 1(
Eπ +ω1−ω2

2

)2 − ω2
π︸ ︷︷ ︸

G
(1)
T ay

×
[

1 + (−2E + Eπ + ω1 + ω2)(
Eπ +ω1−ω2

2

)2 − ω2
π

+ · · ·
]

, (12)

where G
(1)
T ay has the form of the usual Klein-Gordon propaga-

tor.

We notice here that in the case of the ISI amplitude, the
representation of the pion propagator Gπ by its Taylor series,
the first term of which is G

(1)
T ay , fails because of the presence

of a pole in the propagator.
Figure 4 compares the first four terms G

(i)
T ay(i = 1, . . . , 4)

of this expansion with the full effective propagator in
Eq. (4), as a function of the two-nucleon relative momentum
qk , for two different values of the excess energy Q =
2E − 2M − mπ . The convergence of the series demands at
least four terms. Moreover, as expected, this convergence is
momentum dependent. We have also compared the first term
of this expansion with the already considered on-shell, fixed
threshold-kinematics, and static approximations for the pion
propagator. These results are shown on Fig. 5. We realize that
all these approximations are very near to the first-order term
of the Taylor series. The corrections arising from higher order
terms in the expansion are negligible only for low-momentum
transfer, more precisely in the range qk < 100 MeV.

The deviations of Gst ,Gf k , and Gon from the effective
propagator Gπ given by Eq. (4) cannot explain the relatively
large deviations obtained on the bottom-left panel of Fig. 3
between considered approximations and the reference result.
These deviations follow from the ISI contribution. The weight
of the ISI term depends on the NN interaction employed. It is
comparable to the FSI term for Vσ (for which the deviations are
large, as seen on the bottom-left panel of Fig. 3), but it is much
less important for the full Bonn B potential (and therefore the
corresponding deviations on the bottom-right panel of Fig. 3
are indeed much smaller).
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All the findings for the amplitudes manifest themselves
also in the results for the cross section. We show in Fig. 6 the
effects of the considered approximations on the cross section,
first taking only the FSI contribution. In the left panel the
amplitude includes Vσ for the NN interaction; in the right panel
the Bonn B T matrix is used. The curves compare the reference
result (solid line in all panels) with the S-matrix results (upper
panels) and their fixed threshold-kinematics version (lower
panels). The S-matrix approach (dashed line) is the closest to
the reference result (upper panels of Fig. 6).

For the case of the NN interaction described by Vσ we
also show the result following from the S-matrix prescription
applied to the NN interaction (dotted line on left panels in
Fig. 6). For the fixed threshold-kinematics versions (bottom-
left panel), the deviations from the reference result increase
more pronouncedly with the excess energy Q, as expected. The
approximations for the energy of the exchanged pion taken in
the pion propagator Gπ and in the rescattering vertex f (ωπ ),
but not in the kinematical factors of (3), overestimate the cross
section by a factor of 5 (solid line with bullets).

Finally, we present in Fig. 7 the comparison between
the approximated total cross sections with both FSI and
ISI included. The approximation dictated by the S-matrix
approach (dashed and dotted lines on the upper panels of
Fig. 7) is clearly seen as the best one. For the Bonn potential
calculation, it practically coincides with the reference result.
As shown in the previous section, this procedure amounts to
extend the on-shell approximation, used in Ref. [1] for Gπ

and f (ωπ ) alone, also to the multiplicative kinematical factors
showing up in the operator f̃ [see Eqs. (2)–(4)].

To conclude we notice, moreover, that for the realistic
NN interaction, the difference between the S-matrix approach
(upper right panel of Fig. 7) and its fixed threshold-kinematics
version (lower right panel of the same figure) is not very
important near threshold, provided that the excess energy does
not exceed ≈30 MeV (Q/mπ ∼ 0.2).

IV. CONCLUSIONS

a. The usual approximations to the effective pion propagator
[1,6,9], obtained from a quantum-mechanical reduction
of the Feynman diagram describing the pion rescattering
process, are rather close to the first-order term of a Taylor

series in a parameter measuring off-mass-shell effects in the
intermediate states. The series converges rapidly for the FSI
amplitude near threshold. As a consequence, retardation
effects are not decisive in the pion rescattering mechanism
near the threshold energy for pion production.

b. As for the pion energy in the πN rescattering amplitude, the
on-shell approach when used only in f (ωπ ) overestimates
significantly the reference result. Nevertheless, and this is
the key point of this article, this deviation is dramatically
reduced if the approximation coming from the S-matrix
approach is used consistently in the whole effective
operator. This procedure amounts to extending the on-shell
approximation used in Ref. [1] for Gπ and f (ωπ ) to the full
operator f̃ , including kinematical factors that differently
weight the two dominant time-ordered diagrams. The
amplitudes and cross sections obtained with the S-matrix
effective operator are very close to those obtained with the
time-ordered one in the considered kinematical region.

The rescattering operator for the neutral pion production
in the isoscalar πN channel indeed seems to be relatively
unimportant: its enhancement reported in previous articles
followed from inconsistent or too crude (static or fixed
threshold-kinematics) treatment of the energy dependence
of the effective operator. Our findings explain why the
calculation of Ref. [6], where the on-shell approximation is
used, artificially enhances the contribution of the isoscalar
rescattering term. Conversely, importantly and in retrospect,
our results support the choice done in Refs. [7–9] for the
different production operators considered.

The rescattering mechanism is filtered differently by other
spin/isospin channels in pion production reactions. For charged
pion production reactions the general irreducible rescattering
operator comprises also the dominant isovector Weinberg-
Tomozawa term of the πN amplitude, and its importance is
therefore enhanced. Investigation of these channels within the
approach of this article is in progress.
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