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Abstract. We developed a numerical method, based on the Pad�ee summation, to
solve the covariant spectator equation without partial wave decomposition, and
applied it to the NN system. We present a general analytical formula for the
polar angle integration, and a new prescription to handle the singularities pres-
ent in the kernel of the spectator equation, due to the anti-symmetrization
condition. The convergence of the partial wave-decomposition series is tested
as a function of the energy. The on- and off-mass-shell amplitudes are calcu-
lated. The NN model was fitted to the np differential cross section, up to
320 MeV laboratory energy.

1 Introduction

For reliable information to be extracted from momentum transfer processes in the
few GeV=c region, such as electron scattering off light nuclei [1, 2], a description
based on relativistic kinematics and dynamics is required. On the other hand,
traditional numerical methods to solve dynamical equations are based upon partial
wave decomposition (PWD) of the NN interaction, but above 300 MeV the con-
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vergence of the series for the transition scattering amplitudes requires partial waves
corresponding to total angular momentum up to J ¼ 15 [3]. This makes the method
not practical when those amplitudes at high energies are needed as input for cal-
culations of three nucleons [4], or more complex particle systems.

Since for the energy range mentioned relativity becomes an issue, in this work
we develop, and test, a method to solve relativistic quasi-potential equations, or the
NN system, without PWD, in particular the spectator equation [5, 6] with a realistic
NN interaction. The present paper prepares for later applications to photo- and
electro-reactions at high energies.

The results of the work presented here indicate that methods not based on PWD
generate numerical equations which (i) present much less analytical and algebraic
complexity than alternative formulations with PWD, (ii) are appropriate for the
energy region where PWD converges too slowly, and which is probed by the
Jefferson Lab (Jlab) data for electro- and photo-disintegration of the two- and
three-nucleon systems, (iii) although technically complex, are solvable within rea-
sonable CPU time by present-day computer resources, whose limitations are not
any more a serious objection to directly solve three-dimensional integral equations.

The spectator quasi-potential equation incorporates relativistic effects such as
retardation and negative-energy state components. The focus here is on obtaining a
working method to solve that equation without PWD, proceeding directly through
a three-dimensional integration.

The numerical size of the relativistic problem is twice as large as the one of the
non-relativistic case. The resulting equation couples 8 channels corresponding to the
different final helicities and the ðþ;�Þ energy-propagator components. To reduce
computing time, we performed the polar-angle integration analytically. Another new
feature of the method presented here is the way it deals with the singularities from
the exchange kernel, demanded by the anti-symmetrization requirement. This is the
first work that combines the two aspects, relativity and three-dimensional numerical
methods, in an application to the scattering problem of two-nucleon systems.

In Sect. 2 an overview of three-dimensional methods and of quasi-potential
equations and, in particular, the spectator equation for fermions is presented. In
Sect. 3 the method of solving the integral equation without partial wave decom-
position is explained in detail. In Sect. 4 results for NN on-mass-shell amplitudes,
the NN differential cross section, and NN off-mass-shell amplitudes are shown and
discussed. Finally, Sect. 5 presents the conclusions.

2 Background

2.1 Three-Dimensional (3D) Methods

For energies not larger than 300 MeV, numerical methods without partial wave
decomposition, also referred to as three-dimensional (3D) methods [3], were
applied to non-relativistic NN scattering using the Bonn and Argonne interactions.

In applications to the three-nucleon system presented in ref. [4] the PWD method
was realized to be inappropriate for three-nucleon processes at energies higher than
250 MeV. At these energies, both two- and three-nucleon scattering amplitudes were
seen to exhibit a strong angular dependence in the forward and backward scattering
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angles, preventing an efficient and reasonable description in terms of a few partial
waves. Other non-relativistic calculations without partial wave decomposition for the
amplitudes of the two- and three-scalar particle systems were published [7, 8].
Within the relativistic approaches, ref. [9] compares different quasi-potential equa-
tions for scalar particles and interactions, using 3D methods. As pointed out by refs.
[8], the dependence of the widely used one-boson-exchange (OBE) potentials on
momentum vectors can be rather simple in the 3D methods, whereas the partial wave
representation of those potentials involves rather complicated expressions.

2.2 Quasi-Potential (QP) Equations

When dealing with the NN system, a usual approximation of the Bethe-Salpeter equa-
tion [10] consists of restricting the integral kernel to a sum of OBE diagrams, which
is often called the ladder approximation. Nevertheless, this approximation may be
questioned. In fact, the one-body limit is not recovered when one of the particle masses
goes to infinity [5, 11]. Moreover, the crossed-box irreducible diagrams may be impor-
tant, as confirmed by calculations within the Feynman-Schwinger formalism [12].
Although restricted only to the bound state of scalar particles, ref. [13] showed that
some 3-dimensional integral equations conveniently rearrange the series of ladder and
crossed-ladder diagrams, equivalently to the BS equation beyond the ladder approx-
imation. One of those 3-dimensional integral equations is the spectator equation.

2.3 Spectator Equation for Fermions

In the spectator equation the restriction on the energy integration variable is motivated
by important cancellations between box and crossed-box amplitudes. For scalar-inter-
acting particles in the one-body limit the above cancellation is exact order by order
[5, 11]. Also, when one of the masses is much larger than the other, the spectator
equation in the ladder approximation alone gives practically the same result as the
full Bethe-Salpeter equation, as shown in ref. [14]. This shows the efficiency gained
in the rearrangement of the meson-exchange series, prior to its truncation. Further-
more, it has been shown that for nucleons (with equal masses) the non-vanishing
difference between the sum of box and crossed-box diagrams and the spectator ladder
diagrams can be effectively represented by one-heavier-boson exchanges [15]. The
spectator equation, with an appropriate OBE kernel, is therefore suitable for applica-
tions to the two- and three-nucleon systems, as successfully done in refs. [2, 6, 16, 17].

In order to satisfy the Pauli principle the spectator formalism consists of a set of
two coupled equations, as introduced in ref. [6]. Since here we evaluate the scatter-
ing amplitude with both particles on-mass-shell in the initial state, the two equa-
tions reduce to a single one.

Following ref. [6], the scattering equation corresponding to the amplitude,
where particle 1 is on-mass-shell in the initial and final states, is written as

M�0�0;��ðp0; p;PÞ ¼ �VV�0�0;��ðp0; p;PÞ �
1

2

X
�1;�2

�1;�2

ð
d3k

ð2�Þ3

m

Ek

�VV�0�0;�1�1
ðp0; k;PÞ

�G�1�1;�2�2
ðk;PÞM�2�2;��ðk; p;PÞ; ð2:1Þ
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where

�VV�0�0;��ðp0; p;PÞ ¼ V�0�0;��ðp0; p;PÞ þ ð�1ÞIV�0�0;��ð�p0; p;PÞ ð2:2Þ
is the anti-symmetrized interaction kernel. The variable I denotes the total isospin
of the two-nucleon system. The notation uses m for the nucleon mass, p and p0 for
the relative initial and final four-momenta, and P for the total four-momentum.
Also, the indexes that represent the Dirac components of particles 1 and 2 are,
respectively, �0 and �0 for the final state, and � and � for the initial state. The on-

mass-shell energy corresponding to the three-momentum k is Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
. We

considered the c.m. reference frame, where P ¼ ðW ; 0Þ (W is the total energy). In
terms of the relative momentum k the momenta of particles 1 and 2 are given by
k1 ¼ P=2 þ k and k2 ¼ P=2 � k, respectively. When both particles are on-mass-
shell the relative three-momentum is represented by �pp and then W ¼ 2E�pp.

In Eq. (2.1) G�1�1;�2�2
ðk;PÞ is the two-nucleon spectator-formalism propagator

and is given by

G�1�1;�2�2
ðk;PÞ ¼ L�1�2

ðP=2 þ kÞG�1�2
ðP=2 � kÞ; ð2:3Þ

where L�1�2
ðk1Þ is the particle-1 positive-energy projector and G�1�2

ðk2Þ the par-
ticle-2 Dirac propagator. The asymmetry due to the propagator G is only apparent,
since the anti-symmetrization is guaranteed by the form of the kernel in Eq. (2.2).

Following the formalism introduced in ref. [6], we write the scattering ampli-
tude in terms of the helicity and the ðþ;�Þ energy components (�-spin) by defining

M�0
1
�0

2
;�1�2

�0
1
�0

2
;�1�2

ðp0; p;PÞ ¼
X
�0;�0

�;�

�uu
�0

1

�0 ðp01; �01Þ�uu
�0

2

�0 ðp
0
2; �

0
2ÞM�0�0;��ðp0; p;PÞ

� u�1
� ðp1; �1Þu�2

� ðp2; �2Þ; ð2:4Þ

ðthis definition differs from the one in ref. [6] in the multiplicative kinematical
factor ðm=Ep0 Þðm=EpÞÞ, where u�� ðpj; �Þ ( j ¼ 1; 2) stands for the Dirac components
of the asymptotic states of particles j (see Appendix A), �1 (�01) and �2 (�02) are
the initial (final) helicities for particles 1 and 2, respectively. The indexes �j and �0j
with j ¼ 1; 2 express the initial and final �-spin states for particle j. A similar
expression holds for �VV.

The scattering amplitude in terms of the helicity and �-spin states reads finally

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; p;PÞ ¼ �VVþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; p;PÞ �
X
�;�3;�4

ð
d3k

ð2�Þ3
�VVþ�0

2
;þ�

�0
1
�0

2
;�3�4

ðp0; k;PÞ

� g�ðk;WÞMþ�;þ�2

�3�4;�1�2
ðk; p;PÞ; ð2:5Þ

where the positive and negative energy components of the propagator are

gþðk;WÞ ¼ 1

2

�
m

Ek

�2
1

2Ek �W � i"
; ð2:6Þ

g�ðk;WÞ ¼ � 1

2

�
m

Ek

�2
1

W
: ð2:7Þ

The component (2.6) of the nucleon propagator presents a pole singularity.
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In the spectator formalism one of the particles is always on-mass-shell in
a positive-energy state and henceforth in Eq. (2.5) there is always a positive
�-spin state in the initial, intermediate, and final states. The diagrammatic rep-
resentation of Eq. (2.5) is given in Fig. 1. The kernel �VV contains two terms, the
direct term and the exchange term (see Eq. (2.2)), which are represented in
Fig. 2.

In this work we use an OBE kernel including �, �, �, and ! meson exchanges.
The model used for the kernel is very similar to the one of refs. [6, 16]. For
�-exchange we consider a mixture of pseudo-scalar (PS) and pseudo-vector (PV)
couplings in the vertex, defined as

L�ðp0j; kjÞ ¼ ���
5 þ ð1 � ��Þ

ð6p0j �6 kjÞ
2m

�5; ð2:8Þ

where 0� ��� 1 is the admixture parameter, and j specifies the nucleon involved
( j ¼ 1; 2). Explicit expressions for V can be found in Appendix B.

The parameters m�, m�, and m! are fixed by the experimental values for
physical mesons. The remaining 11 parameters were fitted to the np differential
cross-section data. These kernel parameters will be presented in Sect. 4.

3 Solution of the Integral Equation Without Partial Wave Decomposition

In order to solve the scattering equation we need to specify the scattering condi-
tions, that is the initial and final momenta. We choose a reference frame where the
incoming momentum is along the z-axis and write the initial, final, and intermediate

Fig. 1. Helicity representation of the spectator equation. The crosses on the lines mean that the

corresponding particles are on-mass-shell with positive energy

Fig. 2. (a) Direct term of the kernel �VV. (b) Exchange term of the kernel �VV
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momenta in terms of spherical coordinates,

p ¼ ðp; 0; 0Þ; ð3:1Þ
p0 ¼ ðp0; �0; ’0Þ; ð3:2Þ
k ¼ ðk; �; ’Þ: ð3:3Þ

where p0 ¼ jp0j, p ¼ jpj, and k ¼ jkj.

3.1 Integration of the Azimuthal Angle

To perform the ’-integration we need to apply on the scattering amplitude a rota-
tion of an angle ’ around the z-axis. In Appendix C we show that

Mþ�0
2
;þ�2

�3�4;�1�2
ðk; �; ’; p;WÞ ¼ exp

�
ið�1 � �2Þ

’

2

�
Mþ�0

2
;þ�2

�3�4;�1�2
ðk; �; 0; p;WÞ; ð3:4Þ

where the angles p are omitted for simplicity.
Inserting Eq. (3.4) into the spectator equation (2.5) and taking ’0 ¼ 0 (xz is the

reaction plane), we can factorize the ’-dependence obtaining

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ ¼ �VVþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ

�
X
�;�3;�4

ð
k2 dk

2�

ð
d cos �

2�
V
þ�0

2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; k; �; ���;WÞ

� g�ðk;WÞMþ�;þ�2

�3�4;�1�2
ðk; �; 0; p;WÞ; ð3:5Þ

where

V
þ�0

2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; k; �; ���;WÞ ¼ 1

2�

ð
d’ ei

���’�VVþ�0
2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; ’0; k; �; ’;WÞ ð3:6Þ

and

��� ¼ �1 � �2

2
ð3:7Þ

can take the values 0; �1.
The scattering equation (3.5) is already a 2-dimensional integral equation

and includes the propagator function g�ðk;WÞ which has a real pole at k ¼ �pp
(W ¼ 2Ek) for � ¼ þ1. Performing the contour integration we obtain

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ

¼ �VVþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ �
X
�;�3;�4

P
ð

k2dk

2�

ð
d cos �

2�
V
þ�0

2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; k; �; ���;WÞ

� g
�
"¼0ðk;WÞMþ�;þ�2

�3�4;�1�2
ðk; �; 0; p;WÞ

� i
m2�pp

4W

X
�3;�4

ð
d cos �

2�
V
þ�0

2
;þþ

�0
1
�0

2
;�3�4

ðp0; �0; �pp; �; ���;WÞMþþ;þ�2

�3�4;�1�2
ð�pp; �; 0; p;WÞ:

ð3:8Þ
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In this equation we use g
�
"¼0ðk;WÞ to represent the " ¼ 0 limit of g�ðk;WÞ (see

Eqs. (2.6)–(2.7)). The multiplicative factor of the last term is a result of the residue

1

2

1

2

�
m

Ek

�2
k2���� d

dk
ð2Ek �WÞ

����
2
64

3
75

k¼�pp

¼ m2�pp

4W :
ð3:9Þ

In Eq. (3.8) only the function gþðk;WÞ has a singularity, but we include the
principal-part symbol P also for � ¼ �1 for the sake of simplicity.

The ’-integration (3.6) can be performed either analytically or numerically. In
refs. [3, 4, 7–9] the numerical integration was made. Here we choose the analytical
integration in order to minimize computing time.

The analytical expressions depend on the kernel structure. In particular, the
complexity of the analytical expressions depends crucially upon the form factors
(see Sect. 3.4). Relatively simple results are obtained, nevertheless, for the monopolar
choice of the meson-nucleon form factors. In this case we can write Eq. (3.6) asð

d’ ei
���’Vþ�0

2
;þ�2

�0
1
�0

2
;�3�4

ðp0; p;PÞ ¼
X
G

CG

ð
d’

eiG’

ða� b cos’Þðc� b cos’Þ2
; ð3:10Þ

whereG ¼ 0; �1; �2, andCG is a known function of the momentum magnitudes and
the polar angle. Any term of the last equation is subsequently easily integrated over.
Meanwhile, in ref. [18], where the equation for �N scattering is solved also without
PWD, the authors used the same analytical technique but for an integrand not includ-
ing form factors. Details of the analytical structure of the kernel can be found in
Appendix B and the main steps for the analytical integration are given in Appendix D.

3.2 Numerical Method: Pad�ee Method

For clarity, in the following, the relevant variables in the scattering equation (3.8)
are labeled in a simpler and more condensed notation, where we denote each of the
eight possible helicity and �-spin combinations by a single index I0 ¼

�
�02; �

0
1; �

0
2

�
,

Ik ¼ f�; �3; �4g, and I0 ¼ f�2; �1; �2g, according to Table 1 (I0, Ik, and I0 have
nothing to do with the total isospin I); we omit also the total energy W,
the incoming momentum p, and the total isospin I-dependences and perform the

Table 1. Table defining the indexes I0, Ik, or I0

I0 � �1 �2

1 þ � �
2 þ � þ
3 þ þ �
4 þ þ þ

5 � � �
6 � � þ
7 � þ �
8 � þ þ
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following substitutions,

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ ! MI0;I0ðp0; uÞ;

�VVþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ ! �VVI0;I0ðp0; uÞ;

V
þ�0

2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; k; �; ���;WÞ ! VI0;Ikðp0; u; k; vÞ;

where

u ¼ cos �0; ð3:11Þ
v ¼ cos �: ð3:12Þ

Thus, Eq. (3.8) reads

MI0;I0ðp0; uÞ ¼ �VVI0;I0ðp0; uÞ

�
X8

Ik¼1

P
ð1

0

k2 dk

2�

ð1

�1

dv

2�
VI0;Ikðp0; u; k; vÞgIkðk;WÞMIk;I0ðk; vÞ

� i
m2�pp

4W

X4

Ik¼1

ð1

�1

dv

2�
VI0;Ikðp0; u; �pp; vÞMIk;I0ð�pp; vÞ; ð3:13Þ

with

gIkðk;WÞ ¼ gþ"¼0ðk;WÞ if Ik ¼ 1; . . . ; 4;
g�ðk;WÞ if Ik ¼ 5; . . . ; 8:

	
ð3:14Þ

In order to obtain a numerical solution of Eq. (3.13) we carry out a discretization
of the integral variables, k2½0;þ1½ and v2½�1; 1�, and use a Gaussian quadrature-
integration technique. We choose a grid of Np þ 1 points for all momenta, p0, k, and p,
and a grid of Nu þ 1 points for the angular variables u and v. With this discretization
procedure we transform the integral equation (3.8) into an algebraic set of equations

M ¼ V þ C �M; ð3:15Þ
where M and V are the matrix vectors MI0;I0ðki0 ; vj0 Þ and �VVI0;I0ðki0 ; vj0 Þ. The C-matrix
can be decomposed as C ¼ Aþ B. For Ik ¼ 1; . . . ; 4, we have

AðI0i0j0Þ;ðIkijÞ ¼ � w0
ihj

ð2�Þ2
k2
i VI0;Ikðki0 ; uj0 ; ki; ujÞgþðki;WÞ; ð3:16Þ

BðI0i0j0Þ;ðIkijÞ ¼ � hj

ð2�Þ2

m2�pp

2

�
i
�

W
� DS

�
VI0;Ikðki0 ; uj0 ; �pp; ujÞ	i;Npþ1; ð3:17Þ

with

DS ¼ S� S0; ð3:18Þ

S ¼ P
ðþ1

0

dk
k

E2
k

1

2Ek �W
¼ � 1

W
log

W � 2m

2m
; ð3:19Þ

S0 ¼
XNp

i¼1

w0
i

ki

E2
ki

1

2Eki �W
: ð3:20Þ
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For Ik ¼ 5; . . . ; 8, we have

AðI0i0j0Þ;ðIkijÞ ¼ � w0
ihj

ð2�Þ2
k2
i VI0;Ikðki0 ; uj0 ; ki; ujÞg�ðki;WÞ; ð3:21Þ

BðI0i0j0Þ;ðIkijÞ ¼ 0: ð3:22Þ
In the previous equations w0

i and hj are the Gaussian weights for the variables ki and
uj, respectively. The momentum grid is obtained from an xi2�0; 1½ grid by a change
of variables,

ki ¼ L
xi

1 � xi
;

where typically we take L ’ 0:5m. In order to determine the on-mass-shell for-
ward scattering amplitude we add the mesh points kNpþ1 ¼ p and uNuþ1 ¼ 1 with
zero weight.

The dimension of the above matrices is n ¼ 8ðNp þ 1ÞðNu þ 1Þ, which is a
large number when Np and Nu are of the order of 20. Therefore, a standard
matrix-inversion method requiring a large computer memory (for double-precision
complex numbers) becomes impracticable. To overcome this limitation we use
instead the Pad�ee method, which gives a fast estimate of the result of the Born
series for the coupled set of equations,

M ¼ �V þ �C �M; ð3:23Þ
where the parameter � is introduced by convenience and set to 1 at the end of the
calculation. The usual power expansion for 2N þ 1 terms is

M ¼ �Mð1Þ þ �2Mð2Þ þ �3Mð3Þ þ � � � þ �2Nþ1Mð2Nþ1Þ: ð3:24Þ
The vectors MðiÞ are evaluated by

Mð1Þ ¼ V ; ð3:25Þ
Mðiþ1Þ ¼ C �MðiÞ; ð3:26Þ

and any element m of the vector M, given by

m ¼ �m1 þ �2m2 þ �3m3 þ � � � þ �2Nþ1m2Nþ1; ð3:27Þ

is approximated by a rational function of �,

mPad�eeð�Þ ¼ �
a0 þ �a1 þ � � � þ �NaN
1 þ �b1 þ � � � þ �NbN

; ð3:28Þ

where the 2N þ 1 coefficients al and bl are determined through the 2N þ 1 coeffi-
cients ml, from equating Eqs. (3.27) and (3.28). This method is known in the litera-
ture as SPA (scalar Pad�ee approximant) [19] and mPad�ee denotes the Pad�ee ½N;N� result.

The advantage of the Pad�ee method is that it replaces the matrix inversion by a
fast estimate of the Born expansion, where all terms are evaluated as a matrix-
vector multiplication. This multiplication can be performed as n dot-products of
two vectors of n dimension. Therefore the calculation requires memory to allocate
only 2n, instead of n2, complex numbers. This reduces substantially the dimension
of the problem. The price to pay is the recalculation of the matrix lines.
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As we will see in the following section, 11 to 15 Pad�ee terms are needed for
convergence. For typical values Np ¼ 20 and Nu ¼ 30, the full calculation takes
less than 4 minutes in a Pentium 4 at 3.2 GHz, provided that a minimum of 500 GB
disk space is available.

3.3 Prescription for Handling the Singularities in the Exchange Kernel

The direct and the exchange kernel differ in the transferred momentum: q in direct
kernel; q̂q in exchange kernel. In Appendix E we give the expressions for the
momentum transfer involved in each of the two terms, and which determine the
possible numerical singularities coming from the meson propagators, which need
to be taken into account numerically. While the direct term in the kernel of the
spectator equation has no singularities in the meson propagators (one has always

2 � q2 > 0), the exchange term, introduced as a consequence of anti-symmetriza-
tion, has the singularity corresponding to an on-mass-shell exchanged meson
(
2 ¼ q̂q2). This singularity condition 
2 ¼ q̂q2 means the production of a real meson
from the off-mass-shell nucleon states. However, since a real meson-production
process is not allowed below the pion-production threshold, the associated singu-
larity of bVV has no physical correspondence in reality. As shown by Gross et al. this
spurious singularity is canceled by higher-order diagrams [6].

In the numerical applications of the spectator equations two prescriptions were
considered so far to deal with the spurious singularities [6]:

– Principal-part prescription: The singularity is included but only the principal
part of the integral is kept. This corresponds to the replacementð

1


2 � q̂q2 � i"
! P

ð
1


2 � q̂q2
¼

ð �
1


2 � q̂q2 � i"
� i�	




2 � q̂q2

��
;

where

�q̂q2 ¼ ðp0 þ kÞ2 � ðEp0 þ Ek �WÞ2: ð3:29Þ
– Energy-independent prescription: The momentum transfer is modified in order

to remove the singularity. This amounts to the replacement

q̂q ¼ p01 � k2 ! q ¼ p01 � k1;

or

�q̂q2 ! ðp0 � kÞ2 � ðEp0 � EkÞ2:

This last prescription was preferred in recent applications [6, 16]: The momen-
tum transfer is the same for the propagator in both direct and exchange diagrams,
leaving the meson-propagator denominator independent of the two-nucleon-system
energy W.

Nevertheless, we introduce here an alternative adopted by us in the present
numerical work, which we label the on-mass-shell prescription. To understand
it, note that Eq. (3.29) can be rewritten as follows [6],

�q̂q2 ¼ ðp0 þ kÞ2 � ðEp0 � EkÞ2 � ðW � 2Ep0 ÞðW � 2EkÞ: ð3:30Þ
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It is the last term of this equation which generates the spurious singularities men-
tioned, while vanishing when both particles are on-mass-shell either in the initial
state (W ¼ 2Ek) or in the final state (W ¼ 2Ep0). We therefore define the on-mass-
shell prescription by taking for �q̂q2 the expression

�q̂q2 ! ðp0 þ kÞ2 � ðEp0 � EkÞ2: ð3:31Þ
With this choice the exchange kernel bVV is consistent with the Feynman rules in
the on-mass-shell limit. This is a physical argument in favor of our choice.
Furthermore, Eq. (3.31) implies that when the direct term in a particular inter-
action is dominant in the forward direction, then the exchange term dominates
in the backward direction, as it happens for interactions mediated by scalars.
We point out that this property is not satisfied by the energy-independent
prescription. Note, however, that the on-mass-shell prescription is also energy-
independent.

3.4 Strong Form Factors Required by the 3D Numerical Method

Mathematically, form factors provide the necessary regularization of the integrals
for the high-order loops. Since in this work we solve the scattering equation with-
out partial wave expansion, a careful study of the integrand function had to be
performed, in order to determine form-factor functions adequate for the conver-
gence of the method used.

The starting point for the choice of form factors per vertex was the decomposi-
tion suggested by Gross and Riska [20],

Fiðp0j; kjÞ ¼ fmi
ðq2ÞfNðp02j ÞfNðk2

j Þ; ð3:32Þ
where p0j (kj) is the final (initial) momentum of the nucleon j ( j ¼ 1; 2), q ¼ p0j � kj
is the transfer momentum, fmi

is the form factor of meson i and fN the nucleon form
factor.

For the meson form factor our choice is

fmi
ðq2Þ ¼

L2
mi

L2
mi
� q2

; ð3:33Þ

where Lmi
is the cut-off of meson i. Note that by construction the functions fmi

ðq2Þ
only modify the kernel for large q2 (for q2 ¼ 0 we have fmi

ðq2Þ ¼ 1), and therefore
do not suppress the large momentum dependence of Vðk; k;PÞ.

For the form factors fN we take

fNðk2
j Þ ¼

� ~LL2
N

~LL
2

N þ ðm2 � k2
j Þ

2

�n
; ð3:34Þ

with

~LL2
N ¼ L2

N � m2; ð3:35Þ
LN being the nucleon cut-off. These functions fN regulate the asymptotic behavior
of both Vðk; k;PÞ and Vðk; p;PÞ, and are normalized to 1 at the on-mass-shell
condition. For the meson exchange diagrams that enter the kernel of the integral
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equation one of the nucleons is always on-mass-shell, and therefore the contribution
from the corresponding function fN is 1.

The factorization (3.32) has been applied in the spectator equation [6, 16] and
also used in the quasi-potential framework without retardation (where k ¼ ð0;kÞ)
[21]. In the present calculation we found that in order to solve the spectator
equation with 3D methods the value n ¼ 1 in Eq. (3.34), used in previous appli-
cations with PWD [16], was not large enough for the numerical convergence of
Mðk; p;PÞ. We had to take instead n ¼ 2. This is mostly due to the meson-propa-
gator behavior which peaks for forward and backward scattering angles at high
values of the momentum [22]. Using the PWD method the meson-propagator peak
is smeared by the angle integration, but in the 3D method the structure of the
propagator cannot be smoothened.

3.5 Properties and Symmetries of the Amplitudes

Using parity, time reversal, and particle-interchange symmetries we can decrease
the number of independent amplitudes [23, 24]. In particular, parity invariance
reduces the 16 helicity amplitudes of Eq. (2.5) with �0 ¼þ1, � ¼þ1 to 8 independ-
ent ones, according to

M1 ¼ Mþþ;þþðp0; u; p; 1Þ ¼ M��;��ðp0; u; p; 1Þ; ð3:36Þ
M2 ¼ M��;þþðp0; u; p; 1Þ ¼ Mþþ;��ðp0; u; p; 1Þ; ð3:37Þ
M3 ¼ Mþ�;þ�ðp0; u; p; 1Þ ¼ M�þ;�þðp0; u; p; 1Þ; ð3:38Þ
M4 ¼ M�þ;þ�ðp0; u; p; 1Þ ¼ Mþ�;�þðp0; u; p; 1Þ; ð3:39Þ
M5 ¼ M�þ;þþðp0; u; p; 1Þ ¼ �Mþ�;��ðp0; u; p; 1Þ; ð3:40Þ
M6 ¼ Mþ�;þþðp0; u; p; 1Þ ¼ �M�þ;��ðp0; u; p; 1Þ; ð3:41Þ
M7 ¼ Mþþ;þ�ðp0; u; p; 1Þ ¼ �M��;�þðp0; u; p; 1Þ; ð3:42Þ
M8 ¼ M��;þ�ðp0; u; p; 1Þ ¼ �Mþþ;�þðp0; u; p; 1Þ: ð3:43Þ

In the case �0 ¼ �1 the right-hand side of the equalities includes also the phase
ð�1Þð1��

0Þ=2 ¼ �1.
The above relations are valid either p0 is on- or off-mass-shell. Restricting to the

on-mass-shell situation, further relations arise,

M7 ¼ M6; ð3:44Þ
M8 ¼ �M5; ð3:45Þ
M5 ¼ �M6: ð3:46Þ

The last identity is valid only for identical particles. As a result we are left with
only 5 independent amplitudes. We point out that these relations are independent of
the interaction used and of any prescription adopted, and merely result from the
symmetries mentioned above. The relations (3.36)–(3.43) were tested numerically
as a check to the code, since we did not explicitly impose the symmetries to reduce
the number of equations. If we consider, instead, a QP equation of the instanta-
neous type (no retardation included), e.g., the Blankenbecler-Sugar [25] or the
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equal-time [26] equations, we could use more symmetry properties to reduce even
further the number of off-mass-shell amplitudes, given that the particles have
always the same energy.

Finally we add also that, for equations of the instantaneous type, a convenient
combination of the helicity states defines states of well-defined parity and two-
body spin and helicity. The use of that basis states reduces the size of the numerical
problem by block-diagonalizing the set of equations. This was done for example in
refs. [3, 4] in a non-relativistic framework (no �0 ¼ �1 states). Nevertheless, for
three-body applications [4] the helicity combination has to be inverted by calculat-
ing back the amplitudes in the asymptotic basis of uncoupled helicities.

4 Results and Discussion

In this section we discuss the results obtained from fitting the transition amplitudes
to the np differential cross section, we show the on- and off-mass-shell amplitudes
calculated with the kernel with the fitted parameters, and we present the study of
the convergence of the amplitude as a function of the energy.

The numerical results were checked to satisfy the optical theorem

Im½Mþþ;þþ
�1�2;�1�2

ð�pp; 1; �pp; 1Þ� ¼ �m2�pp

4W

X
�3�4

ð1

�1

dv

2�

��Mþþ;þþ
�3�4;�1�2

ð�pp; v; �pp; 1Þ
��2: ð4:1Þ

Since the optical theorem only probes the on-mass-shell amplitudes, the results for
the off-mass-shell amplitudes were tested by numerically checking that they satisfy
the symmetry properties as described in the previous section.

Table 2. Model parameters. The masses are mm, the coupling con-

stants gm are redefined as Gm ¼ g2
m=4� (m ¼ �; �; �; !) and �m is the

anomalous magnetic moment of the vector mesons. While L� is the

cut-off parameter for the pion, the variable Lm stands for the cut-off of

the form factors for the other mesons. See Appendix B for the kernel

expressions and Sect. 3.4 for the definitions of the form factors

m� 138 MeV

G� 13.470

�� 0.0

L� 1190 MeV

m� 497 MeV

G� 3.782

m� 770 MeV

G� 0.100

�� 5.644

m! 783 MeV

G! 8.100

�! 0.337

Lm 2400 MeV

LN 1783 MeV
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4.1 On-Mass-Shell Amplitudes and Differential Cross Section

Asymptotically the state of the two nucleons is characterized by the individual
isospin states. Therefore, for the np system, we considered

T
np
�0

1
�0

2
;�1�2

ðp0; u; p; 1Þ ¼ 1
2
T10
�0

1
�0

2
;�1�2

ðp0; u; p; 1Þ þ 1
2
T00
�0

1
�0

2
;�1�2

ðp0; u; p; 1Þ; ð4:2Þ

where TI0
�0

1
�0

2
;�1�2

represents the anti-symmetrized matrix M with a total isospin I
(Iz ¼ 0).

We start by presenting in Table 2 the results for the interaction-kernel param-
eters that were obtained from the fit of the scattering amplitudes to the np differ-
ential cross section. In the pion-exchange-diagram contribution to the kernel we let

Fig. 3. Helicity amplitudes for 300 MeV and partial wave decomposition
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the PS-PV admixture parameter to float during the fit, and the best fit was obtained
for �� ¼ 0, which corresponds to PV coupling. As for the cut-off parameters, we
also allowed L� to be different from Lm (with m referring to all the other mesons).
In the spectator-equation NN model described in ref. [6], all cut-off parameters are
taken to be the same. In ref. [16], an update of the NN model is reported where a
different cut-off singled out the pion-exchange part of the OBE (one-boson-
exchange) interaction. We followed the latter approach since we consider that it
is more consistent with the idea of the special role of the pion in the nuclear
interaction, and the associated interpretation of the effective heavy meson ex-
changes as a regularization of its behavior in the large-momentum region (short-
range in configuration space). The larger value obtained in the fit for the cut-off of
all mesons different from the pion is therefore a natural and expected result. A
posteriori it serves as a consistency check of that underlying assumption of the
OBE models: Compared to the pion, the effective heavy mesons are supposed to be
important in the large momentum range. Were their cut-off momenta smaller or of
similar size as the pion cut-off momentum, this could not be the case.

Figs. 3 and 4 show the scattering amplitudes (both real and imaginary parts)
obtained, at a fixed energy Tlab ¼ 300 MeV, for all independent helicity channels.
The comparison between the exact result and the PWD results with increasing
values of the maximum total angular momentum included is shown.

The convergence of the Pad�ee amplitudes has been carefully examined, and the
iteration procedure stopped when both real and imaginary parts of T converge with

Fig. 4. Helicity amplitudes for 300 MeV and partial wave decomposition
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a relative error lower than 10�2. In general, we conclude that grids with Np ¼
Nu ¼ 20 were sufficient below 200 MeV for the numerical convergence of the
solution. For 300 MeV we use Nu ¼ 30. Here one may think that this number of
grid points, as implied by the polar-angle discretization, leads to a numerical
problem about the same size of the one of the partial wave-expansion case. How-
ever, we emphasize that:

– The polar angle dependence in the NN potential factorizes as given in Appendix
D. This straightforwardly allows for an optimization of the CPU time of the
calculation, which, however, is impossible in the PWD of the potential. There,
for each momentum case, the integration on that angle has to be re-calculated.

– The accuracy of PWD decreases with increasing partial-wave index, due to the
form of the Legendre polynomials. This limits the precision of the PWD method at
high energies for applications in NN scattering, where the number of partial waves
increases with energy, as evidenced by the three-body calculations in ref. [3].

– In the NN scattering problem the number of partial waves needed for the PWD
convergence increases with the energy, however, the number of mesh points in
the 3D calculation does not increase significantly with energy.

For the helicity �1�2 ¼ þ� channel, convergence requires 13 Pad�ee terms for
I ¼ 0 and 11 terms for I ¼ 1. For the �1�2 ¼ þþ channel 15 terms for I ¼ 0 and
13 terms for I ¼ 1 are necessary. In all cases the optical theorem was always
satisfied with a relative error smaller than 10�2.

After calculating all the on-mass-shell polarized amplitudes we evaluated the
differential cross section,

d�

dO
ð�pp; uÞ ¼ 1

ð2�Þ2

m4

W2
jTnpð�pp; uÞj2: ð4:3Þ

In this equation jTnpj2 is given by

jTnpð�pp; uÞj2 ¼ 1

4

X
�0

1
;�0

2

�1;�2

jTnp
�0

1
�0

2
;�1�2

ð�pp; u; �pp; 1Þj2; ð4:4Þ

an average over the initial helicity states and a sum of the final ones. In Fig. 5 the fit
of the NN potential model to the differential cross-section np data at energies
Tlab ¼ 99; 200, and 319 MeV is shown. Data are collected from the Nijmegen
data basis [27] and correspond to refs. [28–30].

At least for the two first energies the quality of the fit is very good. The
Tlab ¼ 319 MeV energy case is already above the pion production threshold, which
justifies the slight decrease of the quality of the fit. Nevertheless, we conclude that
the method developed in the present work is reliable and promising. Another point
worth mentioning is that the fit selects the PV pion-nucleon coupling (mixing
parameter �� ¼ 0), in agreement with requirements from chiral symmetry.

4.2 Off-Mass-Shell Amplitudes

The off-mass-shell T
np
�0

1
�0

2
;�1�2

ðp0; u; �pp; 1Þ amplitudes may be plotted as functions of 2
variables in momentum space.
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The results for the 8 �0 ¼ þ1 amplitudes are presented in Figs. 6 and 7 for
Tlab ¼ 300 MeV. The plots for the �0 ¼ �1 amplitudes are presented in Figs. 8 and 9.
Note that the on-mass-shell region corresponds to the line p0 ¼ 0.375 GeV=c.

Fig. 5. Differential cross-section results

for 99, 200, and 319 MeV
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The magnitudes of some amplitudes are important up to momenta of the order
1.5 GeV=c, much larger than the on-mass-shell momentum.

It is also important to point out that the amplitudes involving tran-
sitions to negative-energy states, �0 ¼ �1, have magnitudes of the same order

Fig. 6. Off-mass-shell amplitudes for the np process with � ¼ þ1; �0 ¼ þ1
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as the �0 ¼ þ1 amplitudes. Therefore, degrees of freedom corresponding to
negative-energy states have considerable weight in the covariant spectator
formalism.

Fig. 7. Off-mass-shell amplitudes for the np process with � ¼ þ1; �0 ¼ þ1
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4.3 Breaking of PWD for High Energies

We present here the study of the PWD convergence as a function of the energy. To
perform this decomposition we follow ref. [24]. Fig. 10 shows the convergence of
the PWD to the full calculation for a particular neutron-proton on-mass-shell T

Fig. 8. Off-mass-shell amplitudes for the np process with � ¼ þ1; �0 ¼ �1

142 G. Ramalho et al.



matrix, for three energy cases. We notice here that the imaginary part of T con-
verges faster than the real part. For each energy case the criterion for convergence
was defined as a deviation less than 1% from the full result.

Fig. 9. Off-mass-shell amplitudes for the np process with � ¼ þ1; �0 ¼ �1
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The results for 100 MeV shown in Fig. 10 indicate that it is a good approxima-
tion at low energies to take J ¼ 6 as the highest total angular momentum. This
finding is in agreement with the cut-off at Jmax ¼ 6, corresponding to 24 partial
waves, reported in the three-body bound-state relativistic calculations of ref. [16],
but an accurate calculation (less than 1%) requires Jmax ¼ 9.

On the other hand, for 200 MeV we need Jmax ¼ 13 to achieve convergence.
We confirmed also that some helicity channels at 300 MeV require Jmax ¼ 16, as
found in ref. [3], corresponding to 64 partial waves for these amplitudes. Note,
however, that not all the helicity amplitudes require the same Jmax for convergence
(see Figs. 3 and 4). Also, for a given Jmax not all the helicity amplitudes correspond
to the same number of partial waves. For M1 and M2 (which correspond to the

Fig. 10. Partial wave decomposition of the M3 amplitude for 100, 200, and 300 MeV
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largest number of partial waves) Jmax ¼ 6, 10, 16 imply 26, 42, and 66 partial
waves, respectively. Considering, for instance, the amplitude M3, plotted in
Fig. 10, Jmax ¼ 6, 10, 16 corresponds to 24, 40, and 64 partial waves, respectively.
As mentioned before, this large number of partial waves makes the PWD method
impracticable to generate the two-body amplitudes required as an input for the
three-body bound or scattering calculations [4].

We also stress that the number of partial waves needed for convergence of the
off-mass-shell amplitudes is in general larger than the number required for the on-
mass-shell amplitudes: As it was shown by ref. [8], the number of partial waves
involved in the bound-state problem of the three-particle system, for the off-shell
momentum of the order of a few MeV=c, can be quite large, even for a scalar
potential. Finally we report that with a realistic model, which includes pion
exchange, the number of partial waves to converge for the on-mass-shell ampli-
tudes is even larger than for the scalar case. More precisely, if the pion is not
included in the kernel at 300 MeV, we verified that one needs only Jmax ¼ 6. That
means that, as expected, the long range of the pion exchange is responsible for
increasing Jmax from 6 to 16.

5 Conclusions

We considered the spectator equation for nucleons. Its solution depends on the
helicities of the particles, as well as on their �-spins (�0 ¼ þ1 for the positive-
energy state component and �0 ¼ �1 for the negative-energy state component).

After an analytical integration over the azimuthal variable ’, the scattering
amplitude is solved without partial wave decomposition using the Pad�ee method.
This method revealed to be efficient and suitable for the solution of the relativistic
integral equation without partial wave decomposition. For Tlab < 320 MeV, 11 to 15
Pad�ee terms were needed for convergence, depending on the helicity case.

Strong form factors and a prescription for the exchange kernel different from
the ones considered in other calculations within the spectator formalism are
used. When both particles are on-mass-shell the present prescription for the ex-
change kernel gives rise to the kernel directly obtained from the Feynman rules.
This is important in view of possible applications to problems where the fields
are not effective, the q�qq bound state and the quark-exchange diagrams in ��
scattering.

We fitted an OBE interaction to the np differential cross section in the energy
range of 100–320 MeV. We let the percentage of PS and PV admixture floating as a
free parameter in the fit, and it turned out that the PV coupling was favored by the
fit, which is in agreement with arguments of chiral symmetry.

We studied the convergence of the PWD method as a function of the energy.
We concluded that above Tlab ¼ 300 MeV at least 64 partial waves have to be
included for some helicity cases. This large number of terms indicates the breaking
down of the PWD method at higher energies for applications in heavier nuclei
(A� 3).

Beyond the �0 ¼ þ1 amplitudes involved in the cross-section calculation, we
have also calculated the �0 ¼ �1 amplitudes related to processes involving one off-
mass-shell particle. These amplitudes are numerically significant in the spectator
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formalism and may be used in the calculation of meson-production cross sections
[31, 32] and of the 3Heðe; e0ÞX-reaction observables for 1–10 GeV energies [1].

While we consider here the particular case of the relativistic spectator equation,
the method can be extended to other quasi-potential equations. Besides, it is effi-
cient and not CPU-time expensive, avoids the problem of the very large number of
partial waves needed in PWD methods for the NN off-mass-shell amplitudes, does
not have the numerical instability of the large orbital angular PWD results (due to
oscillations of the Legendre polynomials) [8], and finally, it determines the helicity
or polarized amplitudes directly, without additional numerical recombination or
decomposition.
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Appendix A. States of Helicities

A.1 Positive-Energy State Spinors (uþj )

Following refs. [33, 34], we use the definitions for the spinors of particle 1 (momentum k1) and

2 (momentum k2),

uðkj; �Þ ¼ Nk
1

�~kk

� �
j�ij ð j ¼ 1; 2Þ; ðA:1Þ

with the normalization

Nk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ Ek

2m

r
; ðA:2Þ

~kk ¼ k

mþ Ek

: ðA:3Þ

Note that the spinors depend only on the three-momentum.

The Pauli spinors of particles 1 and 2,

j�i1 ¼ ��ðk̂kÞ; ðA:4Þ

j�i2 ¼  �ðk̂kÞ; ðA:5Þ

are related by

 �ðk̂kÞ ¼ ���ðk̂kÞ: ðA:6Þ

Initial- and final-state Pauli spinors are presented in Table A.1.

A.2 Negative-Energy Spinor States (u�j )

The negative-energy spinors are constructed from positive-energy states using the charge-conjugation

operator C [6, 33, 34],

vðk1; �Þ ¼ ð�1Þ�C�uuTðk2; �Þ; ðA:7Þ

vðk2; �Þ ¼ �C�uuT1 ðk1; �Þ; ðA:8Þ
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where C ¼ �i�0�2 and T indicates matrix transposition. The relative factors are introduced by con-

venience. As a result we get

vðkj; �Þ ¼ Nk
��~kk

1

� �
j�ij: ðA:9Þ

Appendix B. Kernel �VVVV
In this appendix we describe the analytical structure of the OBE kernel. As mentioned before, for any

isospin state I, the kernel �VV contains the direct V term and the exchange-kernel bVV term,

�VVþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ Vþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ þ ð�1ÞIbVVþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ: ðB:1Þ

The kernel function includes 2 vertex form factors defined by Eq. (3.32). As discussed in the text,

one nucleon is always on-mass-shell and therefore the corresponding form factor reduces simply to 1.

In the OBE-potential matrix element the product of the 2 vertex form factors reads then

Fiðp01; k1ÞFiðp02; k2Þ ¼ ½ fmi
ðq2Þ�2fNðp0 2

2 ÞfNðk2
2Þ: ðB:2Þ

Only the off-mass-shell nucleon is modified by the inclusion of the nucleon form factor. The off-mass-

shell nucleon with momentum k2 ¼ ðW � Ek;�kÞ enters the exchange diagram with the factor

fNðk2
2Þ ¼

� ~LL2
N

~LL2
N þW2ðW � 2EkÞ2

�2

: ðB:3Þ

For meson i the potential direct term is given by

Vþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
i


2
i � q2

�uuþðp01; �01ÞL1ðp01; k1Þuþðk1; �1Þ

� �uu�
0 ðp02; �02ÞL2ðp02; k2Þu�ðk2; �2Þ½ fmi

ðq2Þ�2fNðp0 2
2 ÞfNðk2

2Þ; ðB:4Þ

Table A.1. Pauli helicity states. The phase differences between these spin-

ors and the ones of refs. [33, 34] are due to the fact that we consider, for

convenience, the convention of rotations of ref. [34] and the phase conven-

tion for particle 2 of ref. [33]

Initial state

� ¼ 1 � ¼ �1

��ðẑzÞ 1

0

� �
0

1

� �

 �ðẑzÞ 0

1

� �
1

0

� �

Final state

�0 ¼ 1 �0 ¼ �1

�0
�0 ð�; ’Þ

cos
�

2
exp �i

’

2

h i
sin

�

2
exp i

’

2

h i
0
B@

1
CA � sin

�

2
exp �i

’

2

h i
cos

�

2
exp i

’

2

h i
0
B@

1
CA

 0
�0 ð�; ’Þ

� sin
�

2
exp �i

’

2

h i
cos

�

2
exp i

’

2

h i
0
B@

1
CA cos

�

2
exp �i

’

2

h i
sin

�

2
exp i

’

2

h i
0
B@

1
CA
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where Lj ( j ¼ 1; 2) is the vertex operator for the mesons �, �, �, and !, and the exchange momentum is

q2 ¼ ðEp0 � EkÞ2 � ðp0 � kÞ2: ðB:5Þ

The �NN vertex is defined by Eq. (2.8). For the other mesons we take the definitions of ref. [6] (with

�v ¼ 1).

For vector mesons we make the substitution

L1L2 ! L

1 ðp01; k1ÞL


2ðp02; k2Þ
�
g

 þ

ðp01 � k1Þ
ðp02 � k2Þ


2
i

�
: ðB:6Þ

Similarly, for the exchange term of the potential we have

bVVþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
i


2
i � q̂q2

�uuþðp01; �01ÞL1ðp01; k2Þu�ðk2; �2Þ

� �uu�
0 ðp02; �02ÞL2ðp02; k1Þuþðk1; �1Þ½ fmi

ðq̂q2Þ�2fNðp0 2
2 ÞfNðk2

2Þ; ðB:7Þ

where, according to the on-mass-shell prescription (see Sect. 3.3), the exchange momentum is

q̂q2 ¼ ðEp0 � EkÞ2 � ðp0 þ kÞ2: ðB:8Þ

For vector mesons the replacement is now

L1L2 ! L

1 ðp01; k2ÞL


2ðp02; k1Þ
�
g

 þ

ðp01 � k2Þ
ðp02 � k1Þ


2
i

�
: ðB:9Þ

To evaluate the contributions of all mesons we decompose the vertex projections on the asymptotic

states in terms of amplitudes that involve only on-mass-shell couplings and amplitudes with off-mass-

shell corrections. We evaluate those expressions as matrix elements between the asymptotic states

u �
1 ðp; �1Þ and u �

2 ðp; �2Þ. Finally, we write all results in terms of coefficients to be defined in the next

sections. The formulas presented in Sect. B.1 are for the direct term and in Sect. B.2 for the exchange term.

B.1 Direct Kernel

We will write the direct kernel in terms of the following variables,

Q �
j ¼ �0j~pp

0 � �j~kk; ðB:10Þ
R �
j ¼ �0j~pp

0�j~kk� 1 ðB:11Þ

( j ¼ 1; 2, ~kk comes from the definition of spinors, see Appendix A), and the following auxiliary

functions

Z0
1ðp̂p0; k̂kÞ ¼ �0 y

�0
1
ðp̂p0Þ��1

ðk̂kÞ; ðB:12Þ

Z0
2ðp̂p0; k̂kÞ ¼  0 y

�0
2

ðp̂p0Þ �2
ðk̂kÞ; ðB:13Þ

Zi
1ðp̂p0; k̂kÞ ¼ �0 y

�0
1
ðp̂p0Þ�ð1Þi ��1

ðk̂kÞ; ðB:14Þ

Zi
2ðp̂p0; k̂kÞ ¼  0 y

�0
2
ðp̂p0Þ�ð2Þi  �2

ðk̂kÞ: ðB:15Þ

The Z�j functions ( j ¼ 1; 2, � ¼ 0; . . . ; 3) are calculated from the Pauli spinors presented in

Appendix A. For simplicity sometimes we suppress the arguments of Z�j .

B.1.1 � Exchange

Vþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; kÞ ¼ � g2
�


2
� � q2

½ f�ðq2Þ�2fNðp0 2
2 ÞfNðk2

2Þ

� N2
p0N

2
k H�ðp0; kÞ Z0

1ðp̂p0; k̂kÞZ0
2 ðp̂p0; k̂kÞ: ðB:16Þ
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H�ðp0; kÞ is also a function of the helicity �-states given by

H�ðp0; kÞ ¼ Aðp0; kÞB�0�ðp0; kÞ; ðB:17Þ

where

Aðp0; kÞ ¼ �R�
1 ;

Bþþðp0; kÞ ¼ �R�
2 ;

Bþ�ðp0; kÞ ¼ �Qþ
2 ;

B�þðp0; kÞ ¼ �Qþ
2 ;

B��ðp0; kÞ ¼ R�
2 :

For large k we have H�ðp0; kÞ 	 1.

B.1.2 � Exchange

Vþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
�


2
� � q2

½ f�ðq2Þ�2fNðp0 2
2 ÞfNðk2

2Þ

� N2
p0N

2
kH�ðp0; kÞZ0

1ðp̂p0; k̂kÞZ0
2ðp̂p0; k̂kÞ: ðB:18Þ

H�ðp0; kÞ is also a function of the helicity �-states. We can write it as

H�ðp0; kÞ ¼ Aðp0; kÞB�0�ðp0; kÞ; ðB:19Þ

where

Aðp0; kÞ ¼ �Q�
1 ;

Bþþðp0; kÞ ¼ �Q�
2 � ð1 � �ÞEp0 � Ek

m
Qþ

2 ;

Bþ�ðp0; kÞ ¼ �Rþ
2 þ ð1 � �ÞEp0 � Ek

m
R�

2 ;

B�þðp0; kÞ ¼ ��Rþ
2 þ ð1 � �ÞEp0 � Ek

m
R�

2 ;

B��ðp0; kÞ ¼ ð1 � 2�ÞQ�
2 þ ð1 � �ÞEp0 � Ek

m
Qþ

2 :

For large k we have H�ðp0; kÞ 	 1 for PS coupling, and H�ðp0; kÞ 	 k=m for PV coupling.

B.1.3 Vector Meson Exchange

Vþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
v


2
v � q2

½ fvðq2Þ�2fNðp0 2
2 ÞfNðk2

2ÞN2
p0N

2
kHvðp0; kÞ; ðB:20Þ

Hvðp0; kÞ ¼ r0Z
0
1Z

0
2 þ r1

X3

i¼1

Zi
1Z

i
2 þ r2

X3

i¼1

ðp0i þ kiÞZ0
1Z

i
2

þ r3

X3

i¼1

ðp0i þ kiÞZi
1Z

0
2 þ r4

X3

i¼1

ðp0i þ kiÞ2
Z0

1Z
0
2 : ðB:21Þ

The coefficients rl (l ¼ 0; . . . ; 4) are functions of the momenta and the helicity �-states. They can be

written explicitly as

r0 ¼ ½�aa1�1 þ �bb1�3ðEp0 þ EkÞ�½�aa2�1 þ �bb2�3ðEp0 þ EkÞ�;
r1 ¼ �aa1�2ð�aa2�2 þ �cc2�4Þ;
r2 ¼ �aa1�2

�bb2�3;

r3 ¼ �bb1�3ð�aa2�2 þ �cc2�4Þ;
r4 ¼ �bb1�3

�bb2�3;
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where

�aa1 ¼ 1 þ �v;

�bb1 ¼ � �v
2m

;

�aa2 ¼ 1 þ �0�v	�0�;

�bb2 ¼ � �v
2m

;

�cc2 ¼ ��v
Ep0 � Ek

m
:

The coefficients � are related to the helicity states of particle 1 (on-mass-shell nucleon)

�1 ¼ Rþ
1 ;

�2 ¼ Qþ
1 ;

�3 ¼ �R�
1 :

The coefficients � are related to particle 2. They depend on helicity �-states according to the table:

For large k we have Hvðp0; kÞ 	 1 when �v ¼ 0; Hvðk; kÞ 	 k2=m2 and Hvðp0; kÞ 	 k=m when �v 6¼ 0.

B.2 Exchange Kernel

For the exchange term we introduce the auxiliary variables

bQQ �
1 ¼ �01~pp

0 � �2
~kk; ðB:22ÞbQQ �

2 ¼ �02~pp
0 � �1

~kk; ðB:23ÞbRR �
1 ¼ �01~pp

0�1
~kk� 1; ðB:24ÞbRR �

2 ¼ �02~pp
0�1

~kk� 1 ðB:25Þ

(resulting from the analogue variables defined for the direct kernel with the replacement �1 Ð �2) and

the auxiliary functions bZZ0
1 ðp̂p0; k̂kÞ ¼ �0 y

�0
1
ðp̂p0Þ �2

ðk̂kÞ; ðB:26Þ
bZZ0

2 ðp̂p0; k̂kÞ ¼  0 y
�0

1
ðp̂p0Þ��1

ðk̂kÞ; ðB:27Þ

bZZi
1ðp̂p0; k̂kÞ ¼ �0 y

�0
1

ðp̂p0Þ�ð1Þi  �2
ðk̂kÞ; ðB:28Þ

bZZi
2ðp̂p0; k̂kÞ ¼  0 y

�0
2

ðp̂p0Þ�ð2Þi ��1
ðk̂kÞ: ðB:29Þ

These functions are to be evaluated as matrix elements between Pauli spinors.

B.2.1 � Exchange

bVVþ�0;þ�
�0

1
�0

2
;�1�2

ð p0; k;PÞ ¼ � g2
�


2
� � q̂q2

½ f�ðq̂q2Þ�2fNðp0 2
2 ÞfNðk2

2Þ

� N2
p0N

2
k
bHH�ðp0; kÞbZZ0

1 ðp̂p0; k̂kÞbZZ0
2ðp̂p0; k̂kÞ; ðB:30ÞbHH�ðp0; kÞ ¼ A�

0 ðp0; kÞB�ðp0; kÞ; ðB:31Þ

þþ þ� �þ ��

�1 Rþ
2 Q�

2 �Q�
2 Rþ

2

�2 Qþ
2 �R�

2 �R�
2 �Qþ

2

�3 �R�
2 �Qþ

2 �Qþ
2 R�

2

�4 �Q�
2 Rþ

2 �Rþ
2 �Q�

2
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where

Aþðp0; kÞ ¼ �bRR�
1 ;

A�ðp0; kÞ ¼ �bQQþ
1 ;

Bþðp0; kÞ ¼ �bRR�
2 ;

B�ðp0; kÞ ¼ �bQQþ
2 :

For large k we have bHH�ðp0; kÞ 	 1.

B.2.2 � Exchange

bVVþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
�


2
� � q2

½ f�ðq2Þ�2fNðp0 2
2 ÞfNðk2

2Þ

� N2
p0N

2
k
bHH�ðp0; kÞbZZ0

1 ðp̂p0; k̂kÞbZZ0
2ðp̂p0; k̂kÞ; ðB:32Þ

bHH�ðp0; kÞ ¼ A�
0 ðp0; kÞB�ðp0; kÞ; ðB:33Þ

where

Aþðp0; kÞ ¼ �bQQ�
1 � ð1 � �ÞW � 2Ek

2m
bQQþ

1 ;

A�ðp0; kÞ ¼ �bRRþ
1 þ ð1 � �ÞW � 2Ek

2m
bRR�

1 ;

Bþðp0; kÞ ¼ �bQQ�
2 þ ð1 � �ÞW � 2Ep0

2m
bQQþ

2 ;

B�ðp0; kÞ ¼ ��bRRþ
2 � ð1 � �ÞW � 2Ep0

2m
bRR�

2 :

For large k we have bHH�ðp0; kÞ 	 1 for PS coupling, bHH�ðp0; kÞ 	 k=m and bHH�ðk; kÞ 	 k2=m2 for PV

coupling.

B.2.3 Vector Meson Exchange

bVVþ�0;þ�
�0

1
�0

2
;�1�2

ðp0; k;PÞ ¼ 	I
g2
v


2
v � q2

½ fvðq2Þ�2fNðp0 2
2 ÞfNðk2

2ÞN2
p0N

2
k
bHHvðp0; kÞ; ðB:34Þ

bHHvðp0; kÞ ¼ ðr0 þ r5ÞbZZ0
1
bZZ0

2 þ r1

X3

i¼1

bZZi
1
bZZi

2 þ r2

X3

i¼1

ðp0
i � kiÞbZZ0

1
bZZi

2

þ r3

X3

i¼1

ðp0i � kiÞbZZi
1
bZZ0

2 þ r4

X3

i¼1

ðp0
i � kiÞ2bZZ0

1
bZZ0

2 : ðB:35Þ

The coefficients rl (l ¼ 0; . . . ; 4) are functions of the momenta p0, k and helicity �-states. Explicitly we

have

r0 ¼ ½�aa1�1 þ �bb1�3ðEp0 þ EkÞ�½�aa2�1 þ �bb2�3ðEp0 þ EkÞ�;
r1 ¼ ð�aa1�2 þ �cc1�4Þð�aa2�2 þ �cc2�4Þ;
r2 ¼ ð�aa1�2 þ �cc1�4Þ�bb2�3;

r3 ¼ �bb1�3ð�aa2�2 þ �cc2�4Þ;
r4 ¼ �bb1�3

�bb2�3;

r5 ¼ �5�5


2
:
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The rl coefficients for the exchange kernel are not related to the direct kernel coefficients. The

inclusion of r5 results from Eq. (B.9) when the same particle is not on-mass-shell in both the initial

and final states. In this case we have

�aa1 ¼ 1 þ �v	�þ;

�bb1 ¼ � �v
2m

;

�cc1 ¼ ��v
W � 2Ek

2m
;

�aa2 ¼ 1 þ �v	�0þ;

�bb2 ¼ � �v
2m

;

�cc2 ¼ �v
W � 2Ep0

2m
:

The coefficients � depend on �01; �2, and �. The coefficients � are functions of �02; �1, and �0. The

results are presented in the following table:

For large k we have bHHvðp0; kÞ 	 1 when �v ¼ 0; bHHvðk; kÞ 	 k2=m2 and bHHvðp0; kÞ 	 k=m when �v 6¼ 0.

B.3 � and � Coefficients

The coefficients � and � are derived from the formulas listed below, where we use u01 ¼ uþðp01; �01Þ,
u1 ¼ uþðp1; �1Þ, w0

2 ¼ u�
0 ðp02; �02Þ, and w2 ¼ u�ðp2; �2Þ.

B.3.1 Direct Kernel

�uu01�
0u1 ¼ �1Np0NkZ

0
1 ;

�uu01�
iu1 ¼ �1Np0NkZ

i
1;

�uu01u1 ¼ �3Np0NkZ
0
1 ;

�ww0
2�

0w2 ¼ �1Np0NkZ
0
2 ;

�ww0
2�

iw2 ¼ �2Np0NkZ
i
2;

�ww0
2w2 ¼ �3Np0NkZ

0
1 ;

�ww0
2�

0�iw2 ¼ �4Np0NkZ
i
2:

� þ �

�1
bRRþ

1
bQQ�

1

�2
bQQþ

1 �bRR�
1

�3 �bRR�
1 �bQQþ

1

�4 �bQQ�
1

bRRþ
1

�5 ð2Ek �WÞbRRþ
1 ð2Ek �WÞbQQ�

1 � 2mbQQþ
1

�0 þ �

�1
bRRþ

2 �bQQ�
2

�2
bQQþ

2 �bRR�
2

�3 �bRR�
2 �bQQþ

2

�4 �bQQ�
2 �bRRþ

2

�5 ðW � 2Ep0 ÞbRRþ
2 �ðW � 2Ep0 ÞbQQ�

2 þ 2mbQQþ
2
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B.3.2 Exchange Kernel

�uu01�
0w2 ¼ �1Np0Nk

bZZ0
1 ;

�uu01�
iw2 ¼ �2Np0Nk

bZZi
1;

�uu01w2 ¼ �3Np0Nk
bZZ0

1 ;

�uu01�
0�iw2 ¼ �4Np0Nk

bZZi
1;

�ww0
2�

0u1 ¼ �1Np0Nk
bZZ0

2 ;

�ww0
2�

iu1 ¼ �2Np0Nk
bZZi

2;

�ww0
2u1 ¼ �3Np0Nk

bZZ0
2 ;

�ww0
2�

0�iu1 ¼ �4Np0Nk
bZZi

2:

Appendix C. u Rotated Amplitude

In this appendix we derive the relation between the scattering amplitude on the scattering plane (p is on

the z-axis),

Mþ�02;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ;

and the scattering amplitude on a rotated plane characterized by ’0-rotation in the z-axis,

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; ’0; p;WÞ:

Thus, we consider the Lorentz transformation

L ¼ R�’0;0;0 ðC:1Þ

that transforms p0 ¼ ðp0; �0; ’0Þ into p0 ¼ ðp0; �0; 0Þ.
The correspondence between the spinors before and after this Lorentz transformation is

SðLÞu�1ðp; �Þ ¼
X
�0

D�0�ðRLÞu�1ðLp; �0Þ; ðC:2Þ

SðLÞu�2ðp; �Þ ¼
X
�0

D��0;��ðRLÞu�2ðLp; �0Þ; ðC:3Þ

where SðLÞ is the operator that transforms the u; v-states in the Lorentz transformation L and

D is the usual D1=2 Wigner matrix in terms of the rotation angles. The rotation operators are

given by

RL ¼ H�1
LpLHp; ðC:4Þ

R0
L ¼ H�1

Lp0LHp0 : ðC:5Þ

In the last equations Hp is the operator that transforms a four-momentum ðm; 0Þ into p ¼ ðEp; pÞ.
Details can be found in ref. [35]. The operation can always be written in a sequence of a boost (Lp) and

a rotation (Rp̂p),

Hp ¼ Rp̂pLp: ðC:6Þ

After the Lorentz transformation has been done the following relation between the original and the

rotated scattering amplitudes is obtained,

M�0�0;��ðLp0;Lp;LPÞ ¼
X
�1;�1

�2;�2

S�0�1
ðLÞS�0�1

ðLÞM�1�1;�2�2
ðp0; p;PÞS�1

�2�
ðLÞS�1

�2�
ðLÞ: ðC:7Þ

For more details see Appendix B of ref. [6].
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Changing Eq. (C.7) to the helicity representation according to Eq. (2.4) and using the operator-

rotation properties and the invariance of permutation between boost and rotation operators related to

the same axis, we finally conclude that

Mþ�0
2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; ’0; p;WÞ ¼ exp

�
�1 � �2

2
’0
�
Mþ�0

2
;þ�2

�0
1
�0

2
;�1�2

ðp0; �0; 0; p;WÞ: ðC:8Þ

Appendix D. Function V

In this appendix we describe how to evaluate V defined by Eq. (3.6). By performing the ’-integration

we get

Vðp0; �0; k; �; ���;WÞ ¼
ð2�

0

ei
���’�VVð’Þ d’; ðD:1Þ

where we use the simplification

�VVð’Þ ¼ �VVþ�0
2
;þ�

�0
1
�0

2
;�3�4

ðp0; �0; 0; k; �; ’;WÞ: ðD:2Þ

We note that

��� ¼ �1 � �2

2
; ðD:3Þ

so ��� ¼ 0; �1 (remember that �j ¼ �1).

First, we separate the ’-dependent parts from the independent ones (factorization). Next, we

analyze the structure of the resulting functions. We need to consider two different cases: the non-

vector meson exchange (� and �) and the vector meson exchange.

D.1 Factorization of �VVð’Þ

From the expression V (see Appendix B) we conclude that

�VVð’Þ ¼ 	IL4
mg

2
m
�VVð’ÞR; ðD:4Þ

where

�VVð’Þ ¼ ½ fmðq2Þ�2

L4
m

g2
m


2 � q2
ðD:5Þ

and

R ¼ N2
p0N

2
k fNðp0 2ÞfNðk2Þ ~HHiðp0; kÞ: ðD:6Þ

In these equations i is the meson index. Also from Appendix B we have

~HHiðp0; kÞ ¼ Hiðp0; kÞZ0
1Z

0
2 ðD:7Þ

for a non-vector meson and

~HHiðp0; kÞ ¼ Hiðp0; kÞ ðD:8Þ

for vector mesons. Note that the parameterization (D.6) is valid for the direct term and for the exchange

term if we replace q2 by q̂q2, Hi by bHHi (and Z0
j by bZZ0

j for the non-vector case).

Using the definition (3.1)–(3.3) of the coordinates with ’0 ¼ 0 for q2 and q̂q2 we can con-

clude that

�VVð’Þ ¼ 1

a� b cos’

1

ðc� b cos’Þ2
; ðD:9Þ
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where

a ¼ 
2 þ p02 þ k2 
 2p0k cos �0 cos �� q2
0; ðD:10Þ

b ¼ �2p0k sin �0 sin �; ðD:11Þ

c ¼ L2
m þ p02 þ k2 
 2p0k cos �0 cos �� q2

0: ðD:12Þ

The upper sign should be used in the direct term and the lower sign in the exchange term.

D.2 R in Terms of ’

The next step is to write R of Eq. (D.6) in terms of ’. We need to consider two separate cases: the non-

vector mesons and the vector mesons.

D.2.1 Non-Vector Mesons

For non-vector mesons we can write

R ¼ f ðp0; kÞ � Z0
1Z

0
2 : ðD:13Þ

The exact expression of f ðp0; kÞ can be easily deduced from Eq. (D.6). Attending to the Z0
1Z

0
2

dependence in ’, we conclude that

R ¼ f ðp0; kÞ � ðc0 þ c1 exp½�i�3’� þ c2 exp½i�3’�Þ; ðD:14Þ

where cl (l ¼ 0; . . . ; 2) are known coefficients depending on the scattering conditions and on the

helicity states. We can write

Vðp0; �0; k; �; ���;WÞ ¼ 	IL4
mg

2
m f ðp0; kÞ½c0F 0ð���Þ þ c1F 0ð���� �3Þ þ c2F 0ð ���þ �3Þ�; ðD:15Þ

where the function F 0ðnÞ is defined as

F 0ðnÞ ¼
ð2�

0

d’ ein’ �VVð’Þ; ðD:16Þ

and n are n ¼ 0; �1; �2.

D.2.2 Vector Mesons

For vector mesons the function R can be written as a linear combination of the terms

Z�1

1 Z�2

2 and kiZ
�1

1 Z�2

2 ;

where �1; �2 ¼ 0; . . . ; 3. The first term is reduced to the non-vector case discussed in Subsect. D.2.1,

because Z�1

1 Z�2

2 can also be written as

c0 þ c1 exp½�i�3’� þ c2 exp½i�3’�

with appropriated coefficients. The second term can be decomposed in three cases considered as

follows:

Case 1 (k1 ¼ k sin � cos’): In this case we need to integrate factors like

ðk sin �Þ cos’ ein’ �VVð’Þ;

and the corresponding term of V, which we label V1, is

V1ðp0; �0; k; �; ���;WÞ ¼ 	IL4
mg

2
m f ðp0; kÞðk sin �Þ½c0F 1ð���Þ þ c1F 1ð���� �3Þ þ c2F 1ð���þ �3Þ�;

ðD:17Þ
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where

F 1ðnÞ ¼
ð2�

0

d’ cos’ ein’ �VVð’Þ; ðD:18Þ

with n ¼ 0; �1; �2.

Case 2 (k2 ¼ k sin � sin’): We have also to consider terms like

ðk sin �Þ sin’ ein’ �VVð’Þ;

from which the following results for the corresponding V, which we label V2,

V2ðp0; �0; k; �; ���;WÞ ¼ 	IL4
mg

2
m f ðp0; kÞðk sin �Þ½c0F 2ð���Þ þ c1F 2ð���� �3Þ þ c2F 2ð���þ �3Þ�:

ðD:19Þ

The function F 2 is defined as

F 2ðnÞ ¼
ð2�

0

d’ sin’ ein’ �VVð’Þ; ðD:20Þ

with n ¼ 0; �1; �2.

Case 3 (k3 ¼ cos �): No new ’-dependence appears. This case reduces to the non-vector

meson case.

D.3 Functions F lðnÞ

The functions F lðnÞ with l ¼ 0; 1; 2 can be written in terms of the integrals

Rl ¼
ð2�

0

�VVð’Þ cosl’ d’;

for l ¼ 0; . . . ; 3. The Rl integrals are performed analytically with the software program Mathematica

and simplified afterward.

Appendix E. Momentum Transfer in the Two Terms of the Kernel

For the direct term the four-momentum transfer q is given by

q2 ¼ ðp01 � k1Þ2; ðE:1Þ

while for the exchange term it is given by

q̂q2 ¼ ðp01 � k2Þ2: ðE:2Þ

(See Fig. 2.)

When particle 1 has on-mass-shell positive energy one has

p01 ¼ ðEp0 ; p
0Þ; ðE:3Þ

p02 ¼ ðW � Ep0 ;�p0Þ; ðE:4Þ
k1 ¼ ðEk; kÞ; ðE:5Þ
k2 ¼ ðW � Ek;�kÞ: ðE:6Þ

Then the momentum transfer reads

�q2 ¼ ðp0 � kÞ2 � ðEp0 � EkÞ2; ðE:7Þ
�q̂q2 ¼ ðp0 þ kÞ2 � ðEp0 þ Ek �WÞ2; ðE:8Þ

for the direct and exchange terms of the kernel, respectively.

As discussed in the text we propose an alternative expression for q̂q2 (see Eq. (3.31)).
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