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Abstract

We consider the scenario in which the mass matrices of the charged fermions in the SO(10) grand unified
theory are generated exclusively by renormalizable Yukawa couplings to one 10 ⊕ 120 representation of
scalars. We analyze, partly analytically and partly numerically, this scenario in the three-generations case.
We demonstrate that it leads to unification of the b and τ masses at the GUT scale. Testing this scenario
against the mass values at the GUT scale, obtained from the renormalization-group evolution in the minimal
SUSY extension of the Standard Model, we find that it is not viable: either the down-quark mass or the top-
quark mass must be unrealistically low. If we include the CKM mixing angles in the test, then, in order that
the mixing angles are well reproduced, either the top-quark mass or the strange-quark mass together with
the down-quark mass must be very low. We conclude that, assuming a SUSY SO(10) scenario, charged-
fermion mass generation based exclusively on one 10 ⊕ 120 representation of scalars is in contradiction
with experiment.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

All the fermionic multiplets of one Standard Model generation, plus one right-handed neutrino
singlet, fit exactly into the 16-dimensional irreducible representation of the grand unification
group SO(10). This is the unique and distinguishing feature of the unified gauge theories (GUTs)
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based on this group [1]. As a bonus, the presence of three (for three generations, as we shall
assume in this paper) right-handed neutrino singlets allows one to incorporate into this GUT the
seesaw mechanism of type I [2].

However, when it comes to the scalar sector and to fermion mass generation the uniqueness
of the SO(10) GUT is lost and numerous ramifications exist. One possible strategy to limit the
freedom in the scalar sector is to confine oneself to renormalizable terms—for a review see, for
instance, [3]. In that case, the scalar representations coupling to the fermions are determined by
the relation [4,5]

(1)16 ⊗ 16 = (10 ⊕ 126)S ⊕ 120AS,

where the subscripts “S” and “AS” denote, respectively, the symmetric and antisymmetric parts
of the tensor product. Thus, scalars with renormalizable Yukawa couplings to the fermions must
transform under SO(10) either as 10, 126, or 120 (the 10 and 120 are real representations; the
126 is complex). A minimal supersymmetric (SUSY) scenario—which has built-in the gauge-
coupling unification of the minimal SUSY extension of the Standard Model (MSSM)—making
use of one 10 and one 126 for the Yukawa couplings [6] has recently received a lot of attention.
This attention was triggered by the observation [7] that maximal atmospheric neutrino mixing
may in this theory be related to b–τ unification via the type II seesaw mechanism [8]. Detailed
and elaborate studies of this minimal theory have been performed for its Yukawa couplings [9–
12] and scalar potential [13,14]. This “minimal SUSY SO(10) GUT” works very well, since its
Yukawa couplings are able to fit all fermion masses and mixings, allowing in particular for small
quark mixings simultaneously with large leptonic mixings. However, in this context a minimal
Higgs scalar sector is too constrained [15] and does not allow to produce large enough neutrino
masses [16].

As a way out, the 120 scalar representation—which had been somewhat arbitrarily left out—
may be used for a rescue [17,18]. In [10,11] that representation was only taken as a perturbation
of the minimal scenario, to cure minor deficiencies in the fermionic sector. However, in [19] it
was pointed out that the antisymmetric coupling matrix of the 120 could be responsible for the
different features of quark and lepton mixing, since that matrix has different weights in all four
Dirac-type mass matrices—i.e., in the Dirac mass matrices for the up-type quarks, down-type
quarks, charged leptons, and neutrinos. Thinking along this line, the roles of the 120 and 126
could be interchanged in the charged-fermion sector: the brunt could be borne by one 10 ⊕ 120,
and the Yukawa couplings of the 126 would be just a perturbation. This thought is realized in the
model of [17], where the scalar 126 is still a protagonist in the neutrino sector, through the type I
seesaw mechanism.

In this paper we investigate the extreme form of this scenario of [17], namely we assume that
the 126 plays no role whatsoever in the Yukawa couplings to the charged fermions,1 and may
be important only in the neutrino sector, where it would responsible for large Majorana neutrino
masses. Thus, we base our investigation on the following assumptions:

(i) The charged-fermion mass matrices result solely from the Yukawa couplings of one 10 and
one 120 scalar multiplets.

(ii) The mechanism for the generation of the light-neutrino mass matrix is the type I seesaw
mechanism, possibly with some admixture of type II.

1 This idea was previously put forward in [20].
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Due to the first assumption, the Yukawa-coupling matrix of the 126 can be used freely for the
neutrino mass matrix and, therefore, one can accommodate any neutrino masses and lepton mix-
ing that one wants, through either the type I or type II seesaw mechanisms. The tight connection
between the charged-fermion and neutrino sectors is lost, and the predictive power of the model
for the neutrino sector too. The subject of this paper is then only the discussion of the charged-
fermion masses and of quark (CKM) mixing under the assumption (i), and the working out of
where this assumption is successful and where it might fail.

The charged-fermion sector and the Yukawa couplings in [18] coincide with ours. Still, our
results do not, in general, apply to that model. The reason is that its authors assume split super-
symmetry, where the renormalization-group evolution of the fermion masses differs from the one
of the MSSM. Indeed, in order to test any specific scenario one must use the charged-fermion
masses and the quark mixings at the GUT scale. Having in mind a SUSY SO(10) GUT and
the MSSM, we use in this paper the values computed in [21] with the renormalization-group
evolution of the MSSM.

This paper is organized as follows. In Section 2 we discuss the mass matrices and count the
number of parameters. Basis-invariant quantities are introduced in Section 3. The derivation of
some inequalities, and b–τ unification, are discussed in Section 4. In Section 5 we show that a
partly analytical treatment of our scenario is possible when the Yukawa-coupling matrices are
assumed to be real. Section 6 explains our procedure for the numerical fit of the mass matrices
to the fermion masses and to the CKM mixing angles at the GUT scale. We present our results
in Section 7, which is followed by a brief summary in Section 8.

2. The charged-fermion mass matrices

The mass Lagrangian that we are concerned with is

(2)LM = −d̄LMddR − �̄LM��R − ūLMuuR + H.c.

The symmetric and antisymmetric Yukawa couplings of one 10 and one 120 scalar representa-
tions, respectively [4], generate the mass matrices, which at the GUT scale may be parametrized
as

Md = S + eiψA,

M� = S + reiθA,

(3)Mu = pS + qeiξA,

S being symmetric while A is antisymmetric. The parameters p, q , and r are real and positive.
The matrix S is proportional to the Yukawa-coupling matrix of the 10, while A is proportional
to the Yukawa couplings of the 120. The factors eiψ , reiθ , p, and qeiξ depend on some ratios of
vacuum expectation values.

We may perform changes of weak basis

S → USUT ,

(4)A → UAUT ,

where U is unitary. In this way we may reach convenient weak bases. We may for instance use
U to diagonalize S:

(5)S =
(

a 0 0
0 b 0

)
, A =

( 0 z −y

−z 0 x

)
,

0 0 c y −x 0
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with real and nonnegative a, b, and c. Alternatively, we may use U to force A to have only two
nonzero matrix elements, and moreover two matrix elements of S to vanish:

(6)S =
(

a f 0
f b d

0 d c

)
, A =

(0 0 0
0 0 x

0 −x 0

)
.

In the weak basis (6), again, we may choose a, b, and c to be real and nonnegative.
As for the number of degrees of freedom in the mass matrices (3), we consider two cases:

• In the complex-Yukawa-couplings case, the matrices S and A are a priori complex and con-
tain nine independent matrix elements (six in S and three in A), hence nine moduli and nine
phases. One of three phases ψ , θ , and ξ may be absorbed in the definition of A. Through a
weak-basis transformation we may eliminate the three moduli and six phases which parame-
trize U . In that case the model has, therefore, nine real parameters and five phases.

• In the real-Yukawa-couplings case, in which CP violation is considered to be spontaneous,
the matrices S and A are a priori real and contain nine independent moduli. If we want to
preserve the reality of S and A, the matrix U of the weak-basis transformation (4) must be
chosen real (orthogonal),2 hence it contains three real parameters. One ends up with nine
real parameters as before, but only three phases.

With these 14 (in the complex case) or 12 (in the real case) parameters we must try and fit 13
observables: nine charged-fermion masses and four parameters of the CKM matrix. Even if there
is, in the complex case, an excessive number of parameters, the fitting may prove impossible,
due to the fact that a large number of those parameters are phases.

3. Fermion masses and invariants

We first confine ourselves to the masses. For brevity of notation we introduce

(7)

σd = m2
d + m2

s + m2
b, ρd = m2

dm2
s + m2

sm
2
b + m2

bm
2
d, πd = m2

dm2
sm

2
b,

σ� = m2
e + m2

μ + m2
τ , ρ� = m2

em
2
μ + m2

μm2
τ + m2

τm
2
e, π� = m2

em
2
μm2

τ ,

σu = m2
u + m2

c + m2
t , ρu = m2

um
2
c + m2

cm
2
t + m2

t m
2
u, πu = m2

um
2
cm

2
t .

We define the matrices Ha ≡ MaM
†
a (a = d, �,u), which have eigenvalue equations

(8)det
(
m21 − Ha

) = m6 − σam
4 + ρam

2 − πa = 0.

With the mass matrices (3) we obtain the relations

(9)σd = s2 + 2a2,

(10)σ� = s2 + 2r2a2,

(11)σu = p2s2 + 2q2a2,

2 If S and U are assumed to be real, then one may obtain a weak basis of the form (5), but a, b, and c must be allowed
to be negative. It is only when we allow U to include some i factors that we may obtain nonnegative a, b, and c; but then
x, y, and z will not necessarily be real.
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where

(12)s2 = tr
(
SS∗),

(13)a2 = −1

2
tr
(
AA∗);

also,

(14)ρd = s4 + a2
2 + 2z4 + 2 Re

(
e2iψ z̄4

)
,

(15)ρ� = s4 + r4a2
2 + 2r2z4 + 2r2 Re

(
e2iθ z̄4

)
,

(16)ρu = p4s4 + q4a2
2 + 2p2q2z4 + 2p2q2 Re

(
e2iξ z̄4

)
,

where

(17)s4 = 1

2

[
s2

2 − tr
(
SS∗SS∗)],

(18)z4 = s2a2 + tr
(
SS∗AA∗),

(19)z̄4 = −1

2
tr
(
AS∗AS∗);

finally,

(20)πd = ∣∣s3 + e2iψz3
∣∣2

,

(21)π� = ∣∣s3 + r2e2iθ z3
∣∣2

,

(22)πu = ∣∣p3s3 + pq2e2iξ z3
∣∣2

,

where

(23)s3 = detS,

(24)z3 = tr
(
SA2) − 1

2
trS tr

(
A2).

4. b–τ unification

In [18] the mass matrices for the charged-fermion sector are the same as in this paper, but the
discussion is confined to the two-generations case. In that paper, approximate b–τ unification is
traced back to some inequalities derived from the specific structure of the mass matrices. Here
we show that analogous inequalities hold in the three-generations case.

It is convenient to use the weak basis of Eq. (5). We remind that, in that weak basis, a, b, and
c are real and nonnegative, while x, y, and z are in general complex. One has

(25)s2 = a2 + b2 + c2,

(26)a2 = |x|2 + |y|2 + |z|2,
(27)s4 = a2b2 + b2c2 + c2a2,

(28)z4 = a2|x|2 + b2|y|2 + c2|z|2,
(29)z̄4 = bcx2 + cay2 + abz2,

(30)s3 = abc,
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(31)z3 = ax2 + by2 + cz2.

Note that z3 and z̄4 are in general complex, while the other parameters are real.
From Eqs. (16), (29), and (28) we derive

(32)ρu � p4s4 + q4a2
2 + 2p2q2z4 − 2p2q2(bc|x|2 + ca|y|2 + ab|z|2)

(33)= p4s4 + q4a2
2 + 2p2q2[(a2 − bc

)|x|2 + (
b2 − ca

)|y|2 + (
c2 − ab

)|z|2].
Without loss of generality we assume that

(34)b � a, c � a.

Since a + b + c is nonnegative, the inequalities (34) are equivalent to

(35)b2 − ca � a2 − bc, c2 − ab � a2 − bc.

Applying the inequalities (35) to the inequality (33) and remembering Eq. (26), we obtain

(36)ρu � p4s4 + q4a2
2 + 2p2q2(a2 − bc

)
a2.

We next rewrite Eqs. (11) and (25) as

(37)a2 = 1

2q2

[
σu − p2(a2 + b2 + c2)].

We plug this equation into inequality (36) and find after some algebra that

(38)ρu � 1

4

[
σu − p2(b + c)2]2 + F,

where

(39)F = p2a2

2

[
σu + p2(b + c)2 − 3p2a2

2

]
.

The inequalities (34) give b + c � 2a, hence

(40)F � p2a2

2

(
σu + 5p2a2

2

)

(41)� p2a2σu

2
(42)� 0.

From inequalities (38) and (42),

(43)ρu � 1

4

[
σu − p2(b + c)2]2

.

This inequality may equivalently be written

(44)σu − 2
√

ρu � p2(b + c)2 � σu + 2
√

ρu.

It is obvious that, in an exactly analogous fashion, one may derive

σd − 2
√

ρd � (b + c)2 � σd + 2
√

ρd,

(45)σ� − 2
√

ρ� � (b + c)2 � σ� + 2
√

ρ�.
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Inequalities (45) should be compared with those of [18]. One reaches the same conclusion as
in [18]: the intervals [σd − 2

√
ρd,σd + 2

√
ρd ] and [σ� − 2

√
ρ�, σ� + 2

√
ρ�] must overlap. This

overlap—at the GUT scale—implies that, at that scale, mb � mτ . Notice that this conclusion was
reached without making use of the quantities πa .

Comparing inequalities (44) and (45), one also finds that the parameter p is approximately
given by

(46)p � mt

mb

at the GUT scale.
Inequality (38) also delivers F � ρu. Taking into account inequality (41), one has

(47)p2a2 � 2ρu

σu

.

With Eq. (46) in mind, this gives, approximately,

(48)a �
√

2mcmb

mt

.

Numerically, using the values of the quark masses in the MSSM at the GUT scale, as given in
[21], one obtains for instance a � 3.8 MeV for tanβ = 10.

5. Analytical treatment of the real case

In this section we analyze the case of real Yukawa-coupling matrices, i.e., the case of real S

and A. In this case it is convenient to define

(49)x1 = trS,

(50)x2 = 1

2

[
x2

1 − tr
(
S2)].

Then,

(51)s2 = tr
(
S2) = x2

1 − 2x2,

(52)s4 = x2
2 − 2x1s3.

With S and A real, z̄4 is real, and moreover it is not independent from z4, rather

(53)z̄4 − z4 = x2a2 − x1z3.

This allows one to write Eqs. (14) and (15) as

ρd = x2
2 − 2x1s3 + a2

2 + 2z4 + 2 cos(2ψ)z̄4

= x2
2 − 2x1s3 + a2

2 − 2x2a2 + 2x1z3 + 2
[
1 + cos(2ψ)

]
z̄4

(54)= (x2 − a2)
2 + 2x1(z3 − s3) + 2

[
1 + cos(2ψ)

]
z̄4,

ρ� = x2
2 − 2x1s3 + r4a2

2 + 2r2z4 + 2r2 cos(2θ)z̄4

= x2
2 − 2x1s3 + r4a2

2 − 2r2x2a2 + 2r2x1z3 + 2r2[1 + cos(2θ)
]
z̄4

(55)= (
x2 − r2a2

)2 + 2x1
(
r2z3 − s3

) + 2r2[1 + cos(2θ)
]
z̄4.
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Now, plugging Eq. (51) into Eqs. (9) and (10), one obtains

(56)σd = x2
1 − 2(x2 − a2),

(57)σ� = x2
1 − 2

(
x2 − r2a2

)
.

Hence, Eqs. (54) and (55) may be rewritten as

(58)ρd − 1

4

(
x2

1 − σd

)2 = 2x1(z3 − s3) + 2
[
1 + cos(2ψ)

]
z̄4,

(59)ρ� − 1

4

(
x2

1 − σ�

)2 = 2x1
(
r2z3 − s3

) + 2r2[1 + cos(2θ)
]
z̄4.

In the trivial case cos(2ψ) = cos(2θ) = −1, the mass matrices Md and M� are Hermitian and
their eigenvalues directly yield the fermion masses. Discarding that rather trivial case from con-
sideration, we find that Eqs. (58) and (59) lead to

0 = r2[1 + cos(2θ)
][

ρd − 1

4

(
x2

1 − σd

)2 + 2x1(s3 − z3)

]

(60)− [
1 + cos(2ψ)

][
ρ� − 1

4

(
x2

1 − σ�

)2 + 2x1
(
s3 − r2z3

)]
.

On the other hand, since s3 and z3 are real when the matrices S and A are real, Eqs. (20) and
(21) read in that case

s2
3 + z2

3 + 2 cos(2ψ)s3z3 = πd,

(61)s2
3 + r4z2

3 + 2r2 cos(2θ)s3z3 = π�.

Defining

(62)f1 = 1 − r4,

(63)f2 = cos(2ψ) − r2 cos(2θ),

(64)f3 = r4 cos(2ψ) − r2 cos(2θ),

(65)f4 = πd − π�,

(66)f5 = r4πd − π�,

(67)f6 = r2 cos(2θ)πd − cos(2ψ)π�,

the system of Eqs. (61) has solutions given by

s2
3 =

−f1f5 − 2f3f6 ± 2f3

√
f 2

6 − f4f5

f 2
1 + 4f2f3

,

z2
3 =

f1f4 − 2f2f6 ∓ 2f2

√
f 2

6 − f4f5

f 2
1 + 4f2f3

,

(68)s3z3 =
f2f5 + f3f4 ± f1

√
f 2

6 − f4f5

f 2
1 + 4f2f3

.
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We use as input the three charged-lepton masses, the three down-type-quark masses, and
also r , cos(2θ), and cos(2ψ). Eq. (68) allow us to compute s3 and z3 from that input. Insert-
ing those values of s3 and z3 in Eq. (60), we obtain a quartic equation for x1, which may be
analytically solved. The quantities s2 and a2 are then computed as

(69)s2 = x2
1

2
+ r2σd − σ�

2(1 − r2)
,

(70)a2 = σd − σ�

2(1 − r2)
.

Finally, z̄4 is computed from either Eq. (58) or Eq. (59), and z4 is obtained from Eq. (53). All the
invariants pertaining to the matrices S and A are thus analytically computed from the input.

One must, yet, take into account the fact that those invariants must satisfy several inequalities.
In the weak basis (5),

(71)x1 = a + b + c,

(72)x2 = ab + bc + ca,

(73)s3 = abc.

The numbers a, b, and c are real, and they may be negative, see footnote 2. The quantity

(74)Δ ≡ x2
1x2

2 + 18x1x2s3 − 4x3
2 − 4x3

1s3 − 27s2
3

(75)= [
(a − b)(b − c)(c − a)

]2

must therefore be nonnegative. Further nonnegative quantities may be conveniently derived by
using the weak basis (6) and deriving, in that basis, the values of a, b, c, d2, and f 2 from the
invariants. From the condition that f 2 must be nonnegative one obtains

(76)Σ ≡ a2z4 − z2
3

(77)� 0.

From the condition that d2 must be nonnegative one obtains

Ψ ≡ −z3
4 + z2

4(2x1z3 − x2a2) + z4
[
a2z3(3s3 + x1x2) − x1s3a

2
2 − (

x2
1 + x2

)
z2

3

]
(78)+ z3

3(x1x2 − s3) − a2z
2
3

(
x2

2 + x1s3
) + 2x2s3a

2
2z3 − s2

3a3
2

(79)� 0.

The conditions that Δ, Σ , and Ψ be nonnegative constitute a severe constraint on the inputted
values of the charged-fermion masses and of r , θ , ψ .

After having computed the invariants, one may further input the three up-type-quark masses
and therefrom derive the values of p2, q2, and cos(2ξ). In practice, this involves solving a cu-
bic equation, and thereafter imposing the constraints p2 � 0, q2 � 0, and | cos(2ξ)| � 1. This
obviously translates into constraints on the inputted up-type-quark masses.

In the way delineated in this section, one may analytically solve the case of real S and A

matrices, by inputting the charged-fermion masses and therefrom deriving S and A, without
having to have recourse to fits. In practice, however, doing things the other way round—trying
to fit the charged-fermion masses numerically from some inputted values of S, A, and the other
parameters—proves more effective. We turn to that procedure in the next section.



10 L. Lavoura et al. / Nuclear Physics B 754 (2006) 1–16
6. The fitting procedure

In order to check whether the mass matrices (3) allow to reproduce the masses and CKM
mixing angles at the GUT scale, we use a χ2 analysis, as was previously applied for instance in
[23,24]. As for the masses, the χ2-function is given by

(80)χ2
masses = χ2

d + χ2
� + χ2

u,

where

(81)χ2
d =

∑
i=d,s,b

(
mi(x) − m̄i

δmi

)2

,

and analogously for χ2
�,u. The masses at the GUT scale are m̄i ± δmi , whereas the mi(x) are the

masses calculated from Eqs. (3) as functions of the parameter set x = {S,A,p,q, r,ψ, θ, ξ} (see
Section 2 for the distinction between the “real” and the “complex” cases). The total χ2-function
is the sum

(82)χ2
total = χ2

masses + χ2
CKM,

with

(83)χ2
CKM =

∑
i=12,13,23

(
sin θi(x) − sin θ̄i

δ sin θi

)2

.

We take the masses m̄i at the GUT scale, and their errors δmi , from Table II of [21]; those masses
refer to the MSSM with tanβ = 10 and a GUT scale of 2 × 1016 GeV and have been obtained
through the renormalization-group evolution of the masses given in [22] at the Z0-mass scale.
As for sines of the CKM angles, sin θ̄i ± δ sin θi , we use Table 1 in [11]. We do not take into
account the CKM phase in our fitting procedure; this omission will be justified later.

In order to get a better understanding of our mass matrices, we perform separate minimizations
of χ2

masses and of χ2
total. We also test the “real” versus the “complex” case.

For the numerical multi-dimensional minimization of the χ2-functions we employ the down-
hill simplex method [25]. Because the problem is highly nonlinear, we expect the existence of
many local minima.3 We start with randomly generated initial simplices. At the points where the
numerical algorithm stops, we iterate the procedure with random perturbations in order to find
a lower χ2. In this way we can be fairly certain about the distribution of the local minima and
about the position of the global minimum.

In the description of the fits, the concept of “pull” with respect to an observable O is useful.
The pull of O is defined as

(84)pull(O) = O(x̂) − Ō

δO
,

where the experimental value of the observable is Ō ± δO , while O(x) is the theoretical predic-
tion of O , given as a function of the parameter set x; x̂ is the parameter set at a local minimum

3 The concept “local minimum” is not understood in a strict mathematical sense, rather it refers to a point where the
minimization algorithm successfully stops.
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of χ2. Thus,

(85)minχ2(x) ≡ χ2(x̂) =
∑
O

[
pull(O)

]2
.

7. Results

We have performed all fits and tests of our scenario separately for real and complex coupling
matrices S and A—see Section 2. It turns out that there are no significant numerical differences
between the two cases. The extra two phases in the “complex” case are unable to significantly
improve our fits. Therefore, for simplicity in the following we confine ourselves to the “real”
case.

7.1. Fits of the masses alone

Firstly we omit the CKM angles and test whether, with the mass matrices (3), we are able to
fit the charged-fermion mass values at the SUSY GUT scale given in [21]. In Fig. 1 we show
the distribution, in the χ2

d –χ2
u plane, of the local minima of χ2

masses for which minχ2
masses �

40. Though the density of points in that figure depends sensitively on the number of random
perturbations and on the number of restarts of the downhill simplex procedure, the overall picture
is clear. The absolute minimum of χ2

masses is located at χ2
u � 0, χ2

d � 23.3; the corresponding fit
masses, and the pulls, are given in Table 1. For comparison, we also show in Table 1 the central
mass values of [21]. Looking at the pulls, we see that this mass fit fails only in the mass of the

Fig. 1. The distribution of local minima of χ2
masses � χ2

d
+ χ2

u in the χ2
d

–χ2
u plane (we force χ2

�
to be always negligibly

small). The straight lines refer to constant values of χ2
masses. This figure refers to the “real” case.
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Table 1
Results of the fit for the “real” case without the CKM angles. The values of the masses in the second column, and the
corresponding errors δm for the calculation of the pulls, have been taken from [21]. The third column gives our best fit
and the fourth column displays the corresponding pulls. The fifth and sixth columns refer to best fit in the region of small
χ2

d
, i.e., the region in Fig. 1 with χ2

d
� 1 and χ2

u � 25. All the masses are in units of MeV

m̄ χ2
masses = 23.3 χ2

masses = 25.8

m(x̂) pull(m) m(x̂) pull(m)

me 0.3585 0.3585 6 × 10−3 0.3585 6 × 10−4

mμ 75.67 75.67 −4 × 10−4 75.67 −9 × 10−4

mτ 1292.2 1292.2 −4 × 10−3 1292.2 −4 × 10−3

md 1.504 0.4112 −4.74 1.430 −0.321
ms 29.95 29.54 −0.090 29.35 −0.132
mb 1063.6 1187.0 0.873 1188.2 0.882
mu 0.7328 0.7249 8 × 10−3 0.7321 0.061
mc 210.33 212.47 0.113 214.66 0.228
mt 82 433 78 466 −0.269 8778 −4.99

down quark; that particular pull is responsible for almost the complete χ2
masses = 23.3. A glance

at Fig. 1 also reveals that there are local minima with χ2
u � 25 and χ2

d � 1; those minima, the best
of which is also displayed in Table 1, give rather good fits for all the down-type-quark masses,
but fail severely in fitting the top-quark mass: the fit value is about one order of magnitude, or
five σ , smaller than the experimental value—see Table 1.

Thus, with our scenario we cannot even fit all the charged-fermion masses. However, as
stressed in the introduction, our scenario is extreme in that it allows only for the Yukawa cou-
plings of one 10 ⊕ 120 scalar representation. If we allow for small perturbations of the mass
matrices, there are several ways out: there could be contributions from Yukawa couplings of one
126 [17], several 10 and/or 120 of scalars, radiative corrections, or nonrenormalizable terms.
Consequently, the absolute minimum of χ2

masses can be considered acceptable, since it fails only
for md , which is small anyway. On the other hand, our philosophy of small perturbations forces
us to discard the local minimum where the fit value of mt is one order of magnitude too small.

7.2. Fits with masses and CKM angles

Fig. 2 shows the distribution in the χ2
d –χ2

u plane, for the “real” case, of the local minima of
χ2

total which have minχ2
total � 50. We see that the gross feature—the lower left corner is devoid

of local minima—is the same as in the fit without CKM angles. The previous local minimum at
χ2

u � 25 and χ2
d � 1 is now the absolute minimum. That absolute minimum is given in detail in

Table 2. We see that the fit of mt is as unacceptably bad as before, but the CKM angles are well
reproduced.

Moving to the zone of χ2
u � 1 in Fig. 2, where the top-quark mass is well reproduced, we find

the following characteristic features:

• In that zone the best fit has χ2
total � 45.4. The corresponding fit values and pulls are shown

in columns five and six of Table 2, respectively.
• Varying χ2

total between 45.4 and 49, we find that the pull of md changes roughly from −2 to
−3.
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Fig. 2. The distribution of local minima of χ2
total (in the “real” case) in the χ2

d
–χ2

u plane. The straight lines refer to

constant χ2
d

+ χ2
u � χ2

total.

Table 2
Results of the fit for the “real” case including the CKM angles. The best fit is described by columns three and four: this
point lies at χ2

d
� 1, χ2

u � 25. Columns five and six refer to the best fit in the region of small χ2
u

m̄ χ2
total = 26.9 χ2

total = 45.4

m(x̂) pull(m) m(x̂) pull(m)

me 0.3585 0.3585 −1 × 10−3 0.3585 7 × 10−3

mμ 75.67 75.67 2 × 10−3 75.67 4 × 10−3

mτ 1292.2 1292.2 −4 × 10−3 1292.2 −3 × 10−3

md 1.504 1.563 0.141 1.044 −1.993
ms 29.95 28.24 −0.376 1.36 −6.29
mb 1063.6 1191.0 0.903 1225.4 1.145
mu 0.7238 0.7243 3 × 10−3 0.7279 0.030
mc 210.33 215.35 0.264 216.83 0.342
mt 82433 8179 −5.03 74145 −0.56

sin θ̄ sin θ(x̂) pull(sin θ) sin θ(x̂) pull(sin θ)

sin θ12 0.2243 0.2242 −0.047 0.2243 2 × 10−4

sin θ23 0.0351 0.0348 −0.208 0.0352 0.093
sin θ13 0.0032 0.0036 0.740 0.0034 0.318

• For that range of χ2
total, the pull of ms remains close to −6, i.e., the fit value of ms is one

order of magnitude lower than the experimental value—indeed, ms turns out hardly larger
than md ! This is the main reason why χ2

total is so bad in the region of low χ2
u .

• The pull of mb is always about +1.
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Since we are unable to reproduce well all the quark masses, we cannot expect to obtain a
realistic CKM phase, and we have not included it in our fit.

In view of our philosophy, we have also tried a fit of the masses and of the CKM mixing angles
while allowing for artificially large errors in the light-fermion masses. Taking for instance δmi =
5 MeV for i = e, d,u, we are able to achieve χ2

total � 25.4. This is not really an improvement
when compared to the best fit in columns 3 and 4 of Table 2. However, the characteristics of this
fit are different from those of that best fit: the pulls of mb and of mt are approximately +1 and −1,
respectively, whereas the fit value of ms is 4.65σ too low. Thus, the fit with drastically increased
errors in the light-fermion masses rather resembles the fit of columns 5 and 6 of Table 2.

7.3. A numerical test of b–τ unification

In Section 4 we have traced b–τ unification to some inequalities involving the charged-lepton
and the down-type-quark masses; those inequalities are conditions on the masses necessary for
Eqs. (9), (10), (14), and (15) to have a solution. Neglecting the masses of the first generation, i.e.,
setting md � me � 0, those conditions are reformulated as [18]

(86)1 − mμ + ms

mτ

� mb

mτ

� 1 + mμ + ms

mτ

.

Using the values m̄i for the masses in [21], this reads

(87)0.92 � mb

mτ

� 1.08.

Fig. 3. The minimum of the χ2-function of Eq. (89) as a function of mb .
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We have performed a χ2 analysis to check the inequalities (86). For this purpose, we consider

(88)χ2
d�(x,mb) ≡

∑
i=e,μ,τ,d,s

(
mi(x) − m̄i

δmi

)2

+
(

mb(x) − mb

0.01mb

)2

.

This χ2-function is identical with χ2
d + χ2

� apart from the term corresponding to the bottom-
quark mass, wherein we leave mb free and assign to it a very small error bar of 1%. Then we
define a minimal χ2 as a function of mb:

(89)χ2
d�(mb) ≡ min

x
χ2

d�(x,mb).

This function allows one to test the down-type-quark and charged-lepton mass fits with respect
to variations of mb [24]. In Fig. 3 we have plotted χ2

d�(mb) against mb/mτ ; we have used the
mean value mτ = 1292.2 MeV given in [21]. We see that exactly in the range of Eq. (87) the
minimum of χ2

d�(mb) is, for all practical purposes, zero. This confirms our analytic derivation of
b–τ unification.

We can also test Eq. (46) against our numerics. We find that equation is reproduced fairly well
whenever the fit of mt is good.

8. Summary

In this paper we have investigated a SUSY SO(10) scenario in which the charged-fermion
masses are generated exclusively by the renormalizable Yukawa couplings of the fermions to
one representation 10 ⊕ 120 of scalars. We have studied the three-generations case, confirming
the b–τ unification which had previously been proved for two generations [18]. However, our
tests of this scenario against the charged-fermion masses and against the CKM mixing angles at
the GUT scale show that it is not satisfactory: the fit value of mt comes out much too low for
the best fit; allowing for a larger χ2

total, we are able to obtain a good fit of mt , at the price of ms

turning out one order of magnitude too low and of md also being too small. We thus find that the
scenario investigated here is too restrictive: an additional mechanism for charged-fermion mass
generation is required.
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