
Physics Letters B 640 (2006) 121–125

www.elsevier.com/locate/physletb

Chaplygin inspired inflation

O. Bertolami a,∗, V. Duvvuri b

a Departamento de Física, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
b Centro de Física Teórica e de Partículas, Instituto Superior Técnico, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

Received 24 May 2006; received in revised form 8 August 2006; accepted 14 August 2006

Available online 22 August 2006

Editor: G.F. Giudice

Abstract

We discuss chaotic inflation in the context of a phenomenological modification of gravity inspired by the Chaplygin gas equation of state. We
find that all observational constraints can be satisfied provided that the Chaplygin scale and the inflaton mass are smaller than 6.9 × 10−3M and
4.7 × 10−6M , respectively, where M2 ≡ (8πG)−1 is the reduced Planck mass.
© 2006 Elsevier B.V. All rights reserved.

PACS: 98.80.Cq; 98.65.Es
1. Introduction

That the universe is undergoing a period of accelerated ex-
pansion has become the inescapable fact of cosmology. In order
to accommodate an accelerating universe within general relativ-
ity, we must postulate the existence of a smooth and unclustered
form of stress-energy with a sufficiently negative pressure. Such
a component of matter is often referred to as dark energy. The
traditional realizations of dark energy are the cosmological con-
stant and quintessence. Whilst being quite satisfactory from
the phenomenological viewpoint, neither of these approaches is
without serious drawbacks from the viewpoint of fundamental
theory. For instance, while we may choose the value of the cos-
mological constant to fit the data, the most optimistic theoretical
estimates of this value remain about 55 orders of magnitude too
large.

Given the challenge of attacking this problem head on, it is
not surprising that the search for alternative dark energy can-
didates is an ongoing one. The Generalized Chaplygin Gas
(GCG) [1,2] model is an interesting entry in the current list of
candidates. A perfect fluid with a novel equation of state, the
GCG mimics the behavior of matter at early-times and that of
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a cosmological constant at late-times. Thus, in addition to pro-
ducing the observed late-time acceleration of the universe, the
GCG approach allows a unified treatment of dark matter and
dark energy. Furthermore, the model has fared quite well when
confronted with various phenomenological tests: high preci-
sion Cosmic Microwave Background Radiation (CMBR) data
[3,4], supernova data [5–7], gravitational lensing [8], gamma-
ray bursts [9] and cosmic topology [10]. More recently, it has
been shown using the latest supernova data that the GCG model
is degenerate with a dark energy model with a phantom-like
equation of state [6,7]. Furthermore, it can be shown that this
does not require invoking the unphysical condition of violating
the dominant energy condition and does not lead to the big rip
singularity in future [6]. Structure formation has been studied
in Refs. [2,11,12]. A short summary of the results of the vari-
ous phenomenological tests on the GCG model can be found in
Ref. [13].

As is well known, evidence from the CMBR indicates the
early universe underwent an accelerating phase too, viz., the in-
flationary epoch. Given the attractiveness of the GCG as a dark
energy candidate, a natural question to ask is: Can inflation be
accommodated within the GCG scenario? This is the question
we wish to address in the present work.

However, we should emphasize that the inflationary model
described below is not presented as a more desirable alternative
to the conventional ones. Rather, we merely aim to establish
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the assumptions and extrapolations required to obtain success-
ful inflation in a Chaplygin inspired model.

As mentioned above, the GCG background is described by
an exotic equation of state:

(1)pGCG = − A

ρα
GCG

,

where A and α are positive constants. The case α = 1 corre-
sponds to the Chaplygin gas. In most phenomenological stud-
ies one considers the range 0 < α � 1. Inserting this equa-
tion of state into the stress-energy conservation constraint in a
Robertson–Walker spacetime leads to the following expression
for the energy density [2]:

(2)ρGCG =
[
A + B

a(t)3(1+α)

] 1
1+α

.

Here, a(t) is the scale-factor of the universe and B is a posi-
tive integration constant. This result demonstrates that, as the
universe evolves, the GCG energy density interpolates between
that of non-relativistic matter and that of a cosmological con-
stant. This striking property allows the interpretation of the
GCG as dark energy with an admixture of dark matter.

In this Letter, we make a key departure from the scenario de-
scribed above. We will not view Eq. (2) as a consequence of the
equation of state (1), but rather, as arising due to a modification
of gravity itself. In particular, we assume that the gravitational
dynamics at play during inflation give rise to a modified Fried-
mann equation of form

(3)H 2 = 1

3M2

[
A + ρ

(1+α)
φ

] 1
1+α ,

where ρφ is the energy density of the inflation field (or fields).
Such a modification is Chaplygin inspired in the sense that it
follows from an extrapolation of Eq. (2):

(4)ρGCG =
√

A + ρ2
m →

√
A + ρ2

φ,

where ρm corresponds to the matter energy density (we set α =
1 for simplicity).

That the GCG model may be viewed as a modification of
gravity, like so, was first pointed out in Ref. [14]. It can been
shown that the GCG equation of state follows from the gen-
eralized Born–Infeld action [2], and in the case α = 1, from a
single brane setup. In those scenarios, Eq. (2) is a consequence
of stress-energy conservation for a scalar field on the brane. It is
suggestive, then, to view the contribution of the Chaplygin gas
to the stress-energy tensor as a brane induced modification to
gravity. An analogous situation occurs in the Randall–Sundrum
scenario, wherein the standard Friedmann equation is corrected
by a ρ2 term [15,16].

As it stands, Eq. (3) constitutes a non-covariant modification
of gravity. However, we assume that the effect giving rise to
Eq. (3) preserves diffeomorphism invariance in (3 + 1) dimen-
sions, whence stress-energy conservation follows. Since only
the coupling of the inflaton to gravity is modified, the left-hand
side of Einstein’s equation remains unaltered. Consequently,
perturbations of different spins decompose in the conventional
manner. However, if the inflaton field equation is to remain
unaltered, then the modification we envisage cannot have a La-
grangian description in (3 + 1) dimensions. We must speculate
that the effect has a higher-dimensional origin. While this is in-
deed a drawback, our goal here is purely phenomenological and
a derivation of the model from a fundamental theory is beyond
the scope of this Letter.

While modifications of gravity have been proposed in the
context of braneworld scenarios (see e.g. [17–19] for reviews),
non-covariant modification in particular has been considered in
[20–23]. These gravity modifications can imply in important
changes in the early universe dynamics and affect, for instance,
inflation [24–27], or introduce late time changes in the expan-
sion rate of universe, and in some instances, successfully ac-
count for the late time accelerated expansion without the need
to introduce dark energy. It is quite suggestive to think that
these two crucial occurrences in the history of the universe have
a similar underlying dynamics. Having this purpose in mind,
some models have been put forward where inflation and the
late time accelerated expansion are due to the same mechanism
[28–30].

For simplicity, we restrict attention to the Chaplygin gas in-
spired model (the α = 1 case) in this Letter. Hence, the modified
Friedmann equation reads

(5)H 2 = 1

3M2

√
A + ρ2

φ.

As an aside, we remark that when applied to late universe cos-
mology, the α = 1 case is consistent with most of the phe-
nomenological constraints, but requires a rather low Hubble
constant, h � 0.64 [4,13], in order to fit the CMBR data.

To be specific, we shall consider chaotic inflation [31] in the
context of our modified Friedmann equation. In other words,
the energy density in Eq. (5) will be one associated with an
inflaton, φ, which is chosen to have a canonical kinetic term
and a potential that is dominated by a mass term V = m2φ2/2.
Then, the Klein–Gordon equation for the inflation is given by

(6)φ̈ + 3Hφ̇ + V ′(φ) = 0.

2. The model

An inflationary phase is one wherein the universe undergoes
an accelerating expansion; i.e., the scale factor satisfies ä > 0.
Inflation ends when this condition is violated. In general rela-
tivity, this inequality is achieved when the pressure and energy
density of the universe satisfy

(7)p < −ρ/3.

In particular, when the stress-energy of the universe is scalar
field dominated, the onset of inflation is brought about by
φ̇2 � V , whence p = −ρ. The analogous criterion in Chap-
lygin inflation can be obtained by differentiating Eq. (5) and
using ρ̇φ = −3H(ρφ + pφ). It is

(8)ρφ(ρφ + 3pφ) < 2A.
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While the inflaton satisfies this inequality, we have ä > 0. We
should note that Eq. (7) is recovered in the limit A → 0. This,
of course, is the limit wherein we pass to general relativity, too.

As we have remarked above, the inflaton in our model obeys
conventional scalar field dynamics. Thus, in the slow-roll ap-
proximation (φ̇2 � V and φ̈ � V ′) Eqs. (5) and (6) reduce to

(9)H 2 � 1

3M2

√
A + V 2,

(10)φ̇ � −
√

3MV ′

3(A + V 2)1/4
,

where the symbol � denotes equality during the slow-roll
regime. Self-consistency of the slow-roll approximation re-
quires that the following inequalities be satisfied during infla-
tion:

(11)ε ≡ − Ḣ

H 2
= M2V (V ′)2

2(A + V 2)3/2
� 1,

(12)δ ≡ − φ̈

H φ̇
= M2V ′′

(A + V 2)1/2
− ε � 1,

(13)η ≡ ε + δ = M2V ′′

(A + V 2)1/2
� 1.

In general relativity, ε � 1 is tantamount to the slow-roll
condition φ̇2 � V . Evidently, this is not so in the case at hand.
Rather, we have

(14)
φ̇2

V
= 2

3

(
1 + A

V 2

)
ε,

which is small if and only if A/V 2 �O(1). Indeed, this condi-
tion remains valid throughout the Chaplygin regime. In fact, we
may view this condition as signaling the onset of the Chaplygin
inflation effect.

As a first step toward evaluating various inflationary observ-
ables, we require φe, the value of the inflaton field amplitude
when inflation ends. This can be obtained by solving (8) for φ,
when ä > 0 ceases to be true. In the slow-roll regime, we can
write (8), using Eq. (10), as

(15)V 2(V ′)4 <
4

M4

(
A + V 2)3

.

Specializing to the case V = m2φ2/2 obtains

m12φ12
e + (

12Am8 − 4M4m12)φ8
e

(16)+ 48A2m4φ4
e + 64A3 = 0.

Solving this equation for φe yields

(17)φe = 1.4M,

where, while solving the cubic equation for φ4
e , we have re-

tained only terms involving the highest powers of mM/A1/4.
The number of e-folds during inflation is given by

(18)N(φb → φe) � −
φe∫

φ∗

dφ

√
A + V 2

M2V ′ ,
where φ∗ is the field amplitude at the time of horizon-crossing
for the scale in question. For a quadratic potential, evaluating
the integral obtains

N(φb → φe) = 1

2M2

√
φ4

b

4
+ A

m4
− 1

2M2

√
φ4

e

4
+ A

m4

(19)− 1

2M2

√
A

m4
log

φ2
e

(√
A

m4 +
√

φ4
b

4 + A

m4

)
φ2

b

(√
A

m4 +
√

φ4
e

4 + A

m4

) .

Since φe ∼ M , and φ∗ > φe, the first term on the right-hand side
of the above expression is the dominant one. In order to ascer-
tain if a sufficient amount of inflation can occur, we substitute
φe = 1.4M into the above expression and solve for φ∗ in terms
of N . For large N , upon dropping the logarithm, we obtain

(20)φ∗ = 2
√

NM.

3. Observational bounds

In this section, we will ascertain how Chaplygin inflation
fares when confronted with CMBR data. In particular, we will
obtain the power spectra of scalar and tensor perturbations to
the metric in Chaplygin inflation. Toward this end, we compute
the gauge invariant quantity

(21)ζ = ψ + H
δρ

ρ̇
,

where ψ is the gravitational potential. On slices of uniform den-
sity ζ reduces to the curvature perturbation. A key attribute of
ζ is that it is nearly constant on super-horizon scales. This fact,
being a consequence of stress-energy conservation, does not de-
pend on the gravitational dynamics. Thus it remains unaltered
in Chaplygin inflation.

The amplitude of scalar perturbations can be obtained from
the two-point function of ζ :

(22)A2
S = 4

25

〈
ζ 2〉,

where we have adopted the normalization convention of [33].
It can be shown that on super-horizon scales, the curvature per-
turbation on slices of uniform density is equal to the comoving
curvature perturbation. Thus, in a spatially flat gauge, we have

(23)ζ = H
δφ

φ̇
.

Since δφ is “frozen in” on super-horizon scales, the expres-
sion above can be evaluated around the time of horizon cross-
ing, whence the inflation fluctuation is given by the Gibbons–
Hawking temperature of the de Sitter space event horizon. Us-
ing |δφ| = H/2π , we arrive at

(24)A2
S = 1

75π2M6

(A + V 2)3/2

(V ′)2

∣∣∣∣
k=aH

.

As a check, we may note that in the limit A → 0 the familiar
expression A2 ∝ H 2/ε|k=aH is recovered.
S
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Now specializing to a quadratic potential and introducing the
observational bound from COBE, AS = 2 × 10−5, we have

(25)
1

75π2β2M2m4

(
A

M4
+ β4m4

4

)3/2

< 4 × 10−10,

where β = 2
√

NM . Defining x = m4/M4 and y = A/M8, we
can rewrite this bound as

(26)x−1
(

y + β4

4
x

)3/2

< 3β2 × 10−7.

Taking β = 14.8, which corresponds to the large angle aniso-
tropies measured by COBE, we arrive at the following bounds
on the Chaplygin inflation scale and the mass of the inflaton:

(27)A1/8 < 6.9 × 10−3M,

(28)m < 4.7 × 10−6M.

This is the central result of this Letter; it demonstrates the via-
bility of our model vis-a-vis observational bounds from CMBR
anisotropies. Furthermore, it is pleasing to note that while the
inflaton mass is close to that required by conventional inflation-
ary models, the hierarchy between the Planck and Chaplygin
scales is not very large.

For completeness, let us give the spectral indices, which
quantify the scale dependence of the power spectra. When A

and m saturate the bounds given above, the scalar spectral in-
dex is given by nS = 1+[2η−6ε]|k=aH = 0.992. Lowering the
value of the Chaplygin scale somewhat, say by taking A1/8 =
4 × 10−3, obtains nS = 0.965. This is in accord with the latest
Wilkinson Microwave Anisotropy Probe (WMAP) data [32],
too. The tensor spectral index is given by nT = −2ε|k=aH =
−1.8 × 10−2.

The tensor spectrum amplitude is also readily obtained. To
be consistent with the convention adopted in defining AS above,
we define it as [33]

(29)A2
T = H 2

50π2M
=

√
A + V 2

150π2M
.

It follows that the tensor-to-scalar amplitude ratio is [33]

(30)

(
AT

AS

)2

= − (A + V 2)1/2

V

nT

2
,

where once again we may note that the familiar expression
A2

T/A2
S = ε is recovered in the limit A → 0. In our model, the

right-hand side of Eq. (30) takes on the value 9.1 × 10−3.

4. Discussion and conclusions

In this work we have considered chaotic inflation in the
context a phenomenological modification of gravity inspired
by the Chaplygin gas equation of state. We find that obser-
vational bounds on CMBR anisotropies are satisfied provided
that the Chaplygin scale and the inflaton mass are smaller than
6.9 × 10−3M and 4.7 × 10−6M , respectively. Also, we find
that scalar fluctuations are characterized by a spectral index
of 0.965, while the spectral index of gravitational waves is
−1.8 × 10−2. The ratio of the amplitude of gravitational waves
to that of fluctuations in the energy density is 9.1×10−3. These
results are consistent with available WMAP data [32].

We have not yet addressed reheating and the transition to
standard cosmology in our model. A proper discussion of
these issues requires a complete knowledge of the underlying
gravitational dynamics and is beyond the scope of this Let-
ter. However, we give a plausibility argument by analogy with
braneworld cosmology. Due to brane effects, the dynamics is
ruled by Eq. (5), even though a term linear, ρφ , is present in
the Friedmann equation. During inflation, the term quadratic
in ρφ clearly dominates. As the inflaton rolls to the minimum
of the potential, the linear term comes into play. As stated in
the introduction, we assume that the dynamics responsible for
Eq. (2) ceases to operate when inflation ends. Thereafter, we are
left with a conventional Friedmann equation and a large cos-
mological constant,

√
A; cancellation of the later presents the

conventional cosmological constant problem.
Subsequently, the inflaton reaches the bottom of its potential

and reheating follows as in conventional chaotic inflation. As-
suming a fully efficient thermal conversion, and that the number
of degrees of freedom is about 150, one can estimate the reheat-
ing temperature in our model to be TRH = 1.2 × 10−3M .

For sure, inflation in the context of the our model is compat-
ible with the dynamics of some other field which may give rise
to another inflationary period, likewise in the so-called hybrid
inflationary models [34].
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