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Abstract

In the Minimal Supersymmetric Standard Model with bilinear R-parity violation, only one neutrino eigenstate acquires a mass at tree level,
consequently experimental data on neutrinos cannot be accommodated at tree level. We show that in the next-to-minimal extension, where a gauge
singlet superfield is added to primarily address the so-called μ-problem, it is possible to generate two massive neutrino states at tree level. Hence,
the global three-flavour neutrino data can be reproduced at tree level, without appealing to loop dynamics which is vulnerable to model-dependent
uncertainties. We give analytical expressions for the neutrino mass eigenvalues and present examples of realistic parameter choices.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the Minimal Supersymmetric Standard Model (MSSM) with bilinear interactions in the superpotential explicitly violating the
R-parity symmetry [1], a neutrino Majorana mass can be generated. Nevertheless, the rank 1 nature of the neutrino mass matrix
suggests that only one eigenstate becomes massive at tree level, whereas the neutrino oscillation data require at least two non-zero
mass eigenvalues [2]. The bilinear R-parity violating (/Rp) soft masses induce one more non-zero eigenvalue, but only at one-loop
order. What happens if one considers the next-to-minimal version of the MSSM, called ‘NMSSM’ [3], in the presence of bilinear
/Rp terms in the superpotential? Here, the particle content is extended by one gauge singlet superfield. Our main result in this work
is that two non-degenerate massive neutrino states now emerge at tree level. The upshot is that one can now reproduce the neutrino
oscillation data with the superpotential parameters and gaugino masses just from tree level physics. On the other hand, in the usual
MSSM with bilinear /Rp terms, the generation of the second neutrino mass eigenvalue relies on the soft supersymmetry breaking
scalar masses which in turn bring more uncertainties from the supersymmetry breaking mechanism; furthermore, uncertainties from
loop dynamics creep in too.

An increasingly important virtue of the NMSSM [3] (see [4] for phenomenological studies) is that it ameliorates the ‘little hier-
archy’ problem originating from the requirement of large soft supersymmetry breaking scalar masses compared to the electroweak
scale (in order to sufficiently push the lightest Higgs mass beyond the LEP limit). The NMSSM also provides a solution to the
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so-called μ-problem by arranging the vacuum expectation value (vev) of the gauge singlet scalar of the order of the supersymmetry
breaking scale, so that the μ parameter turns out to be at the electroweak scale.

A recent paper [5], in the context of NMSSM with /Rp couplings, deals with the generation of neutrino masses where two
eigenvalues arise at loop level. In another recent analysis [6], it has been shown that the NMSSM with bilinear /Rp terms offers
a possible mechanism of neutrino mass suppression, thus significantly reducing the hierarchy between μi and μ (defined below).
Besides, an alternative extension of the MSSM explicitly breaking the R-parity has been proposed in order to simultaneously
address the μ-problem and the issue of small neutrino masses [7].

In Section 2, we present the superpotential of the model we consider. In Section 3, we discuss the effective neutrino mass matrix.
We present our numerical results in Section 4. Finally, we conclude in Section 5.

2. Superpotential

The NMSSM superpotential contains two dimensionless couplings λ and κ in addition to the usual Yukawa couplings:

(1)WNMSSM = Yu
ijQiHuU

c
j + Yd

ijQiHdDc
j + Y �

ijLiHdEc
j + λSHuHd + 1

3
κS3,

where Y
u,d,�
ij are the Yukawa coupling constants (i, j, k are family indexes), and Qi , Li , Uc

i , Dc
i , Ec

i , Hu, Hd , S respectively are
the superfields for the quark doublets, lepton doublets, up-type anti-quarks, down-type anti-quarks, anti-leptons, up Higgs, down
Higgs, extra singlet under the standard model gauge group. An effective μ term, given by λ〈s〉HuHd , is generated via the vev of
the scalar component s of the singlet superfield S.

We now take note that in supersymmetric theories there is no deep underlying theoretical principle for the imposition of R-
parity as a symmetry [8]. However, there exist strong constraints on the /Rp couplings coming from various phenomenological
considerations [9,10]. Limits on neutrino masses and mixings have also been translated into tight upper bounds for /Rp couplings
[11].

In the present Letter, we consider a generic NMSSM superpotential containing both the bilinear and trilinear /Rp terms:

(2)W = WNMSSM + μiLiHu + λiSLiHu,

where μi (λi ) are the dimension-one (dimensionless) /Rp parameters. Actually, the contribution of trilinear term λiSLiHu was
studied in Ref. [5]. Admittedly, the most generic NMSSM superpotential also contains the other renormalizable trilinear /Rp inter-
actions, namely, λijkLiLjE

c
k , λ′

ijkLiQjD
c
k and λ′′

ijkU
c
i Dc

jD
c
k , which are not relevant so long as we stick to tree level neutrino mass

matrix.
Normally, in the NMSSM, only trilinear couplings with dimensionless parameters (like λ and κ) are kept in the superpotential,

while dimensional parameters (like μ) are generated from the vev 〈s〉. In this Letter, the /Rp NMSSM superpotential (2) is assumed
to arise in either one of the following three possible scenarios:

(1) All possible renormalizable terms are included in the superpotential. Then both bilinear (μ0HuHd , μiLiHu) and trilinear
(λSHdHu, λiSLiHu) terms are admitted. However, even if one may start with a term μ0HuHd , it can be rotated away by a
redefinition of fields through a rotation on Lα = (Hd,Li) [α = 0, . . . ,3], since Hd and Li have the same gauge quantum numbers.
There is no reason why this redefinition would remove also the λα terms (λα = (λ,λi)), since the corresponding 4 × 4 rotation
matrix depends on the μα parameters (the generic case is considered here, where μα and λα are not proportional). The coefficient
μs of the S2 term is assumed to be zero which can be considered as a possible natural value for a superpotential parameter. It should
be noted that in the standard NMSSM with conserved R-parity there is an accidental Z3 discrete symmetry whose spontaneous
breaking causes the domain wall problem. In our version of the NMSSM, the /Rp bilinear LiHu term explicitly breaks that Z3
symmetry. In this scenario, we simply assume the existence of the dimensionful μi terms, which as we will see later will be
constrained from neutrino data. But we do not advance any theoretical reason as to why μi would be small.

(2) Our second scenario is based on the ’t Hooft criteria of naturality: the parameters μi , μ0 and μs are naturally small if the
symmetry of the theory increases as these parameters are set to zero. For instance, one can assume that somehow a weak breaking
(compared to the electroweak scale QEW) of some symmetry (like e.g. a U(1) symmetry forbidding the bilinear terms) generates the
bilinear terms in the superpotential associated to μi , μ0, μs � QEW. This small breaking would allow to address the μ-problem.
Indeed, the main contribution to the dimension-one coefficient of HuHd here comes from λ〈s〉, as μ0 � μ = λ〈s〉 ∼ QEW. The
weak breaking of the symmetry is also responsible for the smallness of /Rp couplings and neutrino masses, since μi � μ. Thus, in
such a scenario, the treatment of the mu-naturalness (à la NMSSM) and of the neutrino masses (à la /Rp) are nicely connected via
the weak breaking of a common symmetry. Admittedly, we do not provide any specific realization of this weak breaking. We only
hint at such a possibility that the bilinear μi,μ0,μs couplings may arise from powers of some small spurion vev (� QEW).

(3) Finally, we propose a scenario where the trilinear λi terms in superpotential (2) are not present. This scenario relies on the
Z3 symmetry, where the chiral superfields transform by exp(i2πq/3), with the following charge assignments: q = 0 for Uc, Dc,
Ec; q = 1 for S, Hu, Hd ; and q = 2 for Q, L. Such a symmetry allows all couplings in Eqs. (1) and (2) except SLiHu. The other
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terms S2 and HuHd are also eliminated by this symmetry. A spontaneous breaking of this Z3 symmetry admittedly creates the
domain wall problem, as happens in the standard NMSSM with R-parity. In this scenario, the μ term is created from the vev of S,
but the μi terms are present in the superpotential from the beginning only to be constrained by neutrino data.

3. Neutrino mass matrix

Neutralino mass matrix. Within our framework, the neutralino mass terms read as,

(3)Lm
χ̃0 = −1

2
Ψ 0T Mχ̃0Ψ

0 + h.c.

in the basis Ψ 0T ≡ (B̃0, W̃ 0
3 , h̃0

d , h̃0
u, s̃, νi)

T , where h̃0
u,d(s̃) are the fermionic components of the superfields H 0

u,d(S) and νi [i =
1,2,3] denote the neutrinos. In Eq. (3), the neutralino mass matrix is given, in a generic basis (where 〈ν̃i〉 ≡ vi 	= 0, μi 	= 0 and
λi 	= 0), by

(4)Mχ̃0 =
(MNMSSM ξT

/Rp

ξ/Rp 03×3

)
,

where MNMSSM is the neutralino mass matrix corresponding to the NMSSM. While writing the latter mass matrix, we assume
vi � vu,d (the exact expression of MZ being given by v2 = v2

u + v2
d + ∑3

i=1 v2
i = 2c2

θW
M2

Z/g2 
 (246/
√

2 GeV)2). Also, we use s

and c to stand for sine and cosine, respectively.

(5)MNMSSM =

⎛
⎜⎜⎜⎜⎜⎜⎝

M1 0 −MZsθW
cβ MZsθW

sβ 0

0 M2 MZcθW
cβ −MZcθW

sβ 0

−MZsθW
cβ MZcθW

cβ 0 −μ −λvu

MZsθW
sβ −MZcθW

sβ −μ 0 −λvd + ∑3
i=1 λivi

0 0 −λvu −λvd + ∑3
i=1 λivi 2κ〈s〉

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Above, M1 (M2) is the soft supersymmetry breaking mass of the bino (wino), tanβ = vu/vd = 〈h0
u〉/〈h0

d〉, and μ = λ〈s〉. We assume
for simplicity that λ, κ and the soft supersymmetry breaking parameters are all real.

In Eq. (4), ξ/Rp is the /Rp part of the matrix mixing neutrinos and neutralinos:

(6)ξ/Rp =

⎛
⎜⎜⎜⎝

− g′v1√
2

gv1√
2

0 μ1 + λ1〈s〉 λ1vu

− g′v2√
2

gv2√
2

0 μ2 + λ2〈s〉 λ2vu

− g′v3√
2

gv3√
2

0 μ3 + λ3〈s〉 λ3vu

⎞
⎟⎟⎟⎠ ,

g and g′ being the SU(2) and U(1) gauge couplings.
Effective neutrino mass matrix. We restrict ourselves to the situation where vi/vu,d � 1 (as before), |μi/μ| � 1 and |λi/λ| � 1

so that (i) no considerable modifications of the NMSSM scalar potential are induced by the additional bilinear and trilinear term in
superpotential (2), (ii) the neutrino–neutralino mixing is suppressed, leading to sufficiently small neutrino masses as shown later,
and (iii) the effective neutrino mass matrix can be written to a good approximation by the following see-saw type structure,

(7)mν = −ξ/RpM−1
NMSSMξT

/Rp
.

From Eqs. (5)–(7), we deduce the analytical expression of the effective Majorana neutrino mass matrix:

(8)mνij
= 1

|MNMSSM|
[
μiμjF + (μiΛj + μjΛi)G + ΛiΛjH

]
,

where |MNMSSM| is the determinant of matrix (5), Λi = 〈s〉(λi + λ
vi

vd
) and

(9)F = λ2v2
uM1M2 +X , G =X +

(
λvd − cos2 β

3∑
i=1

λivi

)
Y, H =X + 2 cos2 β

(
λvd −

3∑
i=1

λivi

)
Y,

with

X = 2 cos2 βκ〈s〉M2
Z

(
cos2 θWM1 + sin2 θWM2

)
, Y = vu

〈s〉M
2
Z

(
cos2 θWM1 + sin2 θWM2

)
.

One should notice that the neutrino mass matrix (8) arises entirely at the tree level.
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Fig. 1. Tree level Feynman diagrams in the /Rp NMSSM generating Majorana neutrino masses proportional to bibj . The effective /Rp bilinear parameter bi stands for

either μi or λi 〈s〉. The mass-dimensional couplings appearing at the two vertices are of the type m = MZt(θW ) sinβ [t (θW ) = sin θW for B̃0 and t (θW ) = − cos θW

for W̃0
3 ] in (a) and m = −λvd in (b). A cross indicates either a mass insertion or a vev. The arrows show the flow of momentum for the associated propagators.

The emergence of the specific mass matrix structure of Eq. (8) at tree level is the primary result of our analysis. Accordingly
to this particular structure, if the two (effective) quantities μi and Λi (characteristic of the NMSSM) take simultaneously non-
vanishing values, then the mass matrix ceases to be of rank 1, even though the determinant is still zero. In this situation, we get two
non-zero neutrino mass eigenvalues. It is worth comparing the situation with what happens in the MSSM with bilinear /Rp violation.
In the latter case, we get a similar kind of analytic structure of the mass matrix from the simultaneous consideration of the μi as
well as the corresponding soft Bi terms. While the μiμj contributions originate at tree level, the μiBj and BiBj contributions arise
at one-loop order through Grossman–Haber diagrams [12] which proceed through slepton-Higgs and neutrino–neutralino mixings
(for a series of analysis in a three-flavour framework, see [13]). The Grossman–Haber loops would still contribute in our scenario,
but now that we have two tree level masses, those loop-suppressed contributions are not so crucial for generating a viable neutrino
mass spectrum.

Neutrino mass eigenvalues at tree level. The eigenvalues of the effective neutrino mass matrix (8) turn out to be {0,m−
ν ,m+

ν }
with

m±
ν = 1

2|MNMSSM|

[(
3∑

i=1

μ2
i

)
F +

(
3∑

i=1

Λ2
i

)
H+ 2

(
3∑

i=1

μiΛi

)
G

(10)±
{[(

3∑
i=1

μ2
i

)(
3∑

i=1

Λ2
i

)
−

(
3∑

i=1

μiΛi

)2]
I +

[(
3∑

i=1

μ2
i

)
F +

(
3∑

i=1

Λ2
i

)
H+ 2

(
3∑

i=1

μiΛi

)
G
]2}1/2]

,

where F ,G,H are defined in Eq. (9), and I = 4(G2 −FH).
Note that for either all μi = 0 or all Λi = 0, the eigenvalue m−

ν vanishes as expected since in this limit we recover the rank 1
form. An inspection of the form of Eq. (10) reveals that the coefficient of I can be written as

∑
i 	=j (μiΛj −μjΛi)

2, which indicates
that the misalignment between μi and Λi is crucial in creating a non-vanishing m−

ν .
Therefore, the condition for generating two non-vanishing and non-degenerate eigenvalues is to ensure μi 	= 0 and Λi 	= 0

simultaneously. In other words, to achieve two non-zero eigenvalues, μi has to be non-zero always, but we can go to a basis of
Lα fields where vi = 0 (then generally λi 	= 0), or to the other extreme where λi = 0 (but vi 	= 0), or any other basis in between
basically maintaining Λi 	= 0. On the contrary, if μi = 0, only one neutrino eigenstate gets a mass different from zero, as was also
found by the authors of Ref. [5]. But all the scenarios we considered in this Letter, according to the above arguments, will yield
two non-zero neutrino masses at tree level. We mention that within the first scenario, a rotation on the Lα fields has already been
performed, whereas in the third one, no rotation is possible.

In Figs. 1 and 2, we present the Feynman diagrams contributing to the Majorana neutrino mass (8). All these diagrams proceed
through the tree level exchange of the neutralinos (gauginos, higgsinos and singlino). In these figures, we have considered the basis
corresponding to vi = 0 for simplicity.

4. Numerical results

Thus the present model predicts a hierarchical neutrino mass spectrum at tree level. This hierarchical pattern could be modified
by the loop level contributions to neutrino masses. At least, the massless state acquires a mass once the loop contributions are
considered.
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Fig. 2. Tree level Feynman diagrams in the /Rp NMSSM generating Majorana neutrino masses proportional to λiλj v2
u and λivubj . The effective /Rp bilinear

parameter bi , as in Fig. 1, stands for either μi or λi 〈s〉. The mass-dimensional coupling appearing at the right vertex in (b) is of the type m = −λvd .

It is not our aim to give detailed numerical fits in this short Letter. We would just like to numerically demonstrate that our scenario
can reproduce the neutrino data from the tree level neutrino mass matrix, with a choice of NMSSM parameters that corroborate the
μ-naturalness.

As an example, we take the following NMSSM parameters:

(11)λ = 0.4, κ = 0.3, μ = −200 GeV, tanβ = 30, M1 = 350 GeV, M2 = 500 GeV.

These parameters satisfy the general NMSSM constraints described below. These constraints are not expected to be significantly
modified by the presence of /Rp interactions in superpotential (2) as we work under the assumption |μi/μ| � 1 and |λi/λ| � 1.

The μ-naturalness forces one to restrict to 〈s〉 � 10TeV, which translates into the condition |μ|[GeV] × 10−4 � λ. Furthermore,
the absence of Landau singularities, for λ, κ , the top and bottom Yukawa coupling constants below the GUT energy scale, imposes
[4] the typical bounds: λ � 0.75, |κ| � 0.65 and 1.7 � tanβ � 54. Finally, the LEP bound on the lightest chargino mass, namely
mχ̃+

1
> 103.5 GeV [14], translates into |μ| � 100 GeV.

Together with the values in Eq. (11), we take the following /Rp effective couplings,

μ1 = 1 × 10−4 GeV, μ2 = 2 × 10−4 GeV, μ3 = 2 × 10−4 GeV,

(12)Λ1/〈s〉 = 1.9 × 10−5, Λ2/〈s〉 = 1.4 × 10−5, Λ3/〈s〉 = 1.5 × 10−5.

This set of parameters yield the following three neutrino mass eigenvalues at tree level:

(13)mν1 = 0, mν2 = 0.0095 eV, mν3 = 0.058 eV.

These values are in agreement with the three-flavour analyzes including results from solar, atmospheric, reactor and accelerator
oscillation experiments which lead to (4σ level): 6.8 � �m2

21 � 9.3 [10−5 eV2] and 1.1 � �m2
31 � 3.7 [10−3 eV2] [2]. Besides, the

neutrino mass eigenvalues in (13) satisfy the bound extracted from WMAP and 2dFGRS galaxy survey (depending on cosmological
priors):

∑3
i=1 mνi

� 0.7 eV [15]. Finally, these eigenvalues are perfectly compatible with the limits extracted from the tritium
beta decay experiments (95% C.L.): mβ � 2.2 eV [Mainz] and mβ � 2.5 eV [Troitsk] [16], this effective mass being defined as
m2

β = ∑3
i=1 |Uei |2m2

νi
where Uei is the leptonic mixing matrix.

Although we have chosen a particular set of input parameters for illustration, solutions exist over a wide range of parameter
space. More realistic estimates can be obtained by switching on the soft scalar terms Bi�̃ihu + h.c. plus the superpotential terms
λijkLiLjE

c
k and λ′

ijkLiQjD
c
k . All these terms contribute to the neutrino mass matrix at one-loop order. A combined fit of all these

parameters is beyond the scope of this Letter.

5. Conclusion

In the NMSSM, which is a gauge singlet extension of the MSSM addressing the μ-naturalness, two non-vanishing neutrino mass
eigenvalues can arise at tree level when the lepton number violating bilinear terms μiLiHu are present. One can then explain the
neutrino oscillation data without essentially depending on the loop-generated masses which otherwise bring in more uncertainties
from unknown dynamics. This result is in contrast with any other supersymmetric /Rp scenario, as those scenarios do not generate
more than one massive neutrino eigenstate at tree level (except the scenario proposed in [7] where 3 right-handed neutrinos are
added to the field content).
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