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Neutrino mass matrices with vanishing determinant
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We investigate the prospects for neutrinoless double beta decay, texture zeros. and equalities between
neutrino mass matrix elements in scenarios with vanishing determinant mass matrices for vanishing and
finite �13 mixing angles in normal and inverse mass hierarchies. For normal hierarchy and both zero and
finite �13 it is found that neutrinoless double beta decay cannot be observed by any of the present or next
generation experiments, while for inverse hierarchy it is, on the contrary, accessible to experiments.
Regarding texture zeros and equalities between mass matrix elements, we find that in both normal and
inverse hierarchies with �13 � 0 no texture zeros nor any such equalities can exist apart from the obvious
ones. For �13 � 0 some texture zeros become possible. In normal hierarchy two texture zeros occur if
8:1� 10�2 � j sin�13j � 9:1� 10�2 while in inverse hierarchy three are possible, one with j sin�13j �
7� 10�3 and two others with j sin�13j � 0:18. All equalities between mass matrix elements are
impossible with �13 � 0.
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I. INTRODUCTION

It is a well-known fact that the neutrino mass matrix
contains nine parameters while feasible experiments can
hope to determine only seven of them in the foreseeable
future. This situation can however be overcome, with the
number of free parameters being reduced, if physically
motivated assumptions are made to restrict the form of
the matrix. Among the most common such assumptions
and as an incomplete list one may refer to the texture zeros
[1], hybrid textures [2], traceless condition [3–5], and
vanishing determinant [6–8], the latter two assumptions
being basis independent, as shall be seen, and the vanishing
determinant one equivalent to one vanishing neutrino mass.
from Govt. Degree College, Karsog (H P) India

address: chauhan@cftp.ist.utl.pt
address: pulido@cftp.ist.utl.pt
address: Marco.Picariello@le.infn.it

06=73(5)=053003(9)$23.00 053003
In this paper we perform an investigation on vanishing
determinant neutrino mass matrices aimed at neutrinoless
double beta decay (0����), texture zeros and equalities
between mass matrix entries. We will assume that neutri-
nos are Majorana [9], as favored by some experimental
evidence [10], and study the neutrino mass matrix M in the
weak basis where all charge leptons are already diagonal-
ized. This is related to the diagonal mass matrix D through
the unitary transformation

D � UT
MNSMUMNS; (1)

where we use the standard parametrization [11]
UMNS �
c12c13 s12c13 s13e�i�

�s12c23 � c12s23s13e
i� c12c23 � s12s23s13e

i� s23c13

s12s23 � c12c23s13ei� �c12s23 � s12c23s13ei� c23c13

0
B@

1
CA; (2)
where � is a Dirac CP violating phase. Equation (1) is
equivalent to

M � U�diag�m1; m2ei�1 ; m3ei�2�Uy; (3)

where �1, �2 are two extra CP violating Majorana phases
and D � diag�m1; m2ei�1 ; m3ei�2�. Applying determinants
properties

detM � det�U�DUy� � det�U�UyD�

� detU� detUy detD � detD�U real�

� detD�U complex� (4)

because if matrix U is real, U�Uy � UUT � 1, which is
satisfied provided � � 0 or �13 � 0 [see Eq. (2)]. Thus the
determinant is not in general basis independent. In order
that detD � detM it is necessary and sufficient that there is
either no Dirac CP violation or that it is unobservable. The
same arguments hold for the condition TrD � TrM [4].
-1 © 2006 The American Physical Society
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From Eq. (4) we get that detM � 0 if and only if detD �
0, because detUy and detU� are not zero. The vanishing
determinant condition is basis independent, corresponding
to a zero eigenvalue of the mass matrix. So requiring
detM � 0 is equivalent to assuming one of the neutrinos
to be massless. This is realized for instance in the Affleck-
Dine scenario for leptogenesis [12–14] which requires the
lightest neutrino to be practically massless (m ’ 10�10 eV)
[15,16]. We will consider separately the cases of vanishing
and finite �13.1 In the first the Dirac phase is unobservable
and the usual definition UMNS � U23U13U12 [18] simpli-
fies to UMNS � U23U12 with

U23 �

1 0 0
0 �22 �23

0 �32 �33

0
@

1
A; U12 �

�11 �12 0
�21 �22 0
0 0 1

0
@

1
A;
(5)

where the unitarity condition (j�22�33 � �32�23j �
j�11�22 � �12�21j � 1) implies �22�33�32�23 < 0 and
�11�22�12�21 < 0 with �22 � 	 cos�
, �11 � 	 cos��,
the remaining matrix elements being evident. For neutrino
masses and mixings we refer to the following 2� ranges
[17,19]:

�m2
� � m2

2 �m
2
1 � 7:92� 10�5�1	 0:09� eV2; (6)

�m2

 � m2

3 �m
2
2 � 	2:4� 10�3�1	0:21

0:61� eV2; (7)

sin 2�� � 0:314�1	0:18
0:15�; (8)

sin 2�
 � 0:44�1	0:41
0:22�; (9)

obtained from a 3-flavor analysis of all solar and atmos-
pheric data. This favors the widely used form of the UMNS

matrix [20] (all entries taken in their moduli)

UMNS �

��
2
3

q
1��
3
p 0

1��
6
p 1��

3
p 1��

2
p

1��
6
p 1��

3
p 1��

2
p

0
BBB@

1
CCCA: (10)
1The 2� range recently obtained for this quantity is [17]
sin2�13 � 0:9	2:3

0:9 �10�2, the lower uncertainty being purely
formal, corresponding to the positivity constraint sin2�13 � 0.
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For finite �13 we will work in the approximation [17]

U13 �

�11 0 �13

0 1 0
�31 0 �33

0
@

1
A ’ 1 0 �13

0 1 0
�31 0 1

0
@

1
A; (11)

with �13 � Ue3 � s13e
i� � ���31. This leads to

UMNS�

�11 �12 �13

�23�31�11��22�21 �23�31�12��22�22 �23

�33�31�11��32�21 �33�31�12��32�22 �33

0
@

1
A

(12)

which generalizes Eq. (10) for small s13.
The paper is organized as follows: in Sec. II we derive all

possible forms of the mass matrix M in this scenario for
both normal and inverse hierarchies and investigate their
consequences for 0���� decay. Since one of the neutrinos
is massless, there is only one Majorana phase to be con-
sidered. In Sec. III we investigate the prospects for texture
zeros and equalities between matrix elements in both hier-
archies. In Secs. II and III only �13 � 0 is considered. In
Sec. IV the previous analysis is extended to �13 � 0, and in
Sec. V we briefly expound our main conclusions.
II. MASS MATRICES WITH VANISHING �13:��0��
DECAY

A. Normal hierarchy (NH)

This is the case where the two mass eigenstates involved
in the solar oscillations are assumed to be the lightest so
that �m2


 � �m2
32 > 0. We will consider this case as a

departure from the degenerate one with �m2
� � �m2

21 � 0
and break the degeneracy with a real parameter 	. MatrixD
with m and 	 both real is therefore

D � diag�0; 3	ei�;m�; (13)

where� is the Majorana relative phase between the second
and third diagonal matrix elements (� � �1 ��2 in the
notation of Sec. II) and �m2

� � 9	2. Using Eqs. (5) the
matrix M is
M � U23U12DUT
12U

T
23 �

3	ei��2
12 3	ei��22�12�22 3	ei��32�12�22

3	ei��22�12�22 3	ei��2
22�

2
22 �m�

2
23 3	ei��22�32�

2
22 �m�23�33

3	ei��32�12�22 3	ei��22�32�2
22 �m�23�33 3	ei��2

32�
2
22 �m�

2
33

0
B@

1
CA: (14)
Owing to the sign ambiguities of parameters � and �, four
possibilities for matrix M arise. Suppose entries 12 and 13
in this matrix have (� ) (� ) signs. Then �22,�32 have the
same sign as �12�22, that is �22�32 in the (23) entry is (�
), implying the opposite sign for the coefficient of m
(�23�33). So Eq. (12) has the form

M �
	ei� 	ei� 	ei�

	ei� �m=2� � 	ei� ��m=2� � 	ei�

	ei� ��m=2� � 	ei� �m=2� � 	ei�

0
B@

1
CA:

(15)

Suppose entries 12 and 13 in the matrix have (� ) (� )
signs. Then �22, �32 have opposite sign to �12�22, that is
they have the same sign, so �22�32 is (� ) and �23�33 is
-2
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(� ) so

M �
	ei� �	ei� �	ei�

�	ei� �m=2� � 	ei� ��m=2� � 	ei�

�	ei� ��m=2� � 	ei� �m=2� � 	ei�

0
B@

1
CA:
(16)

Suppose entries 12 and 13 in the matrix have (� ) (� )
signs. Then �22, �32 have opposite signs to each other, so
�22�32 is (� ) and �23�33 is (� ). Hence

M �
	ei� 	ei� �	ei�

	ei� �m=2� � 	ei� �m=2� � 	ei�

�	ei� �m=2� � 	ei� �m=2� � 	ei�

0
B@

1
CA: (17)

Suppose entries 12 and 13 in the matrix have (� ) (� )
signs. Then �22, �32 have opposite signs to each other, so
�22�32 is (� ) and �23�33 is (� ). Hence the matrix is

M �
	ei� �	ei� 	ei�

�	ei� �m=2� � 	ei� �m=2� � 	ei�

	ei� �m=2� � 	ei� �m=2� � 	ei�

0
B@

1
CA: (18)

All matrices (15)–(18) have a vanishing determinant as can
be verified easily. For 0���� decay

hmeei � jU2
e1m1 �U2

e2m2ei�1 �U2
e3m3ei�2 j: (19)

Hence, for m1 � 0 and Ue3 � �13 � s13ei� � 0

hmeei � jU2
e2m2ei�1 j �

1

3
3	 �

1

3

�����������
�m2

�

q
’ 3� 10�3 eV;

(20)

where we used 	 � 1
3

�����������
�m2

�

p
. So the Majorana phase is not

an observable.
There is no commonly accepted evidence in favor of

0���� decay but there exist reliable upper limits on hmeei:

hmeei � �0:3� 1:2� eV; hmeei � �0:2� 1:1� eV

(21)

(the upper limits on hmeei above are taken from
Refs. [10,21], respectively), where the uncertainties follow
from the uncertainties in the nuclear matrix elements. The
future CUORE experiment [22], of which CUORICINO is
a test version [21], is expected to improve this upper bound
to 3� 10�2 eV. Other experiments are also proposed
(MAJORANA [23], GENIUS [24], GEM [25] and others)
in which the sensitivity of a few 10�2 eV is planned to be
reached.
053003
Conclusion.—Vanishing determinant with vanishing �13

and NH implies that 0���� decay cannot be detected even
in the next generation of experiments.

B. Inverse hierarchy (IH)

We start with matrix D in the form D � diagfm; �m�

	�ei�; 0g where m, 	 are complex, jmj ’
�����������
�m2




p
, j	j ’�����������

�m2
�

p
and chosen in such a way that m� 	 � ~m is real

(	 � 0 corresponds to the degenerate case). Alternatively
D � diagf ~m� 	; ~mei�; 0g with, of course, ~m� 	 com-
plex. Multiplying the whole matrix by the inverse phase
of ~m� 	, it can be redefined as

D � diagf ~m� 
; ~mei��� �; 0g; (22)

with 
 real and defined by � ~m� 	�e�i � ~m� 
 (notice

that ~m� 	 � j ~m� 	jei and ~m �
�����������
�m2




p
). There are two

solutions for 
. In fact, imposing the solar mass square
difference

�m2
� � jd22j

2 � jd11j
2 � ~m2 � ~m2 � 2
 ~m� 
2; (23)

and solving the quadratic equation 
2 � 2
 ~m� �m2
� � 0

one gets


 � ~m	
�����������������������
~m2 � �m2

�

q
� 
	: (24)

Notice that 
� is large and 
� is small. To first order in
�m2

�

~m2 �
�m2

�

�m2


’ 0:30 one has


� � ~m
�

2�
1

2

�m2
�

�m2



�
’ 1:85 ~m; (25)


� �
~m
2

�m2
�

�m2



’
~m

60
: (26)

It is straightforward to see that D�
�; �� �� �
�D�
�; �� and the same property holds for matrix M,
namely, M�
�; �� �� � �M�
�; �� because UMNS is
invariant under the transformations 
� ! 
� and �!
�� �. So the two solutions for 
 are equivalent: one
may take either


�;  � 0 (27)

or


�;  � �: (28)

Using M � U23U12DU
T
12U

T
23 with Eqs. (5) and (22), the

matrix M now has the form
M �
~m�1� t

3� �
2
3
 �sign�13� ~mt� 
� �sign�13� ~mt� 
�

�sign�13� ~mt� 
� ~m�12�
t
3� �



6 �sign�
 ~m�12�

t
3� �



6�

�sign�13� ~mt� 
� �sign�
 ~m�12�
t
3� �



6� ~m�12�

t
3� �



6

0
B@

1
CA: (29)

which also verifies detM � 0 as expected. Equation (29) is formally the same for 
 � 
� and 
 � 
� with the definition
t � 1� ei� for 
 � 
� and t � 1� ei� for 
 � 
�, the sign affecting the exponential being related to the  phase. The
-3
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FIG. 1. ��0�� decay effective mass parameter hmeei as a
function of the Majorana phase � showing its accessibility for
forthcoming experiments.
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structure of (� ) and (� ) in Eq. (29) is the same as before
[(15)–(18)]: equal signs in entries M12, M13 correspond to
(� ) in both entries M23, M32 while different signs in M12,
M13 correspond to (� ) in both entries M23, M32.
Equation (29) is the equivalent for IH of (15)–(18) for NH.

For ��0�� decay we have

hmeei � jU2
e1m1 �U2

e2m2ei�1 �U2
e3m3ei�2 j

� j23� ~m� 
	� 	
1
3 ~mei���j: (30)

The quantity mee is displayed in Fig. 1 as a function of the
phase difference �. The shaded areas correspond to the 1�
uncertainties in the solar angle ��. It is seen from Eq. (30)
and Fig. 1 that for inverse hierarchy (vanishing �13 and
mass matrix determinant) ��0�� decay is phase dependent
and within observational limits of forthcoming experi-
ments. Consequently, our conclusion follows:

Conclusion.—Models with vanishing determinant mass
matrix and vanishing �13 provide, in inverse hierarchy, a
Majorana phase dependent ��0�� decay which is physi-
cally observable for most values of the phase in the next
generation of experiments.
III. TEXTURE ZEROS AND EQUALITIES
BETWEEN M MATRIX ELEMENTS (�13 � 0)

A. Texture zeros

Here we analyze the possibility of vanishing entries in
the mass matrix M. Taking first NH and recalling
Eqs. (15)–(18), it is seen that this implies either m=2 �
		ei� or 	 � 0—both situations being impossible. For IH
three cases need to be considered:

(a) M11 � 0. We have in this case ~m�1� t
3� �

2
3
 � 0

implying

~m�3� t� � 2
: (31)
053003
Replacing t! 1� ei� and 
! 
� this leads to

ei� � 2

��������������������
1�

�m2
�

�m2



s
; (32)

which is experimentally excluded.
(b) M12 � 0. This gives ~mt� 
 � 0, hence using the

same replacement

ei� � �

��������������������
1�

�m2
�

�m2



s
; (33)

which is also impossible since �m2
� � 0 is strictly ex-

cluded experimentally.
(c) M22 � 0. This gives ~m�12�

t
3� �



6 � 0, hence using

the same replacement

ei� �
1

2

��������������������
1�

�m2
�

�m2



s
; (34)

which is also experimentally excluded. In the former
cases (a), (b), (c) the same results are of course obtained
with the replacement t! 1� ei� and 
! 
�, as can be
verified easily. So zero mass textures are not possible in the
present scenario.

The same conclusion can be obtained using the results
from the literature. In fact the analytical study of various
structures of the neutrino mass matrix was presented sys-
tematically by Frigerio and Smirnov [26] who also dis-
cussed the case of equalities of matrix elements. Here we
use a result from [27] where specific relations among the
mixing angles were derived for one texture zero and one
vanishing eigenvalue. We refer to Table I of [27] and first to
NH. Using their definition of parameter � � j m2

m3
j we have

in our model � � 
�m
2
�

�m2


�1=2 � 0:182 and so for cases A, B,

C, D, E, F, respectively, in their notation

� � 0; � � 0; � � 0; � � 1:50;

� � 1:50; � � 1:50:
(35)

For inverse hierarchy, defining 
 � m1

m2
� j ~m�
	j��������

�m2



p �


1� �m2
�

�m2


�1=2 � 0:983 we have for cases A, B, C, D, E, F,

respectively,


 � 0:50; 
 � 1; 
 � 1; 
 � 2:0;


 � 2:0; 
 � 2:0:
(36)

Notice that 0:953<
< 0:988 (using 1� upper and lower
values for the solar and atmospheric mass square differ-
ences). So one can draw the following:

Conclusion.—Both NH and IH cannot work with
detD � detM � 0, vanishing �13,and one texture zero. In
other words, vanishing determinant scenarios with �13 � 0
are experimentally excluded, unless they have no texture
zeros.
-4
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B. Equalities between matrix elements

First we consider the case of NH. Equations (15)–(18) can be written in the general form

M �
	ei� sign�	ei�� sign�	ei��

sign�	ei�� �m=2� � 	ei� sign
��m=2� � 	ei��
sign�	ei�� sign
��m=2� � 	ei�� �m=2� � 	ei�

0
B@

1
CA; (37)
and using the same sign conventions as in Eqs. (15)–(18), it
is seen that jM11j � jM12j � jM13j and M22 � M33. The
first three equalities provide either 	 � 0, which is ex-
cluded by data, or identities. Hence the relations to be
investigated are M11 � M22, M11 � M23, M22 � M23.

Equation M11 � M22 implies m � 0 which is
impossible.

Equation M11 � M23 yields either

�a� 	ei� � ��m=2� � 	ei�; (38)

leading to m � 0, or

�b� 	ei� � ��m=2� � 	ei�; (39)

leading to 4
3 � 
1�

�m2



�m2
�
�1=2, which is also experimentally

excluded.
Equation M22 � M23 yields either

�a� ��m=2� � 	ei� � ��m=2� � 	ei�; (40)

leading to m � 0, or

�b� ��m=2� � 	ei� � ��m=2� � 	ei�; (41)

leading to 	 � 0, both experimentally excluded.
Next we consider IH. We use Eq. (29) and note that the

matrix is symmetric, so there are at first sight six indepen-
dent entries. However M22 � M33, jM12j � jM13j,
jM22j � jM23j. So apart from the obvious ones, there are
three equalities to be investigated: M11 � M12, M11 �
M23, M12 � M23.

Equality M11 � M12 yields two cases

�a� ~m�1� t
3� �

2
3
 �

1
3� ~mt� 
�; (42)

which upon using 
 � 
	 for t � 1� ei� gives

~m� 
	 � �2 ~mei�; (43)

which is impossible to satisfy, as seen from Eq. (22), and

�b� ~m�1� t
3� �

2
3
 � �

1
3� ~mt� 
�; (44)

leading to

~m � 
; (45)

also impossible; see Eq. (24).
EqualityM11 � M23. The two cases to be considered are

�a� ~m
�
1�

t
3

�
�

2

3

 � ~m

�
1

2
�
t
3

�
�


6
; (46)
053003
from which

~m � 
; (47)

which cannot be satisfied [Eq. (24)] and

�b� ~m
�
1�

t
3

�
�

2

3

 � � ~m

�
1

2
�
t
3

�
�


6
; (48)

which upon using 
 � 
	 for t � 1� ei� gives

~m� 
	 � �
4
5 ~mei�; (49)

or equivalently

5

��������������������
1�

�m2
�

�m2



s
� 4ei�; (50)

which cannot be satisfied even if � � 0. (Maximizing
�m2

� and minimizing �m2

 (1�) the above square root

verifies 0:953< 
1� �m2
�

�m2


�1=2 < 0:988).

Equality M12 � M23. The two cases are now

�a�
1

3
� ~mt� 
� � ~m

�
1

2
�
t
3

�
�


6
; (51)

which gives ~m� 
	 � 	4 ~mei� or 	
1� �m2
�

�m2


�1=2 �

	4ei�, again impossible, and

�b�
1

3
� ~mt� 
� � � ~m

�
1

2
�
t
3

�
�


6
; (52)

or ~m � 
, also impossible. All these impossibilities mean
experimentally excluded.

Moreover, it is seen from Eq. (29) that if M12 and M13

have opposite signs, requiring their equality implies they
both vanish, leading to two texture zeros which is ex-
cluded. The same is true for M22 and M23. Recall that
one texture zero with vanishing determinant cannot work
with �13 � 0 (see Sec. III A). Hence our conclusion:

Conclusion.—Equalities between mass matrix elements
with �13 � 0 apart from the obvious ones are experimen-
tally excluded.

IV. MASS MATRICES WITH �13 � 0

Regarding ��0�� decay, it can be seen easily [Eq. (19)]
that the conclusions derived in Sec. II for �13 � 0 remain
unchanged here both for normal and inverse hierarchies.

The form of matrix U can now be derived from Eqs. (5)
and (11). We have
-5
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FIG. 2 (color online). Texture zeros in NH: Dirac phase (left
panel) and Majorana phase (right panel) vs s13 for solutions to
M12 � 0 and M13 � 0. Black and gray areas represent the two
different sets of parameters that satisfy both textures.
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U � U23U13U12 � UT
12U

T
13U

T
23: (53)

For normal and inverse hierarchies, using the notation of
Secs. I and II, we have for the mass matrix M and recalling
that M is symmetric, we have normal hierarchy:

M11 � 3	�2
12e

i� �m�2
13;

M12 � 3	��23�31�2
12 � �22�22�12�ei� �m�23�13;

M13 � 3	��33
31�2
12 � �32�22�12�ei� �m�33�13;

M22 � 3	��23�31�12 � �22�22�ei� �m�2
23;

M23 � 3	��23�31�12 � �22�22���33�31�12

� �32�22�e
i� �m�23�33;

M33 � 3	��33�31�12 � �32�22�e
i� �m�2

33:

(54)

and inverse hierarchy:

M11 � � ~m� 
��
2
11 � ~mei��� ��2

12;

M12 � � ~m� 
��11��23�31�11 � �22�21�

� ~mei��� ��12��23�31�12 � �22�22�;

M13 � � ~m� 
��11��33�31�11 � �32�21�

� ~mei��� ��12��33�31�12 � �32�22�;

M22 � � ~m� 
���23�31�11 � �22�21�
2

� ~mei��� ���23�31�12 � �22�22�
2;

M23 � � ~m� 
���23�31�11 � �22�21���23�31�11

� �22�21� � ~mei��� ���23�31�12 � �22�22�

� ��33�31�12 � �32�22�;

M33 � � ~m� 
���33�31�11 � �32�21�
2

� ~mei��� ���33�31�12 � �32�22�
2:

(55)

Starting with the analysis of texture zeros, we use
Eqs. (54) and require js13j � 0:16 (90% CL) or js13j �
0:22 (99.73% C.L.). The NH case is sufficiently simple to
be solved analytically. We investigate in turn each of the
six independent equations of the form Mij � 0 for NH.

(a) M11 � 0. From the first of Eqs. (54), inserting �13 �
s13ei�, �2

12 � 1=3 [see Eqs. (10)–(12)] leads to

s2
13me

2i� � 	ei� � 0; (56)

from which

� � ��	 ��=2; s13 � 	
	
m
: (57)

The last relation gives js13j � 0:25. The 3� upper bound
on js13j is 0.22, so M11 � 0 is strongly disfavored.

(b) M12 � 0. Here, as in the following four cases, sign
ambiguities must be taken into account. One gets

		ei� � 	�23s13m
�
	ei� 	

	
m
e�i�����

�
; (58)
053003
where the signs are uncorrelated and a condition for s13

follows:

s13 �
	

�23m

�
1	O

�
	
m

��
: (59)

(c) M13 � 0. In the same way one gets an equation like
(58) with the replacement �23 ! �33 and

s13 �
	

�33m

�
1	O

�
	
m

��
: (60)

Hence both M12 � 0 and M13 � 0 are allowed with js13j
oscillating around the average j 	

�23m
j � j 	

�33m
j ’ 0:086

and in the interval 8:1� 10�2 � js13j � 9:1� 10�2. The
solution in terms of the parameter spaces �s13; �� and
�s13; �� is shown in Fig. 2. Notice that since 	

m ’

6� 10�2, it follows from Eqs. (59) and (60) that s13

depends quite weakly on the phases �, � as can be seen
in Fig. 2.

(d) M22 � 0. This case leads to

m
2
� 	

�
	1	

�31���
2
p

�
2
ei� � 0; (61)

which is clearly impossible to satisfy.
(e), (f) M23 � 0, M33 � 0. Comparison of these two

matrix elements with M22, as seen from Eqs. (54), leads
to the immediate conclusion that these conditions also
cannot be satisfied. Hence, our conclusion:

Conclusion.—Two texture zeros are possible for �13 �

0 in NH case, namely, M12 � 0 and M13 � 0 with 8:1�
10�2 � js13j � 9:1� 10�2.

We now turn to texture zeros in IH. In contrast with NH,
they cannot be studied analytically in a straightforward
way with the exception of M11 � 0. We have in this case
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~mei� � 2
����������������������������
�m2


 � �m2
�

q
; (62)

which is clearly impossible to satisfy (recall that ~m ������������
�m2




p
). All other five cases were investigated numerically.

We found three possible texture zeros: M12 � 0, M22 � 0,
M33 � 0. They are displayed in Fig. 3 in the parameter
spaces �s13; �� and �s13; ��. Owing to the structure of these
three matrix elements, it is seen readily that two possible
solutions exist for each texture. They correspond to the
black and gray areas of Fig. 3. M12 � 0 implies js13j �
7� 10�3 whereas M22 � 0, M33 � 0 are excluded up to
2� as js13j � 0:18. It is seen that no solution exists for
�13 � 0 as derived in Sec. III.

Conclusion.—Three texture zeros are possible for �13 �

0 in an IH case, namely, M12 � 0, M22 � 0, M33 � 0. The
first implies js13j � 7� 10�3 and the second and third
imply js13j � 0:18.

As far as equalities between matrix elements of M are
concerned and since only six of these elements are inde-
pendent, one is lead to 15 possible equalities for each
hierarchy. Again, we require js13j � 0:16 (90% C.L.) or
js13j � 0:22 (99.73% C.L.) and organize the analysis con-
sidering the pairs withM11,M12,M13,M22,M23 as follows:

M11 M12 M12 M13 M13 M22 M22 M23 M23 M33

M13 M22 M23 M33

M22 M23 M33

M23 M33

M33

:

So taking first M11 � M12 [see Eq. (54)] and using �22,
�23, �12, �22, �13, as in Eqs. (5), (10), and (11) we have
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FIG. 3 (color online). The same as Fig. 2 for the three possible t
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s13e2i�m �
1���
2
p ei��		ei���2�� 	m�; (63)

or alternatively,

	ei� � s2
13e

2i�m � �	ei� 	
1���
2
p s13e�i�	ei� 	 s13ei�m;

(64)

where we eliminated the solution s13 � 0 to obtain the first
of these. Equating moduli in (63)

s13m �
m
2

�
1	

	
m

cos��� 2�� � O
�
	2

m2

��
; (65)

which is clearly impossible to satisfy, owing to the experi-
mental constraints on s13, m, and 	, as seen above.
Equation (64) is also impossible to satisfy as can be
checked numerically. Hence we conclude that M11 �
M12 can be verified only for s13 � 0 and with an overall
positive sign in front in the term 3	�22�22�12e

i� in M12.
In this case we recover the form of M11 and M12 as in
Eqs. (15) and (17). The same arguments can be used to
prove that M11 � M13 is also impossible unless s13 � 0,
since M13 is identical to M12 except for the replacement
�23; �22 ! �33; �32 [see Eq. (54)]. It is also apparent that
M11 � M22, M11 � M23, and M11 � M33 cannot be satis-

fied because whereas the coefficients of 	�� 1
3

�����������
�m2

�

p
� are

of the same order in all four matrix entries, those of m�������������
�m2




p
� in M11 differ by at least 1 order of magnitude from

the corresponding ones in M22, M23, M33. (A similar argu-
ment would hold for the above comparison between M11,
M12). Considering next M12, the comparison between M12
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exture zeros in IH. As for NH no solution exists with �13 � 0.

-7
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and M13 (54) shows that although �23 and �33 may be
equal, orthogonality of the matrix U23 implies the relative
signs of the terms of 	ei� coefficients to be different in the
two entries. So one cannot have M12 � M13 unless s13 �
0.

Use of the above arguments shows that none of the
remaining eight equalities between mass matrix elements
can be satisfied for finite �13, a result that can as well be
numerically checked.

We finally refer to the equalities in IH. As before,
examining first the five possible cases involving M11 [see

Eq. (55)], and since the magnitudes of �11��
��
2
3

q
�, �12����

1
3

q
� are quite different from all combinations of�0s and�0s

that multiply ~m� 
 and ~mei��� �, it follows that all five
such equalities are impossible to satisfy. Furthermore, as
for NH, the orthogonality of the matrix U23 prevents all
remaining 10 equalities involving M12, M13, M22, M23,
M33 unless s13 � 0 in some cases. We are thus lead to
the following:

Conclusion.—For both NH and IH there are no possible
equalities between matrix elements with �13 � 0. If �13 �
0 some equalities become possible which are the obvious
ones encountered before.

V. SUMMARY

We have investigated the prospects for neutrino mass
matrices with vanishing determinant for vanishing and
finite �13. The vanishing determinant condition alone is
expressed by two real conditions, so the original nine
independent parameters in these matrices are reduced to
seven. Hence the undesirable situation of existing and
planned experiments not being able to determine all these
nine quantities is in this case overcome. Furthermore, as
shown in the introduction, the vanishing of �13 implies that
the CP violating Dirac phase is unobservable and the mass
053003
matrix can be diagonalized by a real and orthogonal ma-
trix. In such case the mass matrix determinant is basis
independent, detM � detD, while the vanishing determi-
nant condition is always basis independent. So detM � 0 is
always equivalent to the lightest neutrino being massless.
On the other hand, if �13 � 0 one has in general detM �

detD, while the vanishing determinant condition remains
basis independent.

We considered both the normal and inverse mass hier-
archies. Summarizing our main conclusions for vanishing
determinant mass matrices gives the following:

(i) �13 � 0.—In the case of normal hierarchy there can
be no observable ��0�� decay. For inverse hierarchy
��0�� decay depends on the Majorana phase and can be
observed in the next generation of experiments for all or
most of the possible phase range. Texture zeros and equal-
ities between mass matrix elements besides the obvious
ones are incompatible with experimental evidence.

(ii) �13 � 0.—��0�� decay satisfies the same proper-
ties as for �13 � 0 in both normal and inverse hierarchies
whereas texture zeros become possible in this case. In NH
for �13 � 0, one may have M12 � 0 and M13 � 0 if 8:1�
10�2 � js13j � 9:1� 10�2 (Fig. 2) and in IH M12 � 0 if
js13j � 7� 10�3 (Fig. 3). Also in IH M22 � 0, M33 � 0
are possible but with rather large s13, namely, js13j � 0:18
which is excluded at 2� (Fig. 3). All equalities between
mass matrix elements both in NH and IH are those which
reduce to the obvious ones in the limit �13 � 0: there are
no such equalities if �13 � 0.
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