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Abstract

A broad overview of the current status of proton stability in unified models of particle interactions is given which includes
non-supersymmetric unification, SUSY and SUGRA unified models, unification based on extra dimensions, and string-M-theory
models. The extra dimensional unification includes 5D and 6D and universal extra dimensional (UED) models, and models based
on warped geometry. Proton stability in a wide array of string theory and M theory models is reviewed. These include Calabi–Yau
models, grand unified models with Kac–Moody levels k > 1, a new class of heterotic string models, models based on intersecting D
branes, and string landscape models. The destabilizing effect of quantum gravity on the proton is discussed. The possibility of testing
grand unified models, models based on extra dimensions and string-M-theory models via their distinctive modes is investigated. The
proposed next generation proton decay experiments, HyperK, UNO, MEMPHYS, ICARUS, LANNDD (DUSEL), and LENA would
shed significant light on the nature of unification complementary to the physics at the LHC. Mathematical tools for the computation
of proton lifetime are given in the appendices. Prospects for the future are discussed.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Standard Model of strong, and the electro-weak interactions, given by the gauge group SU(3)C×SU(2)L×U(1)Y ,
is a highly successful model of particle interactions [1,2] which has been tested with great accuracy by the LEP, SLC
and Tevatron data. The electro-weak sector of this theory [1], i.e., the SU(2)L × U(1)Y sector, provides a fundamental
explanation of the Fermi constant and the scale

G
−1/2
F � 292.8 GeV (1)
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has its origin in the spontaneous breaking of the SU(2)L × U(1)Y gauge group and can be understood as arising from

the vacuum expectation value (v) of the Higgs boson field (H 0) so that G
− 1

2
F = 21/4v. Thus the scale GF is associate

with new physics, i.e., the unification of the electro-weak interactions. There are at least two more scales which are
associated with new physics. First, from the high precision LEP data, one finds that the gauge coupling constants

g3, g2, g1(=
√

5
3gY ), where g3, g2, gY are the gauge coupling constants for the gauge groups SU(3)C , SU(2)L, U(1)Y ,

appear to unify within the minimal supersymmetric standard model at a scale MG so that

MG � 2 × 1016 GeV. (2)

This scale which is presented here as empirical must also be associated with new physics. A candidate theory here is
grand unification. Finally, one has the Planck scale defined by

MPl = (8�GN)−1/2 � 2.4 × 1018 GeV, (3)

where one expects physics to be described by quantum gravity, of which string-M-theory are possible candidates. Quite
remarkable is the fact that the scale MG where the gauge coupling unification occurs is smaller than the Planck scale by
about two orders of magnitude. This fact has important implications in that one can build a field theoretic description of
unification of particle interactions without necessarily having a full solution to the problem of quantum gravity which
operates at the scale MPl. Since grand unified theories and models based on strings typically put quarks and leptons
in common multiplets their unification in general leads to proton decay, and thus proton stability becomes one of the
crucial tests of such models. Recent experiments have made such limits very stringent, and one expects that the next
generation of experiments will improve the lower limits by a factor of ten or more. Such an improvement may lead to
confirmation of proton decay which would then provide us with an important window to the nature of the underlying
unified structure of matter. Even if no proton decay signal is seen, we will have much stronger lower limits than what the
current experiment gives, which would constrain the unified models even more stringently. This report is timely since
many new developments have occurred since the early eighties. On the theoretical side there have been developments
such as supersymmetry and supergravity grand unification, and model building in string, in D branes, and in extra
dimensional framework. On the experimental side Super-Kamiokande has put the most stringent lower limits thus far
on the proton decay partial life times. Further, we stand at the point where new proton decay experiments are being
planned. Thus it appears appropriate at this time to present a broad view of the current status of unification with proton
stability as its focus. This is precisely the purpose of this report.

We give now a brief description of the content of the report. In Section 2 we review the current status of proton decay
lower limits from recent experiments. The most stringent limits come from the Super-Kamiokande experiment. We
also describe briefly the proposed future experiments. These new generation of experiments are expected to increase
the lower limits roughly by a factor of ten. In Section 3 we discuss proton stability in non-supersymmetric scenarios.
In Section 3.1 we estimate the proton lifetime where the B-violating effective operators are induced by instantons. In
Section 3.2 we discuss the baryon and lepton number violating dimension six operators induced by gauge interactions
which are SU(3)C × SU(2)L × U(1)Y invariant. Proton decay modes from these B–L preserving interactions are
also discussed. In Section 3.3, we discuss the general set of dimension six operators induced by scalar lepto-quarks
consistent with SU(3)C × SU(2)L × U(1)Y interactions.

In Section 4 nucleon decay in supersymmetric gauge theories is discussed. In Section 4.1 the constraint on R-parity
violating interactions to suppress rapid proton decay from baryon and lepton number violating dimension four operators
is analyzed. However, in general proton decay from baryon and lepton number violating dimension five operators will
occur and in this case it is the most dominant contribution to proton decay in most of the supersymmetric grand
unified theories. The analysis of proton decay dimension five operators requires that one convert the baryon and lepton
number violating dimension five operators by chargino, gluino and neutralino exchanges to convert them to baryon
and lepton number violating dimension six operators. The dressing loop diagrams depend sensitively on soft breaking.
Thus in Section 4.2 a brief review of supersymmetry breaking is given. As is well known, the soft breaking sector of
supersymmetric theories depends on CP phases and thus the dressing loop diagrams and proton decay can be affected
by the presence of such phases. A discussion of this phenomenon is given in Section 4.3. Typically in grand unified
theories the Higgs iso-doublets with quantum numbers of the MSSM Higgs fields and the Higgs color-triplets are
unified in a single representation. Since we need a pair of light Higgs iso-doublets to break the electro-weak symmetry,
while we need the Higgs triplets to be heavy to avoid too fast a proton decay, a doublet–triplet splitting is essential
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for any viable unified model. Section 4.4 is devoted to this important topic. The remainder of Section 4 is devoted to
a discussion of proton decay in specific models. A discussion of proton decay in SU(5) grand unification is given in
Section 4.5, while a discussion of proton decay in SO(10) models is given in Section 4.6. In Section 4.7 a new SO(10)

framework is given where a single constrained vector-spinor—a 144-multiplet is used to break SO(10) down to the
residual gauge group symmetry SU(3)C × U(1)em.

Section 5 is devoted to tests of grand unification through proton decay and a number of items that impinge on it are
discussed. One of these concerns the implication of Yukawa textures on the proton lifetime. It is generally believed
that the fermion mass hierarchy may be more easily understood in terms of Yukawa textures at a high scale and there
are many proposals for the nature of such textures. It turns out that the Higgs triplet textures are not the same as the
Higgs doublet textures, and a unified framework allows for the calculation of such textures. This topic is discussed in
Section 5.1. Supergravity grand unification involves three arbitrary functions: the superpotential, the Kahler potential,
and the gauge kinetic energy function. Non-universalities in gauge kinetic energy function can affect both the gauge
coupling unification and proton lifetime. This topic is discussed in Section 5.2. In grand unified models, the gauge
coupling unification receives threshold corrections from the low mass (sparticle) spectrum as well from the high scale
(GUT) masses. Consequently the GUT scale masses, and specifically the Higgs triplet mass, are constrained by the high
precision LEP data. These constraints are discussed in Section 5.3. Model independent tests of distinguishing GUT
models using meson and anti-neutrino final state are discussed in Section 5.4 where three different models, SU(5),
flipped SU(5) and SO(10) are considered. In Section 5.5 the important issue of the constraints necessary to rotate
away or eliminate the baryon and lepton number violating dimension six operators induced by gauge interactions is
discussed. It is shown that it is possible to satisfy such constraints for the flipped SU(5) case. Finally, an analysis of the
upper limits on the proton lifetime on baryon and lepton number violating dimension six operators induced by gauge
interactions is given in Section 5.6.

Section 6 is devoted to grand unified models in extra dimensions and the status of proton stability in such models. In
Section 6.1 a discussion of proton stability in grand unified models in dimension five (i.e., with one extra dimension)
is given and various possibilities where the matter could reside either on the branes or in the bulk are discussed. In
these models it is possible to get a natural doublet–triplet splitting in the Higgs sector with no Higgs triplets and
anti-triples with zero modes. A review of SO(10) models in 5D is given in Section 6.2 while 5D trinification models
are discussed in Section 6.3. 6D grand unification models in dimension six, i.e., on R × T 2, are discussed in Section
6.4. Various grand unification possibilities on the branes, i.e., SO(10), SU(5) × U(1), flipped SU(5) × U(1), and
SU(4)C × SU(2)L × SU(2)R exist in this case. Another class of models which are closely related to the models above
are those with gauge–Higgs unification. Here the Higgs fields arise as part of the gauge multiplet and hence gauge
and Higgs couplings are unified. Various possibilities for the suppression of proton decay exist in these models since
proton decay is sensitive to how matter is located in extra dimensions. In Section 6.6 a discussion of proton decay in
models with universal extra dimensions (UED) is given. In these models extra symmetries arise which can be used
to control proton decay. In Section 6.7 proton stability in models with warped geometry is discussed. Such models
lead to a solution to the hierarchy problem via a warp factor which depends on the extra dimension. Proton decay can
be suppressed through a symmetry which conserves baryon number. Finally, in Section 6.8 proton stability in kink
backgrounds is discussed.

In Section 7 we discuss proton stability in string and brane models. There are currently five different types of string
theories: Type I, Type IIA, Type IIB, SO(32) heterotic and E8 × E8 heterotic. These are all connected by a web of
dualities and conjectured to be subsumed in a more fundamental M-theory. Realistic and semi-realistic model building
has been carried out in many of them and most extensive investigations exist for the case of the E8 × E8 heterotic
string within the so called Calabi–Yau compactifications where the effective group structure after Wilson line breaking
is SU(3)C × SU(3)L × SU(3)R and further breaking through the Higgs mechanism is needed to break the group down
to the Standard Model gauge group. Proton stability in Calabi–Yau models is discussed in Section 7.1. In Section 7.2
we discuss grand unification in Kac–Moody levels k > 1. It is known that in weakly coupled heterotic strings one
cannot realize massless scalars in the adjoint representation at level 1, and one needs to go to levels k > 1 to realize
massless scalars in the adjoint representations necessary to break the GUT symmetry. However, at level 2 it is difficult
to obtain 3 massless generations while this problem is overcome at level 3. In these models baryon and lepton number
violating dimension four operators are absent due to an underlying gauge and discrete symmetry. However, baryon and
lepton number violating dimension five operators are present and one needs to suppress them by heavy Higgs triplets.
A detailed analysis of proton lifetime in these models is currently difficult due the problem of generating proper
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quark–lepton masses. In Section 7.3 a new class of heterotic string models are discussed which have the interesting
feature that they have the spectrum of MSSM, while proton decay is absolutely forbidden in these models, aside from
the proton decay induced by quantum gravity effects. Other attempts at realistic model building in 4D models in the
heterotic string framework are also briefly discussed in Section 7.3.

Proton decay in M-theory compactifications are discussed in Section 7.4. The low energy limit of this theory is the
11 dimensional supergravity theory and one can preserve N =1 supersymmetry if one compactifies the 11 dimensional
supergravity on a seven-compact manifold X of G2 holonomy. The manifold X can be chosen to give non-abelian gauge
symmetry and chiral fermion. Currently quantitative predictions of proton lifetime do not exist due to an unknown
overall normalization factor which requires an M theory calculation for its computation. However, it is still possible
to make qualitative predictions in this theory. Thus for a class of X-manifolds, baryon and lepton number violating
dimension five operators are absent but baryon and lepton number violating dimension six operators do exist and here
one can make the interesting prediction that the decay mode p → e+

R�0 is suppressed relative to the mode p → e+
L�0.

In Section 7.5 proton decay in intersecting D brane models is discussed. Here we consider proton decay in SU(5)

like GUT models in Type IIA orientifolds with D-6 branes. It is assumed that the baryon and lepton number violating
dimension 4 and dimension 5 operators are absent and that the observable proton decay arises from dimension six
operators. The predictions of the model here may lie within reach of the next generation of proton decay experiment.
In Section 7.6 we discuss proton stability in string landscape models. There are a variety of scenarios in this class of
models where the squarks and sleptons can be very heavy and thus proton decay via dimension five operators will
be suppressed. Such is the situation on the so called Hyperbolic Branch of radiative breaking of the electro-weak
symmetry. A brief review is given in Section 7.6 of the possible scenarios within string models where a hierarchical
breaking of supersymmetry can occur. In Section 7.7 a review of proton decay from quantum gravity effects is given.
It is conjectured that quantum gravity does not conserve baryon number and thus can catalyze proton decay. Thus, for
example, quantum gravity effects could induce baryon number violating processes of the type qq → q̄l. Proton decay
via quantum gravity effects in the context of large extra dimensions are also discussed in Section 7.7. In Section 7.8
a discussion of U(1) string symmetries is given which allow the suppression of proton decay from dimension four
and dimension five operators. In Section 7.9 discrete symmetries for the suppression of proton decay are discussed.
However, if the discrete symmetries are global they are not respected by quantum gravity specifically, for example, in
virtual black hole exchange and in wormhole tunneling. However, gauged discrete symmetries allows one to overcome
this hurdle. A brief discussion of the classification of such symmetries is also given in Section 7.9.

A number of other topics related to proton stability in GUTs, strings and branes are discussed in Section 8. Thus an
interesting issue concerns the connection between proton stability and neutrino masses. This connection is especially
relevant in the context of grand unified models based on SO(10) and the discussion of Section 8.1 is devoted to
this case. Supersymmetric models with R-parity invariance lead to the lowest supersymmetric particle (LSP) being
absolutely stable. In supergravity GUT models the LSP over much of the parameter space turns out to be the lightest
neutralino. Thus supersymmetry/supergravity models provide a candidate for cold dark matter. The recent WMAP data
puts stringent constraints on the amount of dark matter. The dark matter constraints have a direct bearing on predictions
of the proton lifetime in unified models. This topic is discussed in Section 8.2. In Section 8.3 exotic baryon and lepton
number violation is discussed. These include processes involving �B = 3 such as 3H → e+�0, baryon and lepton
number violation involving higher generations, e.g., p → �∗ → �̄��+, and proton decay via monopole catalysis where
M + p → M + e+ + mesons. Finally, Section 8.4 contains speculations on proton decay and the ultimate fate of the
universe. Section 9 contains a summary of the report highlighting some of the important elements of the report and
outlook for the future.

Many of the mathematical details of the report are relegated to the Appendices. Thus in Appendix A mathematical
aspects of the grand unification groups SU(5) and SO(10) necessary for understanding the discussion in the main text
are given. In Appendix B, the allowed contributions arising from dimension five operators to proton decay are listed. In
Appendix C a glossary of dressings of dimension five operators by chargino, gluino, and neutralino exchanges is given.
The dressing loop diagrams involve sparticle masses, and in Appendix D an analysis of the sparticle spectra at low
energy using renormalization group is given. Appendix E is devoted to a discussion of the renormalization group factors
of the dimension 5 and dimension 6 operators. A detailed discussion of the effective Lagrangian which allows one to
convert baryon and lepton number violating quark–lepton dimension six operator to interactions involving baryons and
mesons is given in Appendix F. Appendix G gives details of the analysis of testing models, and Appendix H gives the
details on the analysis of upper bounds. Appendix I gives a discussion of how one may relate the 4D parameters to the
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parameters of M theory. Finally, Appendix J is devoted to a discussion of the gauge coupling unification in string and
D brane models.

2. Experimental bounds and future searches

The issue of proton stability has attracted attention over three quarters of a century. Thus in the period 1929–1949
the law of baryon number conservation was formulated by Weyl et al. [3], and the first experimental test of the idea was
proposed by Maurice Goldhaber in 1954 [4,5]. The basic idea of Goldhaber was that nucleon decay could leave Th232

in an excited and fissionable state, and thus comparison of the measured lifetime to that for spontaneous fission could
be used to search for nucleon decay. This technique produced a lower limit on the proton lifetime of � > 1.4 × 1018

years. The first direct search for proton decay was made by Reines et al. [6] using a 300 liter liquid scintillation
detector, and they set a limit on the lifetime of free protons of � > 1 × 1021 years and a lifetime for bound nucleons
of � > 1 × 1022 years. From a theoretical view point the idea that proton may be unstable originates in the work on
Sakharov in 1967 [7] who postulated that an explanation of baryon asymmetry in the universe requires CP violation
and baryon number non-conservation. Further, impetus for proton decay came with the work of Pati and Salam in 1973
[8] and later with non-supersymmetric [9,10], supersymmetric [11], and supergravity [12,13] grand unification, and
from quantum gravity where black hole and worm hole effects can catalyze proton decay [14–18].

Thus spurred by theoretical developments in the nineteen seventies and the eighties there were large scale experiments
for the detection of proton decay. Chief among these are the Kolar Gold Field [19], NUSEX [20], FREJUS [21],
SOUDAN [22], Irvine-Michigan-Brookhaven (IMB) [23] and Kamiokande [24]. These experiments use either tracking
calorimeters (e.g. SOUDAN) or Cherenkov effect (IMB, Kamiokande). These experiments yielded null results but
produced improved lower bounds on various proton decay modes. In the nineteen nineties the largest proton water
Cherenkov detector, Super-Kamiokande, came on line for the purpose of searching for proton decay and for the study
of the solar and atmospheric neutrino properties. Super-Kamiokande [25] is a ring imaging water Cherenkov detector
containing 50 ktons of ultra pure water held in a cylindrical stainless steel tank 1 km underground in a mine in the
Japanese Alps. The sensitive volume of water is split into two parts. The 2 m thick outer detector is viewed with 1885
20 cm diameter photomultiplier tubes. When relativistic particles pass through the water they emit Cherenkov light at
an angle of about 42◦ from the particle direction of travel. By measuring the charge produced in each photo multiplier
tube and the time at which it is collected, it is possible to reconstruct the position and energy of the event as well as the
number, identity and momenta of the individual charged particles in the event.

The progress in the last 50 years of proton decay searches is shown in Fig. 4, where the experimental lower bounds for
the partial proton decay lifetimes are exhibited. The plot exhibits the power of the water Cerenkov detectors in improving
the proton decay lower bounds. Since Super-kamiokande is currently the most sensitive proton decay experiment, it is
instructive to examine briefly the signatures of proton decay signals in this experiment. We focus on the decay mode
p → e+�0. Since it is one of the simplest modes it serves well as a general example of proton decay searches.

Fig. 1 gives a schematic presentation of an ideal p → e+�0 decay. Here, the positron, e+ and neutral pion �0, exit
the decay region in opposite directions. The positron initiates an electromagnetic shower leading to a single isolated

 π0

e
+

γ

γ

P

Fig. 1. Idealized p → e+�0 decay in Super-Kamiokande [26].
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Fig. 2. Idealized p → K+� decay in Super-Kamiokande, K+ → �+�0 case [26].

γ

μ+

μν
K

+

p
ν

Fig. 3. Idealized p → K+� decay in Super-Kamiokande, K+ → �+�� case [26].

ring. The �0 will almost immediately decay to two photons which will go on to initiate showers creating two, usually
overlapping, rings. In general, real p → e+�0 events will differ from this ideal picture because the pion can scatter or
be absorbed entirely before it exits the nucleus. In addition the proton in the nucleus can have some momentum due to
Fermi motion. These two effects, i.e., the pion–nucleon interaction and Fermi motion, serve to spoil the balance of the
reconstructed momentum. Further, the pion can decay asymmetrically where one photon takes more than half of the
pion’s energy leaving the second photon to create a faint or even completely invisible ring. All these effects are taken
into account in search for proton decay signals. Super-Kamiokande experiment also searches for the p → K+�̄ mode
by looking for the products from the two primary branches of the K+ decay (see Fig. 2). In the K+ → �+�� case,
when the decaying proton is in the 16O, the nucleus will be left as an excited 15N. Upon de-excitation, a prompt 6.3
MeV photon will be emitted (See Fig. 3).

An important question for proton decay searches concerns the issue of backgrounds. There are three classes of
atmospheric neutrino background events that are directly relevant for proton decay searches. The first is the inelastic
charged current events, �N → Ne, � + n�, where a neutrino interacts with a nucleon in the water and produces a
visible lepton and a number of pion’s. This can mimic proton decay modes such as p → e+�0. The second class is
neutral current pion production, �N → �Nn�, the only visible products of which are pion’s. This is the background
to, for example, n → ��. Finally, there are quasi elastic charged current events �N → N�, e, events which can look
like, p → K+�̄. The current experimental lower bounds on proton decay lifetimes are listed in Table 1.

We note that presently the largest lower bound is for the mode p → e+�0. Interestingly the radiative decay modes
p → e+� and p → �+� also have very strong constraints.

Recently the Super-Kamiokande collaboration has reported new experimental lower bounds on proton decay life-
times. The improved limits for some of the channels are as follows [28]:

�(p → K+�̄) > 2.3 × 1033 years, (4)

�(p → K0�+) > 1.3 × 1033 years, (5)

�(p → K0e+) > 1.0 × 1033 years. (6)

As will be discussed later in this report, proton decay is a probe of fundamental interactions at extremely short distances
and as such it is an instrument for the exploration of grand unifications, of Planck scale physics and of quantum gravity
and more specifically of string theory and M theory. For this reason it is crucial to have new experiments to search for
proton decay or improve the current bounds. Fortunately, there are several proposals currently under discussion. Thus
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Table 1
Experimental lower bounds on proton lifetimes [27]

Channel �p (1030 years)

p → invisible 0.21
p → e+�0 1600
p → �+�0 473
p → ��+ 25
p → e+�0 313
p → �+�0 126
p → e+�0 75
p → �+�0 110
p → ��+ 162
p → e+	0 107
p → �+	0 117
p → e+K0 150
p → e+K0

S 120
p → e+K0

L 51
p → �+K0 120
p → �+K0

S 150
p → �+K0

L 83
p → �K+ 670
p → e+K∗(892) 84
p → �K∗(892) 51
p → e+� 670
p → �+� 478

The limits listed are on �/Bi , where � is the total mean life and Bi is the branching fraction for the relevant mode.

several new experiments have been proposed based mainly on two techniques: the usual water Cherenkov detector and
the use of noble gases, the Liquid Argon Time Projection Chamber (LAr TPC). The proposed future experiments based
on the water Cherenkov detector are: the one-megaton HYPERK [29,30], the UNO experiment [31] with a 650 kt of
water, while the experiment 3M [32] is proposed with a 1000 kt and the European megaton project MEMPHYS at
Frejus [33].

On the other hand the ICARUS experiment [34] is based on the Liquid Argon Time Projection Chamber (LAr TPC)
technique. A more ambitious proposal along similar lines for proton decay and neutrino oscillation study (LANNDD) is
a 100 kt liquid Argon TPC which is proposed for the Deep Underground Science and Engineering Laboratory (DUSEL)
in USA [35]. Yet another proposal is of a Low Energy Neutrino Astronomy (LENA) detector consisting of a 50 kt of
liquid scintillator [36]. The LENA detector is suitable for SUSY favored decay channel p → �̄K+ where the kaon
will cause a prompt mono-energetic signal while the neutrino escapes without producing any detectable signal. It is
estimated that within ten years of measuring time a lower limit of � > 4 × 1034 years can be reached [36]. Basically
all those proposals together with Super-Kamiokande define the next generation of proton decay experiments. These
experiments will either find proton decay or at the very least improve significantly the lower bounds and eliminate
many models. Thus, for example, the goal of Hyper-Kamiokande is to explore the proton lifetime at least up to
�p/B(p → e+�0) > 1035 years and �p/B(p → K+�̄) > 1034 years in a period of about 10 years [30]. Thus the next
generation of proton decay experiments mark an important step to probe the structure of matter at distances which fall
outside the realm of any current or future accelerator (Fig. 4).

3. Nucleon decay in non-supersymmetric scenarios

As mentioned in Section 2 proton decay is a generic prediction of grand unified theories. There are different operators
contributing to the nucleon decay in such theories. In supersymmetric scenarios the d = 4 and 5 contributions are the
most important, but quite model dependent. They depend on the whole SUSY spectrum, on the structure of the Higgs
sector and on fermion masses. The so-called gauge d = 6 contributions for proton decay are the most important in
non-supersymmetric grand unified theories, which basically depend only on fermion mixing. The remaining Higgs
d =6 operators coming from the Higgs sector are less important and they are quite model dependent, since we can have
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Fig. 4. Experimental lower bounds on proton decay partial lifetimes [34].

different structures in the Higgs sector. In this section we will study the stability of the proton in the Standard Model,
and the nucleon decay induced by the super-heavy gauge and Higgs bosons. The outline of the rest of this section is
as follows: In Section 3.1 we discuss the B-violating effective operators induced by instantons and estimate the proton
lifetime arising from them. An analysis of SU(3)C ×SU(2)L ×U(1)Y invariant and B–L preserving baryon and lepton
number violating dimension six operators induced by gauge interactions is given in Section 3.2. Also discussed are
the proton decay modes from these interactions. SU(3)C × SU(2)L × U(1)Y baryon and lepton number -violating
dimension six operators can also be induced by scalar lepto-quark exchange and an analysis of these is given in
Section 3.3. We give below the details of these analyzes.

3.1. Baryon number violation in the Standard Model

The Standard Model with gauge symmetry SU(3)C ×SU(2)L ×U(1)Y has a U(1)B global symmetry at the classical
level, where B is the baryon number, which implies stability of the lightest baryon, i.e., the proton, in the universe.
However, this global symmetry is broken at the quantum level by anomalies [37], i.e. the baryonic current J

�
B is not

conserved:

��J
�
B = nf g2

16�2 Tr F��F̃
��, (7)

where nf is the number of generations and

F�� = ��A� − ��A� − ig[A�, A�], (8)

while

F̃�� = 1
2 ε��
�F 
�. (9)
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With the above anomaly baryon number violation can arise from instanton transitions between degenerate SU(2)L
gauge vacua. The B-violating effective operator induced by the instanton processes is given by (for details see, for
example, [38])

Oeff = c

(
1

MW

)14

e−2�/
2

3∏
i=1

(ε
��Q
i

LQi

�L
Qi

�LLi
L), (10)

where i is the generation index. The above interaction leads to violations of baryon and lepton number so that
�B = �L = 3. We note, however, the front factor would give a rate so that

Rate ∼ |e−2�/
2 |2 ∼ 10−173. (11)

Clearly this is a highly suppressed rate irrespective of other particulars. However, baryon and lepton number violating
dimension six and higher operators can be written consistent with the Standard Model gauge invariance [39–41]. This
is the subject of discussion in the remainder of this section.

3.2. Grand unification and gauge contributions to the decay of the proton

We discuss now a unifying framework beyond that of the Standard Model. There are many reasons for doing so.
One of the major ones is the presence of far too many arbitrary parameters in the Standard Model and it is difficult
to accept that a fundamental theory should be that arbitrary. One example of this is the presence of three independent
gauge couplings: 
s for the color interactions, 
2 for SU(2)L, and 
Y for the gauge group U(1)Y . This arbitrariness
could be removed if one had a semi-simple gauge group, i.e., a grand unified group, with a single gauge coupling
constant. Thus the three gauge coupling constants will be unified in such a scheme at a high scale, but would be split
at low energy due to their different renormalization group evolution from the grand unification scale to low scales. Of
course, the correctness of a specific assumption of grand unification must be tested by a detailed comparison of the
predictions of the unified model with the precision LEP data on the couplings. Another virtue of grand unification is
that it leads to an understanding of the quantization of charge, e.g., |Qe| = |Qp|, while such an explanation is missing
in the Standard Model. Additionally, grand unification reduces arbitrariness in the Yukawa coupling sector, by relating
Yukawa couplings for particles that reside in the common multiplets. However, one important consequence of grand
unification as noted earlier is that it leads generically to proton decay. This arises from the fact that in grand unified
models quarks and leptons fall in common multiplets and thus interactions lead to processes involving violations of
baryon and lepton number.

In this subsection we focus on the non-supersymmetric contributions to the decay of the proton (For an early review of
proton decay in non-supersymmetric grand unification see Ref. [42]). In particular we study the gauge d = 6 operators.
Using the properties of the Standard Model fields we can write down the possible d = 6 operators contributing to the
decay of the proton, which are SU(3)C × SU(2)L × U(1)Y invariant [39–41]:

O
B.L
I = k2

1εijkε
�uC
iaL

��Qj
aL
eC
b L

��Qk�bL
, (12)

O
B.L
II = k2

1εijkε
�uC
iaL

��Qj
aL
dC
kbL

��L�bL
, (13)

O
B.L
III = k2

2εijkε
�dC
iaL

��Qj�aL
uC

kbL
��L
bL, (14)

O
B.L
IV = k2

2εijkε
�dC
iaL

��Qj�aL
�C
b L

��Qk
bL. (15)

In the above expressions k1 = gGUT/
√

2M(X,Y ), and k2 = gGUT/
√

2M(X′,Y ′), where M(X,Y ), M(X′,Y ′) ≈ MGUT and
gGUT are the masses of the superheavy gauge bosons and the coupling at the GUT scale. The fields QL = (uL, dL),
and LL = (�L, eL). The indices i, j and k are the color indices, a and b are the family indices, and 
, � = 1, 2. The

effective operators O
B.L
I and O

B.L
II (Eqs. (12) and (13)) appear when we integrate out the superheavy gauge fields

(X, Y )= (3, 2, 5/3), where the X and Y fields have electric charge 4/3 and 1/3, respectively. This is the case in theories

based on the gauge group SU(5). Integrating out (X′, Y ′) = (3, 2, −1/3) we obtain the operators O
B.L
III and O

B.L
IV

(Eqs. (14) and (15)), the electric charge of Y ′ is −2/3, while X′ has the same charge as Y. This is the case of flipped
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SU(5) theories [43–46], while inSO(10) models all these superheavy fields are present. One may observe that all these
operators conserve B.L, i.e. the proton always decays into an antilepton. A second selection rule �S/�B = −1, 0 is
satisfied for those operators.

Using the operators listed above, we can write the effective operators for each decay channel in the physical
basis [47]:

O(eC

 , d�) = c(eC


 , d�)εijku
C
i L

��uj L
eC

 L��dk�L

, (16)

O(e
, d
C
� ) = c(e
, d

C
� )εijku

C
i L

��uj L
dC
k�L

��e
L, (17)

O(�l , d
, d
C
� ) = c(�l , d
, d

C
� )εijku

C
i L

��dj
L
dC
k�L

���lL, (18)

O(�C
l , d
, d

C
� ) = c(�C

l , d
, d
C
� )εijkd

C
i�L

��uj L
�C
l L

��dk
L, (19)

where

c(eC

 , d�) = k2

1[V 11
1 V


�
2 + (V1VUD)1�(V2V

†
UD)
1], (20)

c(e
, d
C
� ) = k2

1V 11
1 V

�

3 + k2

2(V4V
†
UD)�1(V1VUDV

†
4 V3)

1
, (21)

c(�l , d
, d
C
� ) = k2

1(V1VUD)1
(V3VEN)�l , +k2
2V

�

4 (V1VUDV

†
4 V3VEN)1l , (22)

c(�C
l , d
, d

C
� ) = k2

2[(V4V
†
UD)�1(U

†
ENV2)

l
 + V
�

4 (U

†
ENV2V

†
UD)l1],


 = � 
= 2. (23)

In the above V1, V2, etc. are mixing matrices defined so that V1=U
†
CU , V2=E

†
CD, V3=D

†
CE, V4=D

†
CD, VUD =U†D,

VEN = E†N and UEN = EC†
NC , where U, D, E define the Yukawa coupling diagonalization so that

UT
C YUU = Y

diag
U , (24)

DT
CYDD = Y

diag
D , (25)

ET
CYEE = Y

diag
E , (26)

NT YNN = Y
diag
N . (27)

Further, on may write VUD = U†D = K1VCKMK2, where K1 and K2 are diagonal matrices containing three and two
phases, respectively. Similarly, leptonic mixing VEN = K3V

D
l K4 in case of Dirac neutrino, or VEN = K3V

M
l in the

Majorana case, where V D
l and V M

l are the leptonic mixing at low energy in the Dirac and Majorana case, respectively.
The above analysis points up that the theoretical predictions of the proton lifetime from the gauge d = 6 operators
require a knowledge of the quantities k1, k2, V 1b

1 , V2, V3, V4 and UEN . In addition we have three diagonal matrices
containing phases, K1, K2 and K3, in the case that the neutrino is Majorana. In the Dirac case there is an extra matrix
with two more phases. An example of the Feynman graphs for those contributions is given in Fig. 5. Since the gauge
d = 6 operators conserve B–L, the nucleon decays into a meson and an antilepton. Let us write the decay rates for the
different channels. Assuming that in the proton decay experiments one can not distinguish the flavor of the neutrino
and the chirality of charged leptons in the exit channel, and using the chiral Lagrangian techniques (see appendices),
the decay rate of the different channels due to the presence of the gauge d = 6 operators are given by:

�(p → K+�̄) = (m2
p − m2

K)2

8�m3
pf 2

�
A2

L|
|2

×
3∑

i=1

∣∣∣∣ 2mp

3mB

Dc(�i , d, sC) +
[

1 + mp

3mB

(D + 3F)

]
c(�i , s, d

C)

∣∣∣∣2, (28)
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l

V

Fig. 5. Gauge contributions to the decay of the proton. In this case the decay of the proton is mediated by vector leptoquarks. The fields , � and �
are quark fields and l corresponds to the leptons. A possible contribution is:  = uL, � = (uC)L, � = (dC


 )L and l = e�L. 
,� = 1, 2.

�(p → �+�̄) = mp

8�f 2
�

A2
L|
|2(1 + D + F)2

3∑
i=1

|c(�i , d, dC)|2, (29)

�(p → �e+
� ) = (m2

p − m2
�)

2

48�f 2
� m3

p

A2
L|
|2(1 + D − 3F)2{|c(e�, dC)|2 + |c(eC

� , d)|2}, (30)

�(p → K0e+
� ) = (m2

p − m2
K)2

8�f 2
� m3

p

A2
L|
|2

[
1 + mp

mB

(D − F)

]2

{|c(e�, sC)|2 + |c(eC
� , s)|2}, (31)

�(p → �0e+
� ) = mp

16�f 2
�

A2
L|
|2(1 + D + F)2{|c(e�, dC)|2 + |c(eC

� , d)|2}, (32)

where �i = �e, ��, �� and e� = e, �. In the above equations mB is an average Baryon mass satisfying mB ≈ m� ≈ m�,
D, F and 
 are the parameters of the Chiral Lagrangian. AL takes into account renormalization from MZ to 1 GeV. (See
the appendices for details of the chiral lagrangian technique and the renormalization group effects.) The analysis above
indicates that it is possible to check on different proton decay scenarios with sufficient data on proton decay modes if
indeed such a situation materializes in future proton decay experiment.

As we explained above the gauge d = 6 contributions are quite model dependent. However, we can make a naive
model-independent estimation for the mass of the superheavy gauge bosons using the experimental lower bound on
the proton lifetime. Using

�p ≈ 
2
GUT

m5
p

M4
V

(33)

and �(p → �0e+) > 1.6 × 1033 years we find a naive lower bound on the superheavy gauge boson masses

MV > (2.57 − 3.23) × 1015 GeV (34)
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Q
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L

Q

T

Fig. 6. Higgs contributions to the decay of the proton. In this case proton decay is mediated by scalar leptoquarks T. The fields Q = (uL, dL) and
L = (�L, eL).

for 
GUT = 1/40 − 1/25. Notice that this value tell us that usually the unification scale has to be very large in order to
satisfy the experimental bounds.

3.3. Proton decay induced by scalar leptoquarks

In non-supersymmetric scenarios the second most important contributions to the decay of the proton are the Higgs
d = 6 contributions. In this case proton decay is mediated by scalar leptoquarks T = (3, 1, −2/3). Here, we will
study those contributions in detail. For simplicity, let us study the case when we have just one scalar leptoquark (See
Fig. 6 for the Feynman graphs.). This is the case of minimal SU(5). In this model the scalar leptoquark lives in the 5H

representation together with the Standard Model Higgs. The relevant interactions for proton decay are the following:

VT = εijkε
�QT
i
LC−1AQj�LTk + uC

iL

T
C−1BeC

LTi

+ ε
�QT
i
LC−1CL�T ∗

i + εijku
C
iL

T
C−1DdC

jLT ∗
i + h.c. (35)

In the above equation we have used the same notation as in the previous section. The matrices A, B, C and D are a linear
combination of the Yukawa couplings in the theory and the different contributions coming from higher-dimensional
operators. In the minimal SU(5), the have the following relations: A = B = YU , and C = D = YD = YT

E .
Now, using the above interactions we can write the Higgs d = 6 effective operators for proton decay

OH (d
, e�) = a(d
, e�)uT LC−1d
u
T LC−1e�, (36)

OH (d
, e
C
� ) = a(d
, e

C
� )uT LC−1d
e

C
�

†
LC−1uC∗

, (37)

OH (dC

 , e�) = a(dC


 , e�)dC



†
LC−1uC∗

uT LC−1e�, (38)

OH (dC

 , eC

� ) = a(dC

 , eC

� )dC



†
LC−1uC∗

eC
�

†
LC−1uC∗

, (39)

OH (d
, d�, �i ) = a(d
, d�, �i )u
T LC−1d
d

T
� LC−1�i , (40)

OH (d
, d
C
� , �i ) = a(d
, d

C
� , �i )d

C
�

†
LC−1uC∗

dT

 LC−1�i , (41)



204 P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317

where

a(d
, e�) = 1

M2
T

(UT (A + AT )D)1
(U
T CE)1�, (42)

a(d
, e
C
� ) = 1

M2
T

(UT (A + AT )D)1
(E
†
CB†U∗

C)�1, (43)

a(dC

 , e�) = 1

M2
T

(D
†
CD†U∗

C)
1(U
T CE)1�, (44)

a(dC

 , eC

� ) = 1

M2
T

(D
†
CD†U∗

C)
1(E
†
CB†U∗

C)�1, (45)

a(d
, d�, �i ) = 1

M2
T

(UT (A + AT )D)1
(D
T CN)�i , (46)

a(d
, d
C
� , �i ) = 1

M2
T

(D
†
CD†U∗

C)�1(D
T CN)
i . (47)

Here L= (1 − �5)/2, MT is the triplet mass, 
=�= 1, 2 are SU(2) and i = 1, 2, 3 are SU(3) indices. The above are the
effective operators for the case of one Higgs triplet. Often unified models have more than one pair of Higgs triplets as,
for example, for the case of SO(10) theories. In these cases we need to go the mass diagonal basis to derive the baryon
and lepton number violating dimension six operators by eliminating the heavy fields. The above analysis exhibits that
the Higgs d = 6 contributions are quite model dependent, and because of this it is possible to suppress them in specific
models of fermion masses. For instance, we can set to zero these contributions by the constraints Aij = −Aji and
Dij = 0, except for i = j = 3.

As we explained above the Higgs d =6 contributions to the decay of the proton are quite model dependent. However,
we can make a naive model-independent estimation for the mass of the superheavy Higgs bosons using the experimental
lower bound on the proton lifetime. Using

�p ≈ |YuYd |2 m5
p

M4
T

(48)

and �(p → �0e+) > 1.6 × 1033 years we find a naive lower bound on the superheavy Higgs boson masses

MT > 3 × 1011 GeV. (49)

Notice that this naive bound tell us that usually the triplet Higgs has to be heavy. Therefore since the triplet Higgs lives
with the SM Higgs in the same multiplet we have to look for a doublet–triplet mechanism.

4. Nucleon decay in SUSY and SUGRA unified theories

Supersymmetry in four space–time dimensions [48,49] arises algebraically from the “graded algebra” involving the
spinor charge Q
 along with the generators of the Lorentz algebra P� and M��. Among the remarkable features of
supersymmetry is the property that aside from some simple generalization, the only graded algebra for an S-matrix
one can construct from a local relativistic field theory is the supersymmetric algebra [50]. The above implies that
supersymmetry appears as the only unique graded extension of a Lorentz covariant field theory. At the level of model
building supersymmetric models enjoy the advantage of a no-renormalization theorem [51,52] making the theory
technically natural. However, one apparent disadvantage of supersymmetric theories is that proton stability is a priori
more difficult relative to case for non-supersymmetric theories since dangerous proton decay arises from dimension
four and dimension five operators in addition to the proton decay induced by gauge bosons as in non-supersymmetric
theories. We will first discuss proton decay from dimension four operators which is considered the most dangerous as
it can decay the proton very rapidly. Later we will discuss proton decay from dimension five operators specifically in
the context of GUT models based on SU(5) and SO(10) [53].
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In the following we assume that the reader has familiarity with the basics of supersymmetry and of the minimal
supersymmetric standard model (MSSM) which can be found in a number of modern texts and reviews (see, e.g.,
[49,53–57]). Here, for completeness, we mention some salient features of MSSM as this model is central to the
discussion of low energy supersymmetry. MSSM is based on the gauge group SU(3)C × SU(2)L × U(1)Y with three
generations of matter, and two pairs of Higgs multiplets which are SU(2)L doublets (H1 and H2) where H1 gives mass
to the down quark and the lepton, and H2 gives mass to the up quark. Thus the gauge sector in addition to the gauge
bosons of the Standard Model consists of eight gluinos �a (a =1, . . . , 8), four SU(2)L ×U(1)Y electro-weak gauginos
�
 (
 = 1,2,3) and �Y which are all Majorana spinors. Similarly, in the matter sector MSSM consists in addition to
the three generations of quarks and leptons, also their superpartners, i.e., three generations of squarks and sleptons. In
the Higgs sector one has in addition to the two pairs of SU(2)L Higgs doublets, also two pairs of SU(2)L Higgsino
multiplets. The renormalizable superpotential in MSSM is given by

W = ÛCYuQ̂Ĥu + D̂CYdQ̂Ĥd + ÊCYeL̂Ĥd + �ĤuĤd + WR , (50)

where Yu,d,e are matrices in generation space and WR contains the R-parity violating terms which are given by

WR = 
ijkQ̂iL̂j D̂
C
k + �ijkÛ

C
i D̂C

j D̂C
k + �ijkL̂i L̂j Ê

C
k + aiL̂iĤu, (51)

where the coefficient �ijk and �ijk obey the symmetry constraints �ijk = −�ikj and �ijk = −�jik . In the above we use
the usual notation for the MSSM superfields (see for example [55]). The couplings of Eq. (51) violate R-parity where
R-parity is defined by R = (−1)2SM , where S is the spin and M = (−1)3(B.L) is the matter parity, which is −1 for all
matter superfields and +1 for Higgs and gauge superfields [58]. In addition to R-parity violation, the second term of
Eq. (51) violates the baryon number, while the rest of the interactions violate the leptonic number. These terms can be
eliminated by the imposition of R-parity conservation, which requires that the overall R-parity of each term is +1.

The outline of the rest of this section is as follows: In Section 4.1 we discuss the constraint on R-parity violating
interactions to suppress rapid proton decay from baryon and lepton number (B&L) violating dimension four operators.
In addition to B&L violating dimension four operators most supersymmetric grand unified theories also have B&L
violating dimension five operators which typically dominate over the B&L violating dimension six operators which
arise from gauge interactions. A computation of proton decay from dimension five operators involves dressing of
these operators by chargino, gluino and neutralino exchanges to convert them to baryon and lepton number violating
dimension six operators. Such dressings depend on the sparticle spectrum and thus on the nature of soft breaking. With
this in mind we give a brief discussion of supersymmetry breaking in Section 4.2. Soft breaking is also affected by the
CP phases and thus proton decay is affected by the CP phases. This phenomenon is discussed in Section 4.3. In Section
4.4 a discussion of Higgs doublet–Higgs triplet problem is given. Since typically Higgs doublets and Higgs triplets
appear in common multiplets a splitting to make Higgs doublets light and Higgs triplets heavy is essential to stabilize
the proton. Sections 4.5–4.7 concern discussion of specific grand unified models. Thus in Section 4.5 a discussion of
SU(5) grand unification is given, and a discussion of SO(10) grand unification is given in Section 4.6. In Section 4.7 we
discuss a new class of SO(10) grand unified models based on a unified Higgs sector where a single pair of 144 + 144
of Higgs can break the SO(10) gauge symmetry all the way down to SU(3)C × U(1)em.

4.1. R-parity violation and the decay of the proton

It is interesting to ask what the constraints on the coupling structures are if one does not impose R-parity invariance.
Such constraints for the R-parity violating couplings from proton decay in low energy supersymmetry have been
investigated for some time [59–66]. However, only recently the bounds coming from proton decay have been achieved
taking into account flavor mixing and using the chiral lagrangian techniques [67] (For several phenomenological aspects
of R-parity violating interactions see references [68–70]). Thus the first and the second terms in Eq. (51) give rise to
tree level contributions to proton decay mediated by the d̃C

k squarks. These are the most important contributions, which
can be used to constrain the R-parity violating couplings. To extract these we write all interactions in the physical basis
and exhibit the proton decay widths into charged leptons using the chiral lagrangian method. The rates for proton decay
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into charged anti-leptons are given by

�(p → �0e+
� ) = mp

64�f 2
�

A2
L|
|2(1 + D + F)2|c(e+

� , dC)|2, (52)

�(p → K0e+
� ) = (m2

p − m2
K)2

32�f 2
� m3

p

A2
L|
|2

[
1 + mp

mB

(D − F)

]2

|c(e+
� , sC)|2, (53)

where

c(e+
� , dC


 ) =
3∑

m=1

(�
m
3 )∗��m

1

m2
d̃C
m

. (54)

Here D and F are the parameters of the chiral lagrangian, 
 is the matrix element, and AL takes into account the
renormalization effects from MZ to 1 GeV. In the case of the decay channels into antineutrinos, the decay rates are as
follows [67]:

�(p → K+�̄) = (m2
p − m2

K)2

32�m3
pf 2

�
A2

L|
|2

×
3∑

i=1

∣∣∣∣ 2mp

3mB

Dc̃(�i , d, sC) +
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1 + mp

3mB

(D + 3F)

]
c̃(�i , s, d
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∣∣∣∣2, (55)

�(p → �+�̄) = mp

32�f 2
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A2
L|
|2(1 + D + F)2
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i=1

|c̃(�i , d, dC)|2, (56)

where

c̃(�l , d
, d
C
� ) =

3∑
m=1

(��m

3 )∗�
lm
2

m2
d̃C
m

. (57)

In the above equations the couplings �1, �2 and �3 are given by [67]

�
m
1 = 
ijkU

1iEj
D̃km
C , (58)

�
lm
2 = 
ijkD


iNjlD̃km
C , (59)

�
m
3 = 2�ijkU

i1
C D

j

C D̃km

C . (60)

The most stringent constraints on R-parity violating couplings are obtained from the decays into charged leptons and
mesons. Using mp = 938.3 MeV, D = 0.81, F = 0.44, MB = 1150 MeV, f� = 139 MeV, 
 = 0.003 GeV3, AL = 1.43
and the experimental constraints [27] one finds

|c(e+, dC)| < 7.6 × 10−31, (61)

|c(�+, dC)| < 1.4 × 10−30, (62)

|c(e+, sC)| < 4.2 × 10−30, (63)

|c(�+, sC)| < 4.7 × 10−30. (64)



P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317 207

Table 2
Upper bounds for the R-parity violating couplings

Couplings Low energy SUSY m̃ = 1014 GeV

|(�1m
3 )∗�1m

1 | 3.8 × 10−25 0.0038

|(�1m
3 )∗�2m

1 | 7.0 × 10−25 0.0070

|(�2m
3 )∗�1m

1 | 2.1 × 10−24 0.0210

|(�2m
3 )∗�2m

1 | 2.3 × 10−24 0.0234

Now, for simplicity assuming that all squarks have the same mass m̃, the quantity (�
m
3 )∗��m

1 have to satisfy the
following relations [67]:

|(�1m
3 )∗�1m

1 | < 3.8 × 10−31m̃2, (65)

|(�1m
3 )∗�2m

1 | < 7.0 × 10−31m̃2, (66)

|(�2m
3 )∗�1m

1 | < 2.1 × 10−30m̃2, (67)

|(�2m
3 )∗�2m

1 | < 2.3 × 10−30m̃2, (68)

where

(�
m
3 )∗��m

1 = �∗
ijk
lpk(U

1i
C )∗(Dj


C )∗U1lEp�. (69)

It is easily seen that the constraints on 
ijk and �ijk are quite model dependent i.e., they depend on the model for the
fermion masses that we choose. We can choose, for example, the basis where the charged leptons and down quarks are
diagonal, however still UC will remain, and U = K1V

†
CKMK2. K1 and K2 are diagonal matrices containing three and

two CP-violating phases, respectively. In Table 1 we exhibit the different constraints for two supersymmetric scenarios,
i.e., in the low energy supersymmetry m̃ = 103 GeV and in scenarios with large scalar masses (split supersymmetry
[71,72] or hierarchical supersymmetry breaking [73]) the case m̃ = 1014 GeV (Table 2).

The analysis above shows that the R-parity violating couplings could be large in supersymmetric scenarios with large
susy breaking scale. In the case of SUSY breaking with low scale, the R-parity violating couplings are small, and this
smallness can be construed as a hint that R-parity is an exact symmetry of a physical theory [See, for example, [74,75]
for the possibility of an R-parity as an exact symmetry arising from realistic grand unified theories.].

In the above we have investigated the constraints from proton stability with explicit R-parity violation in the minimal
supersymmetric version of the Standard Model. One may now investigate similar constraints in unified models such

as in the simplest supersymmetric unified SU(5) model [11]. Here the R-parity violating interactions are �ijk 1̂0i
ˆ̄5j

ˆ̄5k ,

bi
ˆ̄5i 5̂H and ci

ˆ̄5i 2̂4H 5̂H . In this case at the GUT scale the couplings satisfy the relations

ijk

2 =�ijk=�ijk=�ijk=−�ikj .
These relations reduce the number of free parameters, and lead to a more constrained parameter space.

4.2. Supersymmetry breaking and SUGRA unification

Supersymmetric proton decay involves dressing of the baryon and lepton number violating dimension five operators
by gluino, chargino and neutralino exchanges which convert the dimension five into dimension six operators. The
dressing loops depend on the masses of the exchanged sparticles. Thus the prediction of proton lifetime depends in a
central way on the soft parameters which break supersymmetry. One could in principle add soft parameters by hand to
break supersymmetry at low energy. In MSSM the number of such terms is rather large [76] consisting of 30 masses,
39 real mixing angles, and 41 phases, a total of 110, making the model unpredictive. It is thus desirable to generate
soft breaking via spontaneous breaking of the supersymmetric GUT model for a predictive theory much the same
way one generates spontaneous breaking of a non-supersymmetric GUT model. However, it is well known that the
spontaneous breaking of global supersymmetry leads to patterns of sparticle masses which are typically in contradiction
with current experiment. Further, such a breaking leads to a vacuum energy which is in gross violation of the observed
value. For these reasons a globally supersymmetric grand unification is not a grand unified theory that has any chance
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of consistency with experiment. These problems are closely associated with global supersymmetry and one needs to
go to the framework of local-supersymmetry/supergravity [77,78] to resolve them. Thus both of the hurdles mentioned
above are overcome within supergravity grand unification [12]. In order to build models based on supergravity one
needs to use the techniques of applied supergravity where one couples N = 1 supergravity with N = 1 chiral multiplets
and N =1 gauge multiplet belonging to the adjoint representation of the gauge group [12,56,79,80]. The effective N =1
applied supergravity lagrangian depends on three arbitrary functions: the superpotential W(zi), the Kahler potential
d(zi, z

†
i ), and the gauge kinetic energy function f
�(zi, z

†
i ) where 
, � are the adjoint representation indices, and where

W, d are gauge singlets, f
�(zi, z
†
i ) is a gauge tensor, andW, d, f
�(zi, z

†
i ) are hermitian. The potential that results

from such a theory is given by [12,79]

V = e�d

[
(d−1)ij

(
�W

�zi

+ �2diW

)(
�W

�zj

+ �2djW

)†

− 3�2|W |2
]

+ VD , (70)

where �=1/MPl and VD is the D term contribution to the potential.As may be seen from Eq. (70) the scalar potential is no
longer positive definite.As a consequence it is possible to fine tune the vacuum energy to zero after spontaneous breaking
of supersymmetry. A remarkable aspect of supergravity formulation is that it is now possible to break supersymmetry
spontaneously and still recover soft parameters which are phenomenologically viable. To achieve this one postulates
two sectors: a hidden sector where supersymmetry is broken and a visible sector where fields of the physical sector
reside. The only communication between the two sectors occurs via gravity.

The simplest way to achieve the breaking of supersymmetry is through a singlet scalar field with a superpotential of
the form Wh = m2(z + B). Assuming a flat Kahler potential, i.e., d = zz†, a minimization of the potential then leads
to the result 〈z〉 = �−1a(

√
2 − √

6), a = ±1. It is now seen that 〈z〉 = O(MPl). For this reason no direct interactions
between the visible and the hidden sector are allowed since they will lead to sparticle masses O(MPl) in the visible
sector [12,81]. With communication between the two sectors arising only from gravitational interactions, the problem
of large masses is avoided. Further, in the above example one can fine tune the vacuum energy to zero by setting
B = −�−1a(2

√
2 − √

6). The above phenomenon is in fact a super Higgs effect where after spontaneous breaking the
fermionic partner of the graviton becomes massive by absorbing the fermionic partner of the chiral field z. It has a mass
which is given by

m3/2 = 1

2
|〈W(z)〉| exp

(
�2

4
〈Z〉2

)
. (71)

The above leads to a gravitino mass of m3/2 ∼ �m2 and implies that an m ∼ 1010−11 GeV will lead to m3/2 in
the electroweak region [12,81]. A realistic model building involves a decomposition of the superpotential so that
W = Wh(z) + Wv(zi) so that the hidden sector superpotential Wh depends only on the gauge singlet field z while
the visible sector superpotential Wv depends only the visible sector fields zi and has no dependence on z [12,81].
Integrating out the hidden sector then leads to soft parameters in the visible sector. For the case of supergravity grand
unification an extra complexity arises because of the presence of the grand unification scale MG. The appearance of
such a scale in the soft parameters would throw the sparticle spectrum out of the electroweak region. Quite remarkably
it is shown that the grand unification scale cancels out of the soft parameters [12].

We now summarize the conditions under which the soft breaking in the minimal supergravity model are derived.
These consist of (i) The hidden sector is assumed a gauge singlet which breaks super-symmetry by a super Higgs
effect; (ii) There is no direct interaction between the hidden sector and the visible sector except for gravity so the
communication of breaking to the visible sector occurs only via gravitational interactions; (iii) The Kahler potential
is assumed to have no generational dependence; (iv) The cubic and higher field dependent parts of the gauge kinetic
energy function f
� are assumed negligible. Thus effectively f
� ∼ �
�. Under these assumptions it is then found that
the scalar potential is of the form [12,82,13]

−LSB = m1/2�̄

�
 + m2

0zaz
†
a + (A0W

(3) + B0W
(2) + h.c.), (72)

where for the case of MSSM one has

W(2) = �0H1H2; W(3) = Q̃YUH2ũ
c + Q̃YDH1d̃

c + L̃YEH1ẽ
c (73)



P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317 209

(We note that in the appendices we use H1 = Hd , and H2 = Hu.) Now a remarkable aspect of soft breaking is that it
leads to spontaneous breaking of the electroweak symmetry [12]. This is most efficiently achieved by radiative breaking
of the electroweak symmetry by renormalization group effects [83–88]. To exhibit this consider the effective scalar
potential. The renormalization group improved scalar potential for the Higgs fields is given by

V = m2
1|H 2

1 | + m2
2|H2|2 − m2

3(H1H2 + h.c.) + (g2
2 + g2

Y )

8
(|H1|2 − |H2|2)2 + �V1,

�V1 = (64�2)−1
∑
a

(−1)2sa (2sa + 1)M4
a

[
ln

M2
a

Q2 − 3

2

]
, (74)

where sa is the spin of the particle a, �V1 is the one loop correction [89,90] to the effective potential, and all parameters,
i.e., g2, gY , mi etc are running parameters evaluated at the scale t = ln(M2

G/Q2) where Q is taken to be in the electro-
weak region. The boundary conditions on these parameters are [91] 
2(0)= 
G = 5

3
Y (0); m2
i (0)=m2

0 +�2
0, i = 1, 2;

and m2
3(0) = −B0�0. Now SU(2)L × U(1)Y electro-weak symmetry breaks when the determinant of the Higgs mass2

matrix turns negative and further one requires that the potential be bounded from below for a valid minimum to exist.
Thus one requires the constraints on the Higgs parameters so that (i) m2

1m
2
2 − 2m4

3 < 0, and (ii) m2
1 + m2

2 − 2|m2
3| > 0,

where the first constraint indicates that the determinant of the Higgs mass2 matrix turns negative while the second
constraint requires the potential to be bounded from below. Minimization of the potential, i.e., �V/�vi = 0 where
vi = 〈Hi〉 is the VEV of the neutral component of the Higgs Hi , gives two constraints

(a) M2
Z = 2(�2

1 − �2
2tan2�)(tan2� − 1)−1,

(b) sin 2� = 2m2
3(�

2
1 + �2

2)
−1. (75)

Here �2
i = m2

1 + �i where �i is the loop correction [92,93] and tan � = v2/v1. The electroweak symmetry breaking
constraint (a) can be used to fix � using the experimental value of the Z boson mass MZ , and the constraint (b) can be
utilized to eliminates B0 in favor of tan �. Thus the supergravity model at low energy can be parametrized by

m0, m1/2, A0, tan �, sign(�). (76)

The number of soft parameters in the minimal supersymmetric standard model allowed by the ultra-violet behavior of
the theory [94] is quite large and thus the result of Eq. (76) is a big improvement. While the assumption of a super
Higgs effect using a scalar field is the simplest way to break supersymmetry, there are other ways such as gaugino
condensation [95,96] where one can accomplish a similar breaking. Non-perturbative effects are needed to produce
such a condensate which makes the condensate analysis more difficult. However, if the gaugino condensate [95] does
occur the gravitino mass generated by such a condensate will be of size m3/2 ∼ �2〈��0�〉. In this case the condensate
|〈��0�〉| ∼ (1012−13) GeV will lead to an m3/2 again in the electro-weak region. Further, the result of Eq. (76) arises
from certain simple assumptions about the nature of the Kahler potential and on the gauge kinetic energy function that
were stated in the paragraph preceding Eq. (72). On the other hand, the nature of the Kahler potential in supergravity is
determined by the physics at the Planck scale of which we have as yet not a firm grasp. For this reason it is reasonable
to explore deformations of the Kahler potential from the flat Kahler potential limit, i.e., consider non-universalities
[97,98]. One possibility is to consider non-universalities in the Higgs sector, and in the third generation sector and also
allow for non-universalities in the gaugino sector by allowing for field dependent gauge kinetic energy function f
�.
For instance, non-universalities for the Higgs boson masses at the GUT scale arising from deformations of the Kahler
potential will lead to [99–102]

mHi
(0) = m0(1 + �i ), i = 1, 2. (77)

For the case of non-universalities an additional correction term arises at low energies in the renormalization group
evolution [103], i.e.,

�m2
H1

= − 3
5S0p, �m2

H2
= − 3

5S0p, (78)
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where S0 is given by

S0 = Tr(Ym2) = m2
H2

− m2
H1

+
ng∑
i=1

(m2
Q̃

− 2m2
ũ + m2

d̃
− m2

L̃
+ m2

ẽ ). (79)

Here all the masses are taken at the GUT scale, and ng is the number of generations and p is defined by p= 5
66 [1−(


1(t)

1(0)

)],
where 
1(0) = g2

1(0)/4� is the U(1) gauge coupling constant at the GUT scale. The Tr(Ym2) term vanishes for the
universal case but contributes in the presence of non-universalities [103]. Similarly, non-universalities can be introduced
in the third generation sector.

An important aspect of SUGRA models is the possibility of realizing radiative breaking of the electroweak symmetry
on the so-called hyperbolic branch (HB) [104]. To see how this comes about we consider the radiative symmetry breaking
constraint expressed in terms of the soft parameters only

C1m
2
0 + C3m

′2
1/2 + C′

2A
2
0 + ��2

loop = �2 + M2
Z/2, (80)

where m′
1/2 = m1/2 + 1

2A0C4/C3, and C1 etc. are determined purely in terms of gauge and Yukawa couplings, and

��2
loop is the loop correction [93]. The correction ��2

loop plays an important role as it controls the behavior of radiative
breaking specially for moderate to large values of tan �. To see this phenomenon we note that the coefficients C′

2, C3
are positive and the loop corrections are typically small for small tan � when Q = MZ . In this case one finds that
C1 > 0 and thus Eq. (80) implies that the soft parameters lie on the surface of an ellipsoid. However, as tan � > 5 the
loop correction ��2 becomes sizable and also C1(Q) develops a significant Q dependence. One may then choose a Q
value where ��2 is minimized. Quite remarkably then one finds that C1(Q0) turns negative. The implications of this
switch in sign means that the soft parameters can get large while � remains fixed. Thus if one thinks of �/MZ as the
fine tuning parameter, then in this case the switch in sign implies that for a fixed fine tuning, the soft parameters lie on
the surface of a hyperboloid. This is the hyperbolic branch of radiative breaking of the electroweak symmetry and this
branch does not limit the soft parameters stringently the way the ellipsoidal branch did [104]. The so called focus point
region [105] is included in the hyperbolic branch [104,106].

There are several novel phenomena that occur on the hyperbolic branch. Thus as m0 and m1/2 get large with �
remaining relatively small, the light chargino becomes higgsino like while the lightest neutralino and the next to the
lightest neutralino become degenerate and also essentially higgsino like. Typically the following pattern of masses
emerges when m0 and m1/2 get large on HB [107]: m�̃0

1
< m�̃±

1
< m�̃0

2
. This relation holds at the tree level and there

could be important loop corrections to this relation. The mass differences �M± = m�̃±
1

− m�̃0
1

and �M0 = m�̃0
2
− m�̃0

1
depend significantly on the location on HB. For the deep HB region with large m0 and m1/2 and small � these mass
differences will be typically small, i.e., O(10) GeV. The implications for such a scenario are many. Thus the usual
missing energy signals in the decay of the chargino and in other sparticle decayswould not work as in the usual SUGRA
scenario which implies that one must look for alternative signals to search for supersymmetry on the hyperbolic branch
in this region. Quite remarkably dark matter constraints can be satisfied on HB. Since m0 is typically large on HB, with
m0 becoming as large as 10 TeV, proton lifetime is enhanced significantly especially in the deep HB region. The HB
region is essentially like the split SUSY scenario which is discussed elsewhere in this report in greater depth. There
are also a variety of other approaches to supersymmetry breaking. Chief among these is the gauge mediated breaking.
The reader is directed to recent reports for reviews [108,109].

An interesting issue concerns the origin of �. For phenomenological reasons we expect � to be of electroweak size.
The challenge to achieve a � of electroweak size while the other scales appearing in the theory are MG and MPl is the
so called � problem. One possibility is that such a term in absent in the theory for the case of unbroken supersymmetry
and arises only as a consequence of breaking of supersymmetry. In this circumstance a term appearing in the Kahler
potential of the form H1H2 can be transferred by a Kahler transformation into the superpotential and a � term naturally
appears in the superpotential which is of size the weak supersymmetry breaking scale [12,97,110]. There are indications
that a term of the form H1H2 can arise in string theory [111,112]. Another issue of theoretical interest concerns the
stability of the weak- scale hierarchy. A potential danger arises from non-renormalizable couplings in supergravity
models since they can lead to power law divergences which can destabilize the hierarchy. This problem has been
investigated at one loop [113,114] and at two loops [115]. At the one loop level the minimal supersymmetric standard
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model appears to be safe from divergences [113]. At the two loop level divergences can appear when the visible sector
is directly coupled to the hidden sector where supersymmetry breaking occurs [115]. We end this section by directing
the reader to Appendix D where the mass matrices for the sparticles are discussed since these matrices enter in the
computation of the dressing diagrams for the dimension five operators.

4.3. Effect of CP violating phases on proton lifetime

CP phases affect proton lifetime. As is well known the CP phase that appears in the SM via the CKM matrix is not
sufficient to generate the desired amount of baryon asymmetry in the universe. Here supersymmetry is helpful. The soft
breaking sector of supersymmetry provides a new source of CP violation. This new source of CP violation arises from
the soft breaking sector of supergravity and string theory models. Usually this type of CP violation is called explicit
CP violation. If we allow for explicit CP violation, then the parameter space of mSUGRA allows for two phases which
can be chosen to be the phase of �0 and the phase of the trilinear coupling parameter A0. Including these the parameter
space of mSUGRA for the complex case is

m0, m1/2, A0, tan �, ��0
, 
0, (81)

where �0 = |�0| exp(i��0
), and A0 = |A0| exp(i
0). For the case of non-universal sugra model one also has more CP

violating phases. These phases can arise in the trilinear parameters and in the gaugino sector. Thus more generally we
will have phases in addition to �� so that

mi = |mi |ei�i (i = 1, 2, 3); Af = |Af |ei
Af , f = flavor, (82)

where mi (i = 1, 2, 3) are the gaugino masses for SU(3)C × SU(2)L × U(1)Y gauge sectors. Not all the phases are
independent and only certain combination of them appear after field redefinitions. As indicated already in the context
of CP phases in the Standard Model one needs to make certain that the constraints from experiment on the electric
dipole moments (edm) of elementary particles are satisfied. Currently the most sensitive experimental limits are for the
edm of the electron, of the neutron and of the 199Hg atom. The current limits on these are [116–118]

|de| < 2 × 10−27 ecm, |dn| < 6 × 10−26 ecm, |dHg| < 2 × 10−28 ecm. (83)

Now one approach to satisfy these constraints in supersymmetric theories is to simply assume the CP phases to be
small [119]. In this circumstance the CP phases play no role in the supersymmetry phenomenology and have no effect
on the proton lifetime. However, as pointed out already one needs a new source of CP violation for generating baryon
asymmetry in the universe and from that view point it is useful to have the possibility that at least one or more of
the SUSY phases are large. Now it turns out that there are a variety of ways in which one can have large CP phases
in supersymmetry and consistency with experiment on the edm [120–123]. One such possibility is mass suppression
where one may have large sparticle masses especially for the first two generations. In this case some of the sparticles
but not all would have to be massive with masses lying in the TeV range. For instance the heaviness of the sfermions for
the first two generations will guarantee the satisfaction of the edms while the gluino, the chargino and the neutralino
could be light enough to be accessible at the LHC. This is precisely the situation that arises also on the hyperbolic
branch (HB) of radiative breaking of the electroweak symmetry.

Another is the intriguing possibility for the suppression of the edmss [124]. In supersymmetry there are three
different types of contributions to the edm of the elementary particles. These arise from the electric–dipole operator,
the chromoelectric dipole operator and from the purely gluonic dimension six operator of Weinberg [125]. In general
these operators receive contributions from the gluino, from the chargino, and from the neutralino exchanges. Now in
certain arrangement of phases there are cancellations among the contributions from the gluino, from the chargino and
from the neutralino exchanges, as well as among the contributions from the electric dipole, from the chromoelectric
dipole and from the purely gluonic dimension six operators. These allow the reduction of the edms of the electron, of the
neutron and of the 199Hg atom below their current experimental limits (for further developments see Refs. [126–132]).
Additionally, it turns out that there is a scaling which approximately preserves the smallness of the edms as one scales
in m0 and m1/2 by a common factor. Thus with the help of scaling, given a point in the parameter space where the
edm is small one can generate a trajectory where the edms remain small [133]. Using this procedure one can generate
a region in the moduli space where the phases are large and the edms are within the current experimental bounds.
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The presence of large CP phases affect all the supersymmetric phenomena. As an example the phases will lead to
a mixing of the CP even and the CP odd Higgs bosons [134] which makes the Higgs boson and dark matter searches
more interesting and more intricate. The inclusion of CP phases also has an effect on the proton lifetime. To see this
we note that the inclusion of phases in the gaugino masses and in the parameter � affect the chargino, the neutralino,
the squark and the slepton mass matrices. Thus, for example, with the inclusion of phases the chargino mass matrix is

MC =
( |M2|ei�2

√
2mW sin �√

2mW cos � |�|ei��

)
(84)

which can be diagonalized by the following biunitary transformation

U∗MCS−1 = diag(m�̃+
1
, m�̃+

2
), (85)

where U and S are unitary matrices. To exhibit the sensitivity of the chargino masses on the phases we note that

m2
�̃+

1
m2

�̃+
2

= |�M2|2 + M4
W sin2(2�) − 2|�M2|M2

W sin(2�) cos(�� + �3). (86)

The last term in Eq. (86) changes sign as (�� + �3) varies from 0 to � which exhibits the sharp phase dependence of
the chargino masses. Consequently the chargino propagators that enter in the dressing of the baryon and lepton number
violating dimension five operators are sensitive to the CP phases. A similar situation holds for other sparticle exchanges
in the dressing loops, e.g., the neutralino and the squark exchanges, etc. Thus, for example, the up-squark mass matrix
in the presence of phases becomes

M2
ũ =

(
M2

Q̃
+ m2

u + M2
Z( 1

2 − Qus
2
W) cos 2� mu(A

∗
u − � cot �)

mu(Au − �∗ cot �) m2
ũ

+ m2
u + M2

ZQus
2
W cos 2�

)
,

where � and Au are complex. Consequently, the squark masses dependent on the phases. The phase dependence can
be quite significant similar to the phase dependence for the chargino case discussed above. CP phases also enter in the
fermion–sfermion–gaugino vertices. The dependence there arises from the diagonalizing matrices, i.e., from U and S

matrices that appear in Eq. (85) and similar matrices arising from the diagonalization of the squark sector. The above
are the two main avenues by which the CP phases enter proton decay, i.e., via modifications of the sparticle masses
and via the vertices. The effects of these modifications can be included by following the standard procedure where one
expresses the squark and slepton fields in terms of their sources. Thus, for example, one can write

ũiL = 2
∫ [

�L
ui

�LI

�ũ
†
iL

, +�LR
i

�LI

�ũ
†
iR

]
,

ũiR = 2
∫ [

�R
ui

�LI

�ũ
†
iR

+ �RL
i

�LI

�ũ
†
iL

]
. (87)

where LI contains all the fermion–sfermion–chargino, fermion–sfermion–neutralino, and fermion–sfermion–gluino
interactions. In the above �L

ui , �
R
ui , �

LR
ui , �RL

ui are linear combinations of the propagators for the mass eigen states. For
the CP conserving case one has �LR

ui = �RL
ui , but is no longer the case when CP violating phases are present, and in

the presence of CP phases �LR
ui 
= �RL

ui . This is yet another way in which CP violating effects enter in the dressing
loop function. Of course as pointed out above the propagators for the mass eigen states as well as the vertices are also
dependent on the phases.

In addition to the above, CP phases can modify drastically the nature of interference involving different generations
in the dressing loops. Specifically, for supersymmetric proton decay the major contributions arise from the dressing
loops involving the second and the third generations. The phases define the relative strength with which they interfere,
and with appropriate choice of phases a constructive interference can become destructive interference suppressing the
dressing loop. This is one of the ways in which the proton lifetime can be enhanced. The above analysis shows that
phases do affect proton lifetime and the effects can be quite significant. An analysis of proton lifetime with the inclusion
of phases is given in Ref. [135] where it is found that the CP phases that enter via the dressing loops can affect the
proton lifetime estimates by much as a factor of 2 or even more.
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4.4. Doublet–triplet splitting problem

One of the main issues in GUT model building is the doublet–triplet splitting. Thus in the simplest SU(5) model one
has two Higgs multiplets 5H and 5̄H and the simplest scheme to affect doublet–triplet splitting is via fine tuning where
one takes the following combination:

WG = �1

[
1

3
�3 + 1

2
M�2

]
+ �2H2[� + 3M ′]H1, (88)

where � is a 24-plet of Higgs whose VEV formation breaks SU(5) and where M is of size MG. Now minimization
of the effective potential generates a VEV for the � field and assuming that the VEV formation breaks SU(5) →
SU(3)C × SU(2)L × U(1)Y one has

〈�i
j 〉 = M diag(2, 2, 2, −3, −3). (89)

A fine tuning M ′ = M then makes the Higgs doublets light while Higgs triplets are supermassive with masses of order
the GUT scale if M is of size MG. There are alternate possibilities where one can avoid a fine tuning in order to recover
light Higgs doublets. One well known mechanism for this is the missing partner mechanism [136,137] where one
replaces the 24-plet of Higgs with 50, 50, 75 Higgs representations. Consider for instance a Higgs sector of the form

W ′
G = �150ijk

Hlm75lm
HijH2k + �250

ij

Hklm75lm
HijH

k
1 + W ′′

G(75H ). (90)

Let us assume that the scalar potential generated by W ′′
G(75H ) supports a VEV formation for the 75-plet field with

〈75〉 ∼ M . Inserting this VEV growth in the rest of W ′
G one finds that the Higgs triplets become supermassive while

the Higgs doublets remain light. To see this more clearly let us look at the SU(3)C × SU(2) × U(1) content of 50-plet
representation

50H = (1, 1, −12) + (3, 1, −2) + (3̄, 2, −7) + (6̄, 3, −2) + (6, 2, −7) + (8, 2, 3) + (15, 1, −2). (91)

Quite remarkably one finds that there is no SU(2)-doublet-color-singlet in the above and similar is the case for 50H .
Thus the VEV formation of 75-plet and breaking of the SU(5) symmetry leave a pair of light Higgs doublets coming
from 5H and 5̄H . On the other hand one finds that Eq. (91) contains a Higgs color triplet (3, 1, −2) which can tie up
with the color anti-triplet from H2 making them supermassive. Thus in this fashion the color triplets and anti-triplets
from Hi

1 and H2i become superheavy while the Higgs doublets remain light. There are a variety of other avenues for
splitting the doublets from the triplets.

An interesting possibility for realizing light Higgs iso-doublets without the necessity of fine tuning arises in SU(6)

[138]. Thus consider an SU(6) grand unification where the Higgs sector of the theory consists of a 35-plet field � and
a pair of 6(H) and 6̄(H̄ ) multiplets. In particular consider the superpotential in the Higgs sector so that:

W = M Tr �2 + h Tr �3 + �Y (HH − �2), (92)

where Y is an auxiliary SU(6) singlet field. This model has a global SU(6)� × U(6)H symmetry. The superpotential of
Eq. (92) can lead to spontaneous breaking of this symmetry with VEV formation of the �, H, and H fields such that

〈�〉 = V� diag(1, 1, 1, 1, −2, −2) (93)

and

〈H 〉T = 〈H 〉T = VH (1, 0, 0, 0, 0, 0), (94)

where V� = M/h, and VH = �. Here 〈H 〉, and 〈H 〉 break SU(6) down to SU(5), while 〈�〉 breaks SU(6) down to
SU(4)×SU(2)×U(1), which together lead to the breaking of the local SU(6) symmetry down to residual gauge group
symmetry SU(3)C × SU(2)L × U(1)Y . At the same time the global symmetry SU(6)� × U(6)H is broken down to
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[SU(4) × SU(2) × U(1)]� × U(5)H . All the Goldstones bosons are eaten by the SU(6)/SU(3)C × SU(2)L × U(1)Y
coset gauge bosons which become super-heavy, and only a pair of Higgs doublets remain massless. These are the
pseudo-Goldstone bosons which are identified as the MSSM Higgs doublets. The matter sector of SU(6) consists of
three families each containing (6+6+15), and one 20-plet of matter. These have the following SU(5) decompositions:

20 = 10 + 10 = (q + uC + eC)10 + (QC + U + E)10, (95)

15 = 10 + 5 = (q + uC + eC)10 + (D + LC)5, (96)

6 = 5 + 1 = (dC + l)5 + n, (97)

6 = 5
′ + 1′ = (DC + L)5

′ + n′. (98)

As in SU(5) supersymmetric grand unified model this model also contains baryon and lepton number violating dimension
five operators and one needs a mechanism to suppress them. An investigation of proton decay in this class of models
is given in Ref. [139]. The doublet–triplet splitting in the context of SO(10) will be discussed in Section 4.6, and for
the case of models with extra dimensions in Section 6.

4.5. Proton decay in SU(5) supersymmetric grand unification

The decay of the proton in the minimal SU(5) model is governed by

WY = − 1
8f1ij εuvwxyH

u
1 10vw

i 10xy
j + f2ij H̄2u5̄iv10uv

j , (99)

where 5̄ix and 10xy
i (i = 1, 2, 3) are the 5̄ and 10 of SU(5) which contain the three generations of quarks and leptons,

and H1, H2 are the 5̄,5 of Higgs, and f ’s are the Yukawa couplings. After the breakdown of the GUT symmetry there
is a splitting of the Higgs multiplets where the Higgs triplets become super-heavy and the Higgs doublets remain light
by one of the mechanisms discussed in Section 4.4. One can now integrate on the Higgs triplet field and obtain an
effective interaction at low energy which contains baryon and lepton number violating dimension five operators with
chirality LLLL and RRRR such that

W(LLLL) = 1

M
εabc(Pf u

1V )ij (f
d
2 )kl(ũLbi d̃Lcj (ē

c
Lk(V uL)al − �c

kdLal) + · · ·) + H.c.,

W(RRRR) = − 1

M
εabc(V

†f u)ij (PVf d)kl(ē
c
RiuRaj ũRckd̃Rbl + · · ·) + H.c., (100)

where V is the CKM matrix and fi , Pi are generational phases

Pi = (ei�i ),
∑

i

�i = 0; i = 1, 2, 3. (101)

Both LLLL and RRRR interactions must be taken into account in a full analysis and their relative strength depends
on the part of the parameter space where their effects are computed. The operators of Eq. (100) are dimension five
operators which must be dressed via the exchange of gluinos, charginos and neutralinos. The dressings give rise to
dimension six operators. A partial analysis of the dressing loops was given in Refs. [140,141], and a full analysis was
first given in Refs. [142,143] and worked on further in Refs. [144–146]. These dimension six operators are then used
in the computation of proton decay. In the dressings one takes into account the L-R mixings, where, the mass diagonal
states for sfermions are related to the chiral left and right states by a unitary transformation. After dressing of the
dimension 5 by the gluino, the chargino and the neutralino exchanges one finds baryon and lepton number violating
dimension six operators with chiral structures LLLL, LLRR, RRLL and RRRR in the Lagrangian. In the minimal SU(5)

model the dominant decay modes of the proton involve pseudo-scalar bosons and anti-leptons, i.e.,

�̄iK
+, �̄i�

+, e+K0, �+K0, e+�0, �+�0, e+�, �+�; i = e, �, �. (102)
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The relative strengths of these decay modes depend on various factors, such as quark masses, CKM factors, and the
third generation effects in the loop diagrams which are parametrized by ytk

1 , etc. The various decay modes and some
of the factors that control these decays modes are summarized in table below.

Leptonic decay modes of the proton

Mode Quark factors CKM factors

�̄eK V
†
11V21V22 mdmc

�̄�K V
†
21V21V22 msmc

�̄�K V
†
31V21V22 mbmc

�̄e�, �̄e� V
†
11V

2
21 mdmc

�̄��, �̄�� V
†
21V

2
21 msmc

�̄��, �̄�� V
†
31V

2
21 mbmc

eK V
†
11V12 mdmu

��, �� V
†
11V

†
21 msmd

The order of magnitude estimates can be gotten by keeping in mind muV11>mcV21>mtV31. In general the most
dominant mode is �̄K in the minimal supersymmetric SU(5) model. In the analysis below we will ignore the mixings
among the neutrinos, a good approximation for a detector with size much smaller than the neutrino oscillation length.
In this approximation the chargino exchange contributions involving the second generation to this decay is [142]

�(p → �̄iK
+) = �2

pmN

M2
T 32�f 2

�

(
1 − m2

K

m2
N

)2

|A�iK |2A2
L(AL

S )2
∣∣∣∣(1 + mN(D + F)

mB

)∣∣∣∣2, (103)

where �p is defined by Eq. (519) and where we have used a subscript p to distinguish it from the � in tan � and where

A�iK = (sin 2�M2
W)−1
2

2P2mcm
d
i V

†
i1V21V22[I (c̃; d̃i; W̃ ) + I (c̃; ẽi; W̃ )]. (104)

Here I (c̃; d̃i; W̃ ) are dressing loop functions as defined in Ref. [142]. Further, one can take into account the contribution
of the third generation exchange via corrections parametrized by ytk

i where [142]

ytK
i = P2

P3

(
mtV31V32

mcV21V22

)(
I (t̃ , d̃i , W̃ ) + I (t̃ , ẽi , W̃ )

I (c̃, d̃i , W̃ ) + I (c̃, ẽi , W̃ )

)
. (105)

Here P2 and P3 are the relative intrinsic parities of the second and the third generation as defined by Eq. (101). The
ratio P2/P3 is a relative phase factor which can generate a constructive or a destructive interference between the second
generation and the third generation contributions. An enhancement of the proton lifetime can occur by a destructive
interference and the maximum destructive interference occurs when P2/P3 = −1. Similarly one can take into account
the gluino and the neutralino exchange contributions to the dressing loops. Thus, for example, the gluino exchange
contribution can be parametrized by yg̃ where [142]

yg̃ = P1

P2


3


2

muV11

mcV21V
†
21V22

H(ũ; d̃ : g̃) − H(d̃ : d̃; g̃)

I (c̃; s̃; W̃ ) + I (c̃; �̃; W̃ )
, (106)

where I and H are loop functions as defined in Ref. [142]. It is now easily seen that the gluino contribution given by
Eq. (106) vanishes when the ũ and d̃ squarks are degenerate.

In general the contributions of both the LLLL and the RRRR dimension five operators to the proton decay amplitudes
are important and their relative contributions vary depending on the part of the parameter space one is in. Specifically,
for example, the RRRR dimension five operators can make a significant contribution to the �̄�K mode. The important
contribution of the RRRR operators was first observed in Ref. [142] and later also noted in Ref. [145,147–149]. Further,
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the relative contributions of the dressing loop can modify the relative strength of the partial decay widths. Thus consider
the situation where the third generation contribution cancels approximately the second generation contribution in the
�̄K+ mode. In this case the subdominant mode �̄�+ will be relatively enhanced and become comparable to the �̄K+
mode [142,143]. In addition to the nucleon decay modes involving pseudo-scalar bosons and anti-leptons, one also
has in general decay modes involving vector bosons and anti-leptons. The source of these modes are the same baryon
number violating dimension six quark operators that give rise to the decay modes that give rise to pseudo-scalar and
anti-lepton modes. The vector decay modes of the proton are

�̄iK
∗, �̄i�, �̄i	, eK∗, �K∗, e�, ��, e	, �	; i = e, �, �. (107)

A chiral lagrangian analysis of these modes is carried out in Ref. [150]. However, the vector meson decay modes have
generally smaller branching ratios than the corresponding pseudo-scalar decay modes. An analysis of these vector
boson decay modes for the supergravity SU(5) model is given in Ref. [151]. Another interesting mode is p → e+�.
While this mode would be suppressed by a factor of 
, it has some interesting features in that it is a relatively clean
mode free of strong final state interactions and nuclear absorption. An estimate of the decay rate is given in Ref. [152].
A more recent analysis of this decay mode is given in Ref. [153]. A closely related process is the decay of the bound
neutron so that [153].

n → ��̄. (108)

This decay is interesting since the anti-neutrino will escape detection in the detector and the only visible signal will be
just a photon of energy about half a GeV [153]. An estimate of the lifetime here gives 1038±1 yr.

The issue of viability of the supersymmetric grand unification and specifically of the minimal supersymmetric SU(5)

has recently been analyzed [154,155]. The work of Ref. [155] which is focused on the minimal SU(5) model analyzed
the dual constraints arising from gauge coupling unification and proton partial lifetime limits for the �̄K+ mode and
found them to be incompatible. Thus according to the work of Ref. [155] gauge coupling unification in the minimal
supersymmetric SU(5) constrains the Higgs triplet mass to lie in the range

3.5 × 1014 �MT �3.6 × 1015 GeV (109)

at the 90% confidence level. Using the partial lifetime lower limit on the �̄K+ mode of 6.7 × 1032 yr (the current limit
for this mode is > 2.3 × 1033 yr) they find a lower limit on the Higgs triplet mass of [155]

MT �7.6 × 1016 GeV. (110)

The above led the authors of Ref. [155] to conclude that the minimal supersymmetric SU(5) is ruled out. However, as
is well-known the minimal supersymmetric SU(5) is not a realistic model since the relation between fermion masses
are not in agreement with experiment.

There are a number of ways in which the incompatibility of Eq. (109) and Eq. (110) can be overcome. Thus for
example, the addition of Planck scale corrections can drastically alter the picture [156,157]. An analysis along these
lines with inclusion of higher dimensional operators [158–160], crucial for fermion masses, and inclusion of mixings
between fermion and sfermions is carried out in Refs. [158,159]. The work of Refs. [158,159] concludes that the
uncertainty in the theoretical predictions is as much as 103 or even larger for the minimal model to be ruled out when
modifications of the above type are included. (For an earlier analysis of uncertainties in the prediction of proton decay
lifetime in the context of non-supersymmetric grand unification see Ref. [161].) The constraint of Eq. (110) on the
SU(5) model can be significantly softened if the Higgs sector at the GUT scale contains higher dimensional operators.
Thus, for example, if the superpotential in the Higgs sector contains operators of the Tr(�2)2/MPl and Tr(�4)/MPl,
then the gauge coupling unification and the Higgs triplet constraints can be reconciled more easily in certain regions
of the parameter space of the Higgs potential. One consequence of the addition of higher dimensional operators is
to generate a splitting in the GUT masses of �3 and �8. This splitting turns out to be rather useful in softening the
constraints on the SU(5) GUT model. Specifically, in Ref. [159], an explicit analysis shows that it is possible to satisfy
the bound on MT from proton decay once the splitting between the masses of the fields �3 and �8 is taken into
account. As pointed out above such a splitting is quite natural when higher-dimensional operators are included in the
Higgs sector.
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There are additional ways in which one can find compatibility of gauge coupling unification and the KamioKande
lower limits on the proton lifetime. For example, presence of additional matter in the desert between MZ and MG could
increase the Higgs triplet mass removing the constraint. Another possibility is to enhance the proton lifetime by fine
tuning or by a discrete symmetry if there are additional Higgs triplet fields present [162]. Thus, for example, with many
Higgs triplet fields the proton decay inducing dimension five operators are governed by the interaction

T̄1J + K̄T1 + T̄iMijTj . (111)

In the above we have made a redefinition of fields so that the Higgs triplet and anti-triplet that couple with matter are
labeled T1, T̄1, while J and K̄ are matter currents, and Mij is the Higgs triplet mass matrix. A suppression of proton
decay in these theories can be engineered if [162]

(M−1)11 = 0. (112)

A suppression of this type can occur in the presence of many Higgs triplet fields by a discrete symmetry, or by a non-
standard embedding [162,163]. Another possibility for the suppression of proton decay is via gravitational smearing
effects discussed in Section 5.2.

4.6. Nucleon decay in SO(10) theories

The SO(10) is an interesting group in that a single spinor representation of SO(10) can accommodate a full generation
of quarks and leptons. Thus the 16-plet of SO(10) has the following decomposition in terms of SU(5):

16 = 10 + 5̄ + 1, (113)

where the 5̄- and 10-plets accommodates the full set of one generation of quarks and leptons and in addition on has the
singlet field which is a right handed neutrino needed for generating see-saw masses for the neutrinos. One, of course,
must break the SO(10) gauge symmetry down to SU(3)C × SU(2)L × U(1)Y and further break SU(2)L × U(1)Y
down to U(1)em. Now a combination of 45H and a 16H + 16H can break the symmetry down to the Standard Model
gauge group symmetry. Further, a 10-plet of Higgs gives the two SU(2)L doublets of Higgs that are needed to break
SU(2)L × U(1)Y down to U(1)em. Thus a 45, 16H + 16H and a 10-plet of Higgs are a minimal set that is needed to
break SO(10) down to SU(3)C ×U(1)em. Now the Higgs content of a model is determined not only by the requirement
that the SO(10) gauge group completely breaks down to SU(3)C ×U(1)em, but also by the constraint that one produce
Yukawa couplings, quark–lepton mass matrices, and neutrino textures consistent with the current experiment. Further,
the stringent proton decay limits put further constraints on the Higgs content of a model. Attempts to satisfy partially
or in whole these constraints has led to a huge number of SO(10) models with a variety of Higgs structures. Following
is a list of the some of the most commonly employed Higgs representations:

10H , 16H + 16H , 45H , 54H , 120H , 126H + 126H , 210H . (114)

More recently the following Higgs structure has been used

144H + 144H (115)

to accomplish a one step breaking of SO(10) down to the Standard Model gauge group. We will discuss this possibility
in greater detail later. In most models the Higgs contents of the model do contain the 45-plet representation. This
representation is also interesting as it enters in accomplishing doublet–triplet splitting. There are many ways in which the
VEV formation can take place in the 45-plet consistent with the Standard Model gauge group SU(3)C ×SU(2)×U(1)Y .
Some of the possible directions for the 〈45〉 plet VEVs are

v1i�2(1, 1, 1, 1, 1), v2i�2(0, 0, 0, −1, −1), v3i�2(1, 1, 1, 0, 0),

v4i�2(
2
3 , 2

3 , 2
3 , −1, −1). (116)

Here the VEV formation v1 breaks SO(10) down to SU(5) × U(1), v2 is along the third component T3R of SU(2)R
and breaks the SO(10) symmetry down to SU(3)C × SU(2)L × U(1)T3R

× U(1)B.L, v3 is along the B.L direction and
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breaks the SO(10) symmetry down to SU(3)C × SU(2)L × SU(2)R × U(1)B.L, while v4 is along the hypercharge Y
direction and breaks the SO(10) symmetry down to SU(3)C × SU(2)L × U(1)Y × U(1). Thus the VEV formations for
the cases v2, v3, v4 all break SU(5).

The Yukawa couplings for the 16-plets at the cubic level can be generated by 10-, 126- and 120-plets of Higgs. The
coupling of the 10-plet to the 16-plet of matter in the superpotential is the following:

fab�̃aB���b��, (117)

where a, b are the generation indices. The coupling of the 120-plet to matter is

1
3!fab�̃aB�������b���� (118)

and the coupling of the 126 to matter is given by

1
5!fab�̃aB�����������b������. (119)

The couplings of these can be explicitly computed using the so called Basic Theorem derived in Ref. [164]. The
decomposition of these in terms of SU(5) × U(1) representations is discussed in the Appendix A.

An interesting phenomenon in SO(10) is the possibility of a natural doublet–triplet splitting in SO(10). Consider,
for example, two 10 plets of SO(10) Higgs fields 101-, 102-, and a 45-plet of Higgs and consider a superpotential for
the Higgs fields of the form

WH = M102
2 + �101.45.102. (120)

Consider now that a VEV formation takes place for the 45-plet field so that

〈45〉 = diag(v, v, v, 0, 0) × i�2. (121)

We may decompose the 10-plet of Higgs in SU(5) representations so that 10 = 5 + 5̄. The above leads to the following
mass matrices for the doublets and the triplets. Thus for the Higgs doublets one finds

(5
d

15
d

2)

(
0 0

0 M2

)(
5d

1

5d
2

)
. (122)

Here one finds that one pair of Higgs doublets is light while the second pair is supermassive. For the case of the Higgs
triplet one finds the following mass matrix:

(5
t

15
t

2)

(
0 �v

�v M2

)(
5t

1

5t
2

)
. (123)

Here both pairs of Higgs triplets are superheavy. Further, the Higgs triplet combination which enters in the Higgsino
mediated proton decay have an effective mass which is given by [147]

Mt
eff = �2v2

M2
. (124)

The above allows the possibility of raising Meff by adjustment of �v and M2. Of course one must check that the
unification of gauge couplings is maintained [147,165]. It is also possible to get a strong suppression of baryon and
lepton number violating dimension five operators as we now discuss. For this purpose we consider a bit more elaborate
Higgs structure. Thus consider the case when the Higgs potential and the Higgs interactions with matter have the
form [165]

WMH = M103H 103H + �1101H 45H 102H + �2102H 45H 103H + JM
i 10iH , (125)

where the 45-plet of Higgs develops a VEV as in Eq. (121) and the 45′-plet develops a VEV as follows:

〈45′′〉 = diag(0, 0, 0, v′, v′) × i�2. (126)
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Here one has three color triplets and anti-triplets coming from the 10i (i = 1, 2, 3) and also three iso-doublet pairs.
The mass matrix in the Higgs doublet and in the Higgs triplet sectors are

Mt =
⎛⎝ 0 �1v 0

−�1v 0 0

0 0 M

⎞⎠ , Md =
⎛⎝0 0 0

0 0 �2v
′

0 −�2v
′ M

⎞⎠ . (127)

Here one has one pair of light Higgs doublets while all the Higgs triplets are heavy. If we define the fields so that the
Higgs multiplet that couples with matter is 101H of Higgs, then only the coupling JM

1 101H appears in Eq. (125) and
one finds that the (Mt)−1

11 = 0 (see Eq. (112)) and thus there are no dimension five operators arising from the exchange
of the Higgs triplets and we have a strong suppression of proton decay.

In Ref. [166] an attempt is made at the analysis of fermion masses in a class of SO(10) models and a more detailed
analysis of one model was given in Ref. [147] where an investigation of proton decay rates along with quark–lepton
textures was carried out. A mechanism of the type Eq. (122) and Eq. (123) is used in the analysis of Ref. [147] to get a
doublet–triplet splitting. The Higgs sector of the model consists of two 10-plets of Higgs 101H , 102H and three 45-plets
of Higgs 451H , 452H , 4̃5H which develop VEV’s in the B–L, hypercharge and in the SU(5) invariant direction, and in
addition one has an SO(10) singlet field S which develops a VEV of Planck size. Only the third generation of matter
has cubic couplings, i.e., O33 = 163101163 while couplings where the first or second generation of matter enter are
quartic or higher suppressed by appropriate mass factors, i.e., the effective operators are of the form

Oij =
(

n∏
k=1

M−1
k

)
16i451 . . . 45m1045m+1 . . . 45n16j . (128)

Here Mk could be order the Planck scale or the GUT scale as needed to get the right textures. For the model discussed
in Ref. [147] the branching ratios of proton decay into different modes differ significantly from the predictions of a
generic SU(5) model. The analysis of neutrino masses is not included in this work.

A somewhat different scheme is adopted for doublet–triplet splitting in the work of Ref. [148]. Here a 45-plet of
SO(10) is used to break the SO(10) symmetry in the B–L direction, a pair of 16H + 16H is used to break the B–L

symmetry, and 10-plets of Higgs are used to break the electroweak symmetry. Specifically one considers two 10-plets
of Higgs 101H and 102H , one 45H adjoint Higgs and a pair of 16H + 16H of Higgs. The superpotential is of the form

WH = M10102
2H + M1616H .16H + �1101H .45H .102H + �216H .16H .101H . (129)

Assuming that the 45H and 16H develop VEVs we have the following mass matrix:

(51015102 516)

⎛⎝ 0 �1〈45〉 �2〈16H 〉
−�1〈45〉 M10 0

0 0 M16

⎞⎠⎛⎝5101

5102

516

⎞⎠ . (130)

Here one finds again that with the VEV of 45 in the B–L direction that one has one pair of light Higgs doublets while the
Higgs triplets all become heavy. Here the light Higgs doublet that couples to the down quarks is a linear combination
of the Higgs doublets from the 101H and from 16H . Thus the two Higgs doublets of MSSM are

Hu = 101H , Hd = cos 
101H + sin 
16H , (131)

where tan 
 = �2〈16H 〉/M16. In the model of Ref. [148] the matter–Higgs interaction is taken to be of the form

WMH = h33163.163.10H + h2316216310H + 1

M
(�2316216310H 45H + �′

2316216316H 16H )

+ 1

M
(�1216116210H 45H + �′

1216116216H 16H + fij 16i16j 16H 16H ). (132)

In the above the cubic couplings are the typical Yukawa couplings which contribute only to the quark–lepton textures
in the generations 2 and 3 sectors. The quartic interactions with coefficients �ij contribute to textures in all three
generations while the term with coefficient fij contributes to Majorana mass matrix for the neutrinos. A detailed
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analysis of quark–lepton textures, of neutrino oscillations and of proton decay modes in given in Ref. [148]. An
interesting aspect of this analysis is that the corrections to 
3(MZ) from heavy thresholds is rather small and thus
unification of gauge coupling constants is well preserved. Further, update of this work can be found in Ref. [167].

The work of Ref. [168] gives an analysis of proton decay in SO(10) model where the Yukawa couplings arise
from a Higgs structure consisting of 10, 120 and 126 plet representations. Additionally a 210 multiplet is used to
break SO(10). There are six pairs of higgs doublets which arise from the 10-plet (H), the 126-plet (�̄), the 120-plet
(D), and from the 210-plet (�). Thus one has the following set of Higgs doublets hu = (H 10

u , D1
u, D

2
u, �̄u, �u, �u) and

hd =(H 10
d , D1

d , D2
d , �̄d , �d , �d). Each of the sets produce a 6×6 Higgs doublet mass matrix and a fine tuning is needed

to get to the MSSM Higgs doublets which are now linear combinations of the above six Higgs doublets for each Hu and
Hd . A similar situation holds in the Higgs triplet sector. Here one has the following sets of fields for the Higgs triplets
(hT ) and Higgs anti-triplets (hT̄ ): hT = (H 10

T , D1
T , D2

T , �̄T , �T , �′
T , �T ) and hT̄ = (H 10

T̄
, D1

T̄
, D2

T̄
, �̄T̄ , �T̄ , �T̄ �T̄ )

and the Higgs triplet mass matrix is a 7 × 7 matrix. We note that the dimension five operators are only mediated by
interactions arising from 10-plet and 120-plet mediations but these interactions are modified as a consequence of the
mixings in the Higgs triplet sector. Thus the rigid relationship between the Higgs doublet and the Higgs triplet couplings
no longer exist. Using this flexibility the analysis of [168] shows that it is possible to fine tune parameter in the textures
to suppress both LLLL and RRRR dimension five proton decay operators. Another SO(10) model where the Higgs
sector is composed of 10H , 126H , 126H , and 210H is discussed in Ref. [169].

4.7. Proton decay in models with unified symmetry breaking

In all the models discussed above the symmetry breaking is carried out with more than one multiplets of Higgs.
However, it is tempting to think that in a truly grand unified scheme only a single representation of the Higgs multiplet
might accomplish the breaking to the Standard Model gauge group and even all the way down to the residual gauge
group SU(3)C × U(1)em. We will discuss this idea within the context of SO(10) [170] although the idea could have
a more general validity. For the case of SO(10) model building typically the Higgs multiplets used are 45H -plets and
16H + 16H of Higgs and for getting the light higgs doublets one uses in addition 10 plet of Higgs. Thus we see three
different Higgs representations that are used to break SO(10) down to SU(3)C × U(1)em. It is possible, however, to
achieve the breaking of SO(10) to SU(3)3 ×U(1)em with a single irreducible representation, i.e., with a single 144-plet
of Higgs and its conjugate which is a very economical way to break the gauge symmetry [170]. The 144-plet of Higgs
can be decomposed under SU(5) × U(1) as follows:

144 = 5̄(3) + 5(7) + 10(−1) + 15(−1) + 24(−5) + 40(−1) + 45(3). (133)

The decomposition contains the 24-plet of Higgs which is in the adjoint representation of SU(5) and further it carries a
U(1) charge of −5. Thus once the Standard Model singlet in it acquires a VEV one will have a change in the rank of the
gauge group and the SO(10) symmetry will break down to the Standard Model gauge group SU(3)C ×SU(2)L×U(1)Y .
The SU(5) multiplets 5̄(3), 5(7) and 45(3) all contain fields which have the same identical quantum numbers as the
Standard Model Higgs doublet. Thus in addition to two doublets arising from 5̄(3), 5(7) one has one more doublet
arising from the 45-plet which can be seen from the following SU(2) × SU(3) × U(1)Y decomposition

45 = (2, 1)(3) + (1, 3)(−2) + (3, 3)(−2) + (1, 3̄)(8) + (2, 3̄)(−7) + (1, 6̄)(−2) + (2, 8)(3). (134)

Thus we find that one has three pairs of Higgs doublets arising from 144 + 144 leading to a 3 × 3 Higgs doublet mass
matrix and a fine tuning is required to get a light Higgs doublets [170]. Such a fine tuning can be justified within the
framework of recent ideas of string landscapes [171–174]. Since one has a light pair of Higgs doublets one can break
the SU(2) × U(1)Y gauge symmetry down to U(1)em. Thus one finds that with a single pair of 144 + 144 one can
break the SO(10) symmetry down to the residual gauge group SU(3)C × U(1)em

SO(10) → SU(3)C × U(1)em: 144 breaking. (135)

In the Higgs triplet sector one finds that there are four Higgs triplets and anti-triplets two of which arise from 5̄(3), 5(7)

and two from 45 + 45 leading to a 4 × 4 Higgs triplet mass matrix which factorizes further into 3 × 3 and 1 × 1 block
diagonal forms. Further, all the Higgs triplets are heavy. The interactions of the 144-plet Higgs are quartic. Thus the
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superpotential that accomplishes the symmetry breaking of Eq. (135) has the form

WH = M(144H × 144H ) +
∑

i=1,45,210

�1

M ′ (144H × 144H )i(144H × 144H )i . (136)

Of course, many additional self-interactions can be included on the right hand side of Eq. (136) but the terms exhibited
are sufficient to accomplish the desired breaking. There are no cubic interactions of the 144 with the 16-plet of matter
and the lowest such interaction is quartic. Thus the matter–Higgs interactions are

WY =
∑

j=10,120,126

�j

M ′ (16 × 16)j (144 × 144)j (137)

and terms with 144 replaced by 144 can also be added. We note that 〈144〉/M ′ is typically O(1) and thus the above
interactions give baryon and lepton number violating dimension five operators when one of the 144 or 144 is replaced
with a VEV. As already noted above the Higgs triplets arise from the 5 and 5̄ and also from the 45-plet in the 144. Thus
there are now more than one sources of baryon and lepton number violation. Because of this there is the possibility of
internal suppression of the baryon and lepton number violating interactions. One can thus easily enhance the proton
lifetime by this internal cancellation procedure still allowing for the possibility of observation of proton decay in the
next generation of proton decay experiment.

Analyses of higher gauge groups also exist such as, for example, SU(15) [175–177]. Proton decay for this case is
discussed in Ref. [177].

5. Testing grand unification

In this section, we investigate the possibility of making tests of grand unified theories through the decay of the proton.
A variety of phenomena can influence such tests and we investigate them here. In Section 5.1 we give a discussion
of the effects of Yukawa textures on the proton lifetime. The Yukawa textures at a high scale play the important role
of providing a possible explanation for fermion masses. However, the textures in the Higgs triplet sector can be very
different than in the Higgs triplet sector and this phenomenon has an important bearing on the proton lifetime. In
Section 5.2 we discuss the possible effects of gravity on predictions of grand unification. Specifically such effects arise
in supergravity grand unification which involves three arbitrary functions: the superpotential, the Kahler potential, and
the gauge kinetic energy function. The non-universalities in gauge kinetic energy function are known to affect gauge
coupling unification. But they can also affect proton lifetimes. In Section 5.3 we discuss the effects on proton lifetime
from gauge coupling unification. This is so because the gauge coupling unification receives threshold corrections from
the low mass (sparticle) spectrum as well from the high scale (GUT) masses in grand unified models. Since the gauge
couplings are given to a high precision by the LEP data, the gauge coupling unification leads to constraints on the GUT
scale masses, including the Higgs triplet mass, and hence on the proton lifetime. In Section 5.4, a model independent
analysis of distinguishing various GUT models using meson and anti-neutrino final state is given. Specifically three
different models, SU(5), flipped SU(5) and SO(10) are analyzed. In Section 5.5 we discuss the constraints necessary to
eliminate the baryon and lepton number violating dimension six operators induced by gauge interactions. Specifically
it is shown that such constraints can be satisfied for the case of flipped SU(5). In Section 5.6 we discuss the upper
limits on the proton lifetime on baryon and lepton number violating dimension six operators which arise from gauge
interactions. The upper bound is helpful in determining if a given GUT model is allowed or disallowed by experimental
lower limits.

5.1. Textures, Planck scale effects and proton decay

The quark–lepton masses and mixing angles pose a challenge in understanding their hierarchical structure. It is
suggested that perhaps such structure may be understood from simple hypotheses at high scale, i.e., the grand unification
scale or the string scale [178–180]. Thus, for example, in grand unification where the b quark and the � lepton fall
in the same multiplet the experimental ratio mb/m� ∼ 3 at low energy can be understood by the equality of the b–�
Yukawa couplings at the grand unification scale. This occurs in supergravity grand unification but not in ordinary
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(non-supersymmetric) grand unification giving further support to the validity of supersymmetry. However, the same
does not hold for ms/m� and md/me. This discrepancy is attributed to the possibility that the Yukawa couplings at
the high scale have textures. That is the couplings have a matrix form in the flavor space. Thus in MSSM the Yukawa
interactions at the high scale will have the form

Wd = H2u
cY uq + H1d

cY dq + H1lY
eec, (138)

where Yu, Y d, Y e are the texture matrices. A simple choice for these are the ones by Georgi–Jarlskog (GJ) [178] which
(assuming no CP phases) are

Yu =
⎛⎝0 c 0

c 0 b

0 b a

⎞⎠ , Y d,e =
⎛⎝ 0 f 0

f e(1, −3) 0

0 0 d

⎞⎠ , (139)

where a–f have a hierarchy of scales so that a ∼ O(1) and the quantities b–f are appropriate powers of ε where ε < 1.
In addition to the GJ textures there are also a variety of other suggestions. Chief among these are those Ref. [179]
which classify many possibilities. There are various approaches to generating textures [181,182]: grand unification,
Planck scale corrections, models based on an Abelian U(1)X symmetry, and string based models. A possible origin of
the parameter ε is from the ratio of mass scales, e.g., ε = MGUT/Mstr [183,157]. Thus in the context of supergravity
unified models this ratio can arise from higher dimensional operators. In the energy domain below the string scale
after integration over the heavy modes of the string one has an effective theory of the type W = W3 + ∑

n>3 Wn

where Wn(n > 3) are suppressed by the string (Planck) scale and in general contain the adjoints which develop VEVs
∼ O(MGUT). After VEV formation of the heavy fields Wn ∼ O(MGUT/Mstring)

n−3× (operators in W3). With the above
one can generate the necessary hierarchies in the textures.

A technique similar to the addition of Planck scale corrections to generate textures is due to Froggatt and Nielsen
[180] who observed that a way to generate hierarchy of mass scales is through non-renormalizable interactions involving
a flavon field which carries some non-trivial quantum numbers under a U(1)X symmetry. If the Standard Model fields
possess quantum numbers under this U(1)X symmetry which are flavor dependent, then a hierarchy could be generated
when the flavon field develops a vacuum expectation value. Thus, for example, a term in the superpotential involving
the up quarks would have the form

Yu
Nij qiH2u

c
j

(
�

M

)nij

, (140)

where � is the flavon field with a U(1)X charge of −1 and the subscript N on Yu
Nij refers to the non-renormalizable

nature of the interaction. Invariance under U(1)X requires

nij = nqi
+ nH2 + nuc

j
, (141)

where nqi
is the U(1)X charge of the field qi etc. VEV formation for the flavon field will lead to a Yukawa interaction

for the up quarks of the form

Yu
ij qiH2u

c
j ; Yu

ij = Yu
Nij (ε)

nij , ε ≡
( 〈�〉

M

)
. (142)

If theVEV formation for the flavon field occurs below the scale M (so that ε < 1) then desirable fermion mass hierarchies
can occur with appropriate choices of ε and of the U(1)X charges. This is essentially the Froggatt–Nielsen approach
which has been examined in a variety of scenarios.

Typically string models lead to an anomalous U(1)A symmetry and this case has been examined quite extensively.
The cancellation of anomalies impose many constraints limiting the choices for the generation dependent U(1)X
charges. However, that still leaves one with many possibilities [184]. However, more severe restrictions arise when one
includes as a constraint the size of allowed baryon and lepton number violating interaction such as QQQL. The number
of allowed models is then drastically reduced [185–187]. In a variant of the same approach the analysis of Ref. [188]
has considered an anomaly-free U(1) along with some simple ansatz regarding the origin of Yukawas. The analysis
leads to an automatic conservation of baryon number [188].
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Proton decay involves textures not only in the quark–lepton Yukawa coupling sector, but also involves textures in
the Higgs triplet sector [157,189]. In general the Higgs triplet textures are not the same as the Higgs doublet textures
so that

Wt = T ucY u
t ec + ε
��(T̄
d

C
� Yd

t uC
� + T
u�Ỹ u

t d�) + T̄ lY e
t q, (143)

where Yd, Y u, Ỹ u, Y e are the Higgs triplet textures. In Ref. [157] Higgs triplet textures for the case of SU(5) corre-
sponding to the Georgi–Jarlskog textures were classified and their form found to be significantly different from the
textures in the up and down quark sectors in the Higgs doublet sectors. An example of such textures based on Planck
scale operators in SU(5) is [157]

Yu
t =

⎛⎜⎝ 0 4
9c 0

4
9c 0 − 2

3b

0 − 2
3b a

⎞⎟⎠ , Y
d,e
t =

⎛⎜⎝ 0 8
27F(−1, 1) 0

8
27F(−1, 1) 4

3e(−1, 4) 0

0 0 2
3d(−1, 1)

⎞⎟⎠ (144)

and Ỹ u
t = Yu

t . As already stated proton decay is affected by textures both in the doublet sector and in the Higgs triplet
sector. For the SU(5) case the �̄K+ mode is enhanced roughly by a factor of ∼ ( 9

8
ms

m�
)2 by the inclusion of Higgs triplet

textures. In general textures affect differentially the different decay modes. Thus proton decay modes hold important
information on GUT physics and this includes also textures both in the doublet as well as in the triplet sectors. More
recent analysis of textures in GUT models can be found in Refs. [148,190–192].

5.2. Gravitational smearing effects

Gravitational smearing effects can modify the unification of gauge coupling constants as well as affect analysis of
proton decay. Consider, for example, the gauge kinetic energy function for gauge fields for a gauge group G. Here the
conventional kinetic energy term −(1/2)Tr(FF), where F is the Lie valued field strength in the adjoint representation
of the gauge group can be modified by the addition of the non-renormalizable operator [193,194]

Ln = c

2MPl
Tr(FF�), (145)

where � is a scalar field in a representation of the gauge group such that Tr(FF�) is a gauge group scalar which
develops a VEV and enters in the spontaneous breaking of the gauge group symmetry. Thus after spontaneous breaking
the gauge kinetic energies in the SU(3)C × SU(2)L × U(1)Y will be modified and a proper normalization will lead to
splitting of the SU(3)C × SU(2)L × U(1)Y fine structure constants for these so that [195]


−1
G (MG) → 
−1

G (MG)

(
1 + r1

cM

MPl
, 1 + r2

cM

MPl
, 1 + r3

cM

MPl

)
, (146)

where ri depend on the nature of the gauge group. These splittings affect the analysis of gauge coupling unification
[195–199]. Further, the GUT breaking will bring in heavy thresholds. With inclusion of the splittings due to quantum
gravity effects and of heavy thresholds the renormalization group evolution in the vicinity of the unification scale can
be written as follows:


−1
i (Q) = 
−1

G + cM

2MP


−1
G ri + Cia log

Ma

Q
, (147)

where Ma are the heavy thresholds, Cia are one loop renormalization group beta function and Q is the renormalization
group scale. Now by a transformation Ma = Meff

a e�a one can absorb the quantum gravity correction by defining

effective heavy thresholds so that 
−1
i (Q) = 
eff

G

−1 + Cia log(Meff
a /Q) where 
eff

G is 
G evaluated at Meff
G where

Meff
G = MG exp(−5�g), and �g = (�cM

MP

−1
G ) so that (
eff

G )−1 = 
−1
G − (15/2�)�g , Meff

a = Mae
−ka�g , where ka are

pure numerics that depend on the specifics of the gauge group, on the representations � and on the heavy thresholds.
The main point of the above illustration is that quantum gravity effects warp the heavy thresholds and it is these
warped thresholds that enter in the renormalization group analysis. On the other hand, proton decay is controlled by
the unwarped heavy fields. This means that the masses of the lepto-quarks MV that enters in proton decay from heavy
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gauge boson exchange and of the Higgs triplet field MH3 that enters in the proton decay from dimension five operators
can be significantly different from the values one obtains from the renormalization group analysis. Indeed prediction
of proton lifetime will depend sensitively on the gravitational effects and conversely the observation of a proton decay
mode can be utilized along with renormalization group analysis to estimate the amount of Planck scale effects.

Consider, for specificity SU(5) and � a 24-plet of scalar field in the adjoint representation of SU(5). The VEV
formation 〈�〉 = M diag(2, 2, 2, −3, −3) gives the heavy thresholds as follows: (3, 2, 5/3) + (3̄, 2, −5/3) massive
vector bosons of mass MV , (1, 3, 0) + (1, 3̄, 0) massive color Higgs triplets of mass MT , (1, 8, 0) + (1, 3, 0) massive
�–fields of mass M� and a massive singlet � field. Here ri = (−1, −3, 2) for i in U(1), SU(2)L and SU(3)C and the
gravitational warping generates an effective scaling of the heavy masses so that ka = (− 3

5 , 3
10 , 5), where a = 1, 2, 3

refer to �, V , MT masses. As noted above the heavy masses that enter in proton decay are the unwarped ones. Thus, for
example, an experimental determination of p → �̄K+ would provide a determination of MT while the renormalization
group analysis provides a determination of Meff

T allowing for a determination of c [198,197,200]. To see these effects
more clearly we look at the experimental constraints on the current data. The RG analysis of Ref. [155] gives 3.5 ×
1014 �MT �3.6 × 1015 GeV, while Super-Kamiokande data demands MT �2 × 1017 GeV. This appears to eliminate
the SU(5) model. However, inclusion of the Planck scale effects requires only that

3.5 × 1014 �MT e−5�g �3.6 × 1015 GeV. (148)

The above implies that with c ∼ 1 one can achieve consistency with the SuperK data. However, we add a note of
caution. In Eq. (148) we have not taken into account the corrections to the gaugino masses that arise as a consequence
of quantum gravity effects [201–203,197]. Inclusion of these affects involve an overlap of the Planck scale and GUT
scale effects and bring in a new parameter c′ generally distinct from c. The gluino, the chargino and the neutralino
masses are thus modified and since they enter in the dressing loop integrals for proton decay in the mode p → �̄K+, Eq.
(148) is affected. Because of this the effects of gravitational smearing in this sector are more model dependent. However,
c′ does not enter in the analysis of p → �0e+ which is thus a cleaner channel to observe the gravitational smearing
effects. Similar modification will also arise in SO(10) analysis. However, here there are many more possibilities for
Planck scale corrections since the Higgs structure of SO(10) models is more complex. Thus Higgs fields that enter at
the GUT scale to accomplish SO(10) breaking include large representations such as 45, 54, 210, etc. which can give
rise to higher dimensional operators

Tr(FF�45), Tr(FF�54), Tr(FF�210), (149)

where, however, the first term is zero due to anti-symmetry. After VEV formation for these scalars, one would find
gravitational corrections to the renormalization group evolution which also indirectly affects proton decay estimates
as discussed above. An RG analysis including gravitational corrections in SO(10) is given recently in Ref. [204].

5.3. Constraints from gauge coupling unification

The analysis of the previous sections exhibits that the proton lifetime from dimension five operators depends critically
on the mass of the Higgs triplet while that from dimension six operators depends on the mass of the superheavy gauge
boson. It turns out that these masses are also strongly constrained by the condition that gauge couplings unify at high
scale [205]. Thus consider the renormalization group equations for the gauge couplings [206–208]:

�
d

d�
gi(�) = �i (gi(�)), (150)

where the functions �i at one-loop level are given by

�i (gi(�)) = g3
i

16�2

[
2

3
T (F )d(F ) + 1

3
T (S)d(S) − 11

3
C2(Gi)

]
(151)

with i = 1, 2, 3 for U(1)Y , SU(2)L and SU(3)C . In the above expression the fermion representations are assumed to
transform according to the representation F with dimension d(F ), while the scalars transform in the representation S



P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317 225

with dimension d(S). For an irreducible representation R we have,

RaRb = C2(R)I , (152)

Tr(RaRb) = T (R)�ab, (153)

where Ra is a matrix representation of the generators of the group. T (R) and C2(R) are related by the identity,

C2(R)d(R) = T (R)r (154)

with r the number of generators of the group and d(R) is the dimension of the representation. C2(R) is the quadratic
Casimir operator of the representation R. For the group SU(N) T (N)= 1/2 and T (Adj)=N . In the case of the U(1)Y
group we can use the above formula for �1, with C2(G)=0 and T (R)=Y 2 (See for example [209]), where the electric
charge is defined by Q = T3 + Y . In the above expression we have taken the scalar representation to be complex, and
the fermion representation to be chiral.

The equation for the running of the gauge couplings at one-loop level is


i (MZ)−1 = 
−1
GUT + bi

2�
ln

MGUT

MZ

, (155)

where 
i = g2
i /(4�). Using the general expression �i one finds for the Standard Model

bSM
1 = 41/10, bSM

2 = −19/6, bSM
3 = −7. (156)

As is well known the above beta functions do not allow the unification of gauge couplings. See Fig. 7 for details.
Next, we consider the minimal non-supersymmetric SU(5), where the matter is unified in 5̄ and 10, the Higgs sector

is composed by 5H = (H, T ) and 24H = (�8, �3, �(3,2), �(3̄,2), �24), while the gauge fields live in 24V . Using the SM
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Fig. 7. Values of the gauge couplings of the Standard Model at different scales. As input parameters we take 
s (MZ)
MS

= 0.1187,


(MZ)
MS

= 1/127.906, and sin2�W (MZ)
MS

= 0.2312. Here the three couplings do not have a common intersection.
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decomposition one gets the following equations for the Bi :

B
SU(5)
1 = bSM

1 − 105
6 rV + 1

15 rT , (157)

B
SU(5)
2 = bSM

2 + 1
3 r�3 − 21

2 rV , (158)

B
SU(5)
3 = bSM

3 + 1
2 r�8 − 7rV + 1

6 rT , (159)

where

rI = ln MGUT/MI

ln MGUT/MZ

(160)

and where MI is the mass of the additional particle I (MZ �MI �MGUT). Now, following Giveon et al. [210], the
equations for the running of the gauge couplings (replacing bi by Bi) can be put in a more suitable form in terms of
differences in the coefficients Bij (=Bi − Bj ) and low energy observables [210]. One finds two relations that hold at
MZ [210]

B23

B12
= 5

8

sin2 �w − 
em/
s

3/8 − sin2 �w

, (161)

ln
MGUT

MZ

= 16�

5
em

3/8 − sin2 �w

B12
. (162)

Using the experimental values at MZ in the MS scheme [27] of sin2 �w = 0.23120 ± 0.00015, 
−1
em = 127.906 ± 0.019

and 
s = 0.1187 ± 0.002, one obtains

B23

B12
= 0.719 ± 0.005, (163)

ln
MGUT

MZ

= 184.9 ± 0.2

B12
. (164)

The above two relations constrain the mass spectrum of the extra particles that leads to an exact unification at MGUT
and this approach offers a simple way to test unification for a given model. The fact that the SM with one Higgs doublet
cannot yield unification is now more transparent in light of Eq. (163). Namely, the resulting SM ratio is simply too
small (BSM

23 /BSM
12 = 0.53) to satisfy equality in Eq. (163). In minimal non-supersymmetric SU(5) we have the same

problem, since the colored triplet and superheavy gauge bosons have to be very heavy to avoid problem with proton
decay (B

SU(5)
23 /B

SU(5)
12 �0.60). Now, in a minimal realistic non-supersymmetric grand unified theory based on SU(5)

[211], the Higgs sector is extended by 15H = (�a, �b, �c), where the fields �a , �b, and �c transform as (1, 3, 1),
(3, 2, 1/6) and (6, 1, −2/3), respectively. Here it is possible to generate neutrino masses, satisfy all experimental
bounds on proton lifetimes and achieve unification. In this case we have additional contributions to the parameters B12
and B23 (see Table 3):

A knowledge of B12 and B23 allows one to exhibit the entire parameter space where it is possible to achieve exact
unification. (See Fig. 8.) The triangular region in Fig. 8 represents the available parameter space under the assumption
that T , �8 and �c reside at or above the GUT scale. The region is bounded from the left and below by experimental
limits on M�a

and M�b
. The right bound stems from a requirement that M�3 �MZ . We note that in this scenario it is

possible to predict the maximal value for the GUT scale, which allows one to define the upper bound on the proton
decay lifetime. (See Section 5.6 for details.) In this minimal non-supersymmetric scenario light leptoquarks �b are

Table 3
Contributions to the Bij coefficients in a realistic minimal non-SUSY SU(5) [211]

Minimal SU(5) �a �b �c

B23 B
SU(5)
23

2
3 r�a

1
6 r�b

− 5
6 r�c

B12 B
SU(5)
12 − 1

15 r�a − 7
15 r�b

8
15 r�c
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Fig. 8. Plot of lines of constant M�3 and M�a in the MGUT–log(M�b
/1 GeV) plane, assuming exact one-loop unification. The central values for

the gauge couplings as given in the text are used. All the masses are given in GeV units. The triangular region is bounded from the left (below)
by the experimental limit on M�a (M�b

). The right bound is M�3 �MZ . The two grey solid (thick dashed) lines are the lines of constant M�3

(M�a ). The line of constant 
−1
GUT is also shown. The region to the left of the vertical dashed line is excluded by the proton decay experiments if


 = 0.015 GeV3 [212].

predicted in order to achieve unification. Therefore it is a possibility to test the idea of grand unification at the
next generation of collider experiments [211]. For studies in a different extension of the Georgi Glashow model see
Ref. [213].

Let us investigate the constraints in supersymmetric scenarios. In the minimal supersymmetric standard model the
equations for the running are given by:

BMSSM
1 = bSM

1 + 21
10 rq̃ + 2

5 r
G̃

, (165)

BMSSM
2 = bSM

2 + 2r
G̃

+ 13
6 rq̃ , (166)

BMSSM
3 = bSM

3 + 2rq̃ + 2r
G̃

, (167)

assuming the same mass Mq̃ for all scalars and the same mass for Higgsinos and gauginos M
G̃

. In this case as is
well-known it is possible to get unification at the scale MGUT ≈ 1016 GeV, if the supersymmetric particles are around
1 TeV, or if one has only the gauginos and higgsinos at the 102–103 GeV scale [214–216]. See Fig. 9 where we show
the values of the gauge couplings at different scales in the context of the MSSM.

To discuss the constraint on the Higgs triplet mass we list the equations for the running in the case of the minimal
supersymmetric SU(5):

B
SSU(5)
1 = BMSSM

1 + 2
5 rT − 10rV , (168)

B
SSU(5)
2 = BMSSM

2 + 2r�3 − 6rV , (169)

B
SSU(5)
3 = BMSSM

3 + rT − 4rV + 3r�8 . (170)
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Fig. 9. Values of the gauge couplings at different scales, in the DR scheme, in the context of the minimal supersymmetric standard model. For
simplicity all superpartner masses are taken at MZ scale. The input parameters in the MS scheme are listed in Fig. 7. Here the gauge couplings unify
at a high scale of MG ∼ 2 × 1016 GeV.

Assuming that �3 and �8 have the same mass and using the equations above one finds [217]

(3
−1
2 − 2
−1

3 − 
−1
1 )(MZ) = 1

2�

(
12

5
ln

MT

MZ

− 2 ln
MSUSY

MZ

)
. (171)

Eq. (171) is a very useful in constraining the Higgs triplet mass. In Ref. [155] the authors concluded that the triplet
mass MT �3.6 × 1015 GeV, in order to satisfy the above constraint in the context of the minimal supersymmetric
SU(5). However, when the fields �3 and �8 have different masses [159] the bound on MT is quite different. This is a
possible solution, which implies that in the context of the minimal supersymmetric SU(5) it is still possible to satisfy
the experimental bounds on proton decay lifetimes.

5.4. Testing GUTs through proton decay

As shown in the previous section the proton decay predictions arising from the gauge d = 6 operators depend on the
fermion mixing, i.e. the predictions are different in each model for fermion masses [43]. Let us analyze the possibility
to test the realistic grand unified models, the SU(5), the flipped SU(5) and SO(10) theories, respectively. Let us make
an analysis of the operators in each theory, and study the physical parameters entering in the predictions for proton
decay. Here we do not assume any particular model for fermion masses, in order to be sure that we can test the grand
unification idea.

As an example we discuss now the specific case of SU(5) with symmetric upYukawa couplings. Here we consider the
simplest grand unified theories, which are theories based on the gauge group SU(5). In these theories the unification of
quark and leptons is realized in two irreducible representations, 10 and 5. The minimal Higgs sector is composed of the
adjoint representation �, and two Higgses 5H and 5H in the fundamental and anti-fundamental representations [9,11]. If
one wants to keep the minimal Higgs sector and have a realistic SU(5) theory, one needs to introduce non-renormalizable
operators, Planck suppressed operators, to get the correct quark–lepton mass relations. A second possibility is introduce
a Higgs in the 45H representation. In order to generate neutrino mass in these theories we have to add 15H Higgs (see

for example [211]) or the right handed neutrinos. In this case we have only the operators O
B.L
I (Eq. (12)), and O

B.L
II
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(Eq. (13)) contributing to the decay of the proton. Let us study the prediction for proton decay in a SU(5) theory with
YU = YT

U . In this case we have UC = UKu, where Ku is a diagonal matrix containing three phases which gives [47]

3∑
l=1

c(�l , d
, d
C
� )∗SU(5)c(�l , d�, d

C
� )SU(5) = k4

1(V ∗
CKM)1
(K∗

2 )

(VCKM)1�K
��
2 ���. (172)

In this case the clean channels to test the scenario are [47]:

�(p → K+�̄) = k4
1[A2

1|V 11
CKM |2 + A2

2|V 12
CKM |2]C1, (173)

�(p → �+�̄) = k4
1 |V 11

CKM |2C2, (174)

where

C1 = (m2
p − m2

K)2

8�m3
pf 2

�
A2

L|
|2, (175)

C2 = mp

8�f 2
�

A2
L|
|2(1 + D + F)2, (176)

where the notation is as in Appendix G. Here we have two expressions for k1, which are independent of the unknown
mixing matrices and the phases. Thus it is possible to test SU(5) grand unified theory with symmetric up Yukawa
matrices through these two processes [47]. These results are valid for any unified model based on SU(5) with YU =YT

U .
Similar tests can be investigated for other gauge groups. Specifically a discussion of the tests for the gauge groups
SO(10) and flipped SU(5) is given in Appendix G.

5.5. Proton decay in flipped SU(5)

In the previous section we have shown the possibility to make a clear test of realistic grand unified theories with
symmetricYukawa couplings through the proton decay into a meson and antineutrinos. It is thus interesting to investigate
how these conclusions change if one departs from the flavor structure of the minimal renormalizable theories. It is well
known that the gauge d = 6 proton decay cannot be rotated away, i.e., set to zero via particular choice of parameters
entering in a grand unified theory, in the framework of conventional SU(5) theory with the Standard Model particle
content [218,219]. So, it would appear that the gauge d = 6 operators and proton decay induced by them are genuine
features of matter unification. Now this conclusion has some caveats as we now discuss. To understand the issues
more clearly it is useful to investigate the constraints that might allow one to rotate away the baryon and lepton number
violating dimension six operators induced by gauge interactions. Thus consider the model based on conventional SU(5).
Setting k2 = 0 in Eqs. (9)–(10) the relevant coefficients that enter in the decay rate formulas are:

c(eC

 , d�)SU(5) = k2

1[V 11
1 V


�
2 + (V1VUD)1�(V2V

†
UD)
1], (177)

c(e
, d
C
� )SU(5) = k2

1V 11
1 V

�

3 , (178)

c(�l , d
, d
C
� )SU(5) = k2

1(V1VUD)1
(V3VEN)�l , 
 = 1 or � = 1, (179)

c(�C
l , d
, d

C
� )SU(5) = 0. (180)

It is now easy to see that the demand to rotate away proton decay leads to conflict with experiment. In order to set
Eq. (178) to zero, the only possible choice is V 11

1 =0. [Setting (V3)
�
 to zero would violate unitarity.] If we now look at

Eq. (179), there is only one way to set to zero the coefficient entering in the decay channel into antineutrinos. Namely,
we have to choose (V1VUD)1
 = 0. This, however, is not possible since it would imply that, at least, V 13

CKM is zero in
conflict with experiment.

Next we investigate the same issue in flipped SU(5). However, before doing so we give a brief discussion of it. The
gauge group in this case is SU(5) × U(1) and the hypercharge is a linear combination of generators in SU(5) and in
U(1), and so strictly speaking one does not have a unified gauge group. The particles reside in the multiplets 5̄, 10
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and in an SU(5) singlet and the assignments differ from those of the usual SU(5) as given in Appendix A. Thus in the
flipped SU(5) × U(1) case the particle content of the multiplets is as below: For the 5̄ of SU(5) we have

5 =
⎛⎝ uc

La

e−
L

−�eL

⎞⎠ , (181)

where subscript a is the color index. For the 10-plet of SU(5) and for the singlet we have

10 =

⎛⎜⎜⎜⎜⎜⎝
0 dc

3 −dc
2 −u1 −d1

−dc
3 0 dc

1 −u2 −d2

dc
2 −dc

1 0 −u3 −d3

u1 u2 u3 0 �C

d1 d2 d3 −�C 0

⎞⎟⎟⎟⎟⎟⎠
L

, 1 = e+. (182)

The d=6 proton decay from gauge interactions is again mediated by lepto quarks but their quantum number assignments
are different so we label them with a prime: V ′ = (X′, Y ′). This time the relevant d = 6 coefficients are:

c(eC

 , d�)SU(5)′ = 0, (183)

c(e
, d
C
� )SU(5)′ = k2

2(V4V
†
UD)�1(V1VUDV

†
4 V3)

1
, (184)

c(�l , d
, d
C
� )SU(5)′ = k2

2V
�

4 (V1VUDV

†
4 V3VEN)1l , 
 = 1 or � = 1, (185)

c(�C
l , d
, d

C
� )SU(5)′ = k2

2[(V4V
†
UD)�1(U

†
ENV2)

l
 + V
�

4 (U

†
ENV2V

†
UD)l1], 
 = 1 or � = 1, (186)

where the subscripts SU(5)′ stands for flipped SU(5). Let us see if it is possible to rotate away the proton decay in

flipped SU(5). To set Eq. (185) to zero, we can only choose V
�

4 = (D

†
CD)�
 = 0, where 
 = 1 or � = 1. We could

think about the possibility of making both Eqs. (184) and (186) zero, choosing (V4V
†
UD)�1 = 0, however, this is in

contradiction with the measurements of the CKM angles. Since in flipped SU(5) the neutrino is Majorana, we only have
to suppress Eq. (184). This can be accomplished by setting (V1VUDV

†
4 V3)

1
 = (U
†
CE)1
 = 0 [220]. We note that this

constraint is unrelated to the constraint on V4. Thus, there is no contradiction with the unitarity constrains nor conflict
with any experimental measurements of mixing angles. Consequently in the context of flipped SU(5), it is possible
to completely eliminate or rotate away the gauge d = 6 contributions in a consistent way, by imposing the necessary
conditions at 1 GeV [220].

In contrast in the minimal renormalizable flipped SU(5) it is not possible to satisfy the first condition, since YD =YT
D

implies V4 = K∗
d , where Kd is a diagonal matrix containing three phases. However, as discussed already we have to

take into account the nonrenormalizable operators, which are important for fermion masses and which invariably lead
to modification of naive predictions. Thus in general, in the context of flipped SU(5), one is allowed to impose the
necessary constraints and remove the gauge operators for proton decay. In summary the main difference between SU(5)

and flipped SU(5) is that the unitary constraint that prevents one to eliminate proton decay in conventional SU(5) does
not operate in the latter case. In other words, the coefficients which depend on 
 and � with 
=1 or �=1 have different
consequences in those two scenarios [see Eqs. (178) and (185)].

5.6. Upper bound on the proton lifetime in GUTs

In the previous section we have discussed the different ways to test grand unified theories through the decay of the
proton. In this section we discuss the possibility of finding an upper bound on the total proton decay lifetime [221]. In
order to establish an upper bound on the total proton lifetime one may focus on the gauge d = 6 contributions since
all other contributions can be set to zero in searching for upper limits. Proton lifetime induced by superheavy gauge
boson exchange can be written as follows:

�p = CM4
X
−2

GUTm−5
p . (187)
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Fig. 10. Isoplot for the upper bounds on the total proton lifetime in years in the Majorana neutrino case in the MX–
GUT plane. The value of the
unifying coupling constant is varied from 1/60 to 1/10. The conventional values for MX and 
GUT in SUSY GUTs are marked in thick lines. The
experimentally excluded region is given in black [221].

Here C is a coefficient which contains all information about the flavor structure of the theory, MX is the mass of the
superheavy gauge bosons, and 
GUT = g2

GUT/4�, where gGUT is the coupling defined at the GUT scale (the scale of
gauge unification). To find a true upper bound on the total lifetime the maximal value of C is needed. Then, for a
given value of MX and 
GUT it is possible to bound the GUT scenario prediction for the nucleon lifetime. However,
minimization of the total decay rate is very difficult since in principle 42 unknown parameters enter in the decay. The
upper bound on the proton lifetime in the case of Majorana neutrinos reads as

�p �6.0+0.5
−0.3 × 1039 (MX/1016 GeV)4


2
GUT

(0.003 GeV3/
)2 years, (188)

where the gauge boson mass is given in units of 1016 GeV. Details of the analysis is given in Appendix H and here we
present only the results [221].

The proton decay bounds in the MX–
GUT plane for the Majorana (Dirac) neutrino case are in Fig. 10 (11). These
results, in conjunction with the experimental limits on nucleon lifetime, set an absolute lower bound on mass of
superheavy gauge bosons. Since their mass is identified with the unification scale after the threshold corrections are
incorporated in the running this also sets the lower bound on the unification scale. Using the most stringent limit on
partial proton lifetime (�p �50 × 1032 years) for the p → �0e+ channel [27] and setting 
 = 0.003 GeV3, the bound
on MX reads

MX �3.04+0.3
−0.3 × 1014√
GUT GeV, (189)

where 
GUT usually varies from 1/40 for non-supersymmetric theories to 1/24 for supersymmetric theories. For
example, if we take a non-supersymmetric value 
GUT = 1/39, one obtains

MX �4.9 × 1013 GeV. (190)

We note that the above result implies that any non-supersymmetric theory with 
GUT = 1/39 is eliminated if its
unifying scale is below 4.9 × 1013 GeV regardless of the exact form of the Yukawa sector of the theory. Further,
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Fig. 11. Isoplot for the upper bounds on the total proton lifetime in years in the Dirac neutrino case in the MX–
GUT plane. The value of the
unifying coupling constant is varied from 1/60 to 1/10. The conventional values for MX and 
GUT in SUSY GUTs are marked in thick lines. The
experimentally excluded region is given in black [221].

a majority of non-supersymmetric extensions of the Georgi–Glashow SU(5) model yield a GUT scale which is slightly
above 1014 GeV. Hence, as far as the experimental limits on proton decay are concerned, these extensions still represent
viable scenarios of models beyond the SM. Region of MX excluded by the experimental result is also shown in
Figs. 10 and 11. The plots of Figs. 10, 11 exhibit that it is possible to satisfy all experimental bounds on proton decay in
the context of non-supersymmetric grand unified theories. For example in a minimal non-supersymmetric GUT [211]
based on SU(5) the upper bound on the total proton decay lifetime is �p �1.4 × 1036 years [212].

6. Unification in extra dimensions and proton decay

Over the recent past models based on large extra dimensions have received considerable attention. The largeness
of the extra dimension implies that the compactification scale is small compared to the Planck scale, and guided by a
desire for new physics at accelerators this scale is often chosen to lie in the TeV region, limited only by the constraints
of the precision data. The extreme smallness of the compactification scale compared to the GUT scale or Planck scale
implies that baryon and lepton number violating dimension six operators would only be suppressed by the inverse
of the TeV scale and thus lead to unacceptable rate for proton decay. This is an important hurdle for the large extra
dimension models. In this section we discuss various scenarios where proton stability can be achieved in such models
with the help of discrete symmetries. We briefly outline the main items discussed in this section.

In Section 6.1 we consider grand unified models based on one extra space–time dimension, and discuss proton
stability within such models. It is shown that with discrete symmetries it is possible to get a natural doublet–triplet
splitting in the Higgs sector. In Section 6.2 we give a review of SO(10) models based in 5D, and give a discussion
of 5D trinification models in Section 6.3. Section 6.4 is devoted to a discussion of grand unification models in 6D,
where several unification scenarios are analyzed. These include SO(10), SU(5) × U(1), flipped SU(5) × U(1), and
SU(4)C × SU(2)L × SU(2)R . In Section 6.5 we discuss gauge–Higgs unification. Here the Higgs fields arise as part of
the gauge multiplet and thus gauge and Higgs couplings are unified. In these models proton decay is sensitive to how
matter is located in extra dimensions. A discussion of proton decay in models with universal extra dimensions (UED)
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is given in Section 6.6. Proton decay is suppressed in these models due to the existence of extra symmetries. In Section
6.7 we give a discussion of proton stability in models with warped geometry. In this class of models proton stability
arises via a symmetry which conserves the baryon number. Section 6.8 is devoted to a discussion of proton stability in
kink backgrounds.

6.1. Proton decay in models with 5D

In this subsection we discuss proton decay in theories with one extra dimension. Theories with extra dimensions
have a long history beginning with the work of Kaluza and Klein in the nineteen twenties [222–225]. More recently
interest in theories with extra dimensions emerged with the realization that string theories could allow for low scale
compactifications which removes the rigid relationship that exists between the string scale and the Planck scale in the
weakly coupled heterotic strings [226]. Thus, in the context of the weakly coupled Type I string compactifications the
string scale can be quite low [227,228] and there has been much work in model building along these lines [229–232]
and important constraints have been placed on the size of such dimensions from experiment [233–235]. An interesting
phenomena in such theories is the power law evolution of the gauge coupling constants [236–239] which allows for a
meeting of the coupling constants at a low scale although in such a scheme the unification of the gauge couplings is not a
prediction of the model but rather an accident. The second more serious issue concerns stability of the proton. This is so
because if one wishes to formulate unified models with low scale extra dimensions then dimension five and dimension
six baryon and lepton number violating operators are suppressed only by the inverse powers of a mass order a TeV
which would lead to disastrous proton decay. An early suggestion to achieve proton stability is to have quarks–leptons
in the bulk [240]. In the model of Ref. [240] B and L are separately conserved and the proton is stable with a unification
scale in the TeV region. In this model TeV scale mirror particles could be produced at colliders [240]. Another way to
suppress proton decay is to assume that the baryon number is gauged in the bulk and the symmetry is broken on a brane
different from the physical brane [241]. Other suggestions to suppress proton decay require imposition of discrete
symmetries [237,232,242,243]. Such discrete symmetries are discussed in detail in Ref. [242] where a generalized
matter parity of the type Z3 × Z3 is proposed in an extended MSSM type model where proton decay operators are
suppressed to high orders. However, suppression of proton decay may require an exact or almost exact baryon number
conservation, since otherwise proton decay may be induced by quantum gravity effects [244]. It is argued that in
order to suppress this type of proton decay one would need a high scale similar to what one has in grand unified
theories [244].

We would not pursue further the analysis of proton decay in extra dimension theories with low scale. Rather, we
turn our attention now to the more realistic scenarios with high scale extra dimensions. Typically this is the situation
in heterotic string models where the size of the extra dimension is of order the inverse of the compactification scale
MC which one expects is close to the string scale. It turns out that the study of such models do have important benefits,
the most prominent being that they provide a natural solution to the doublet–triplet splitting in the Higgs sector. Often
they also lead to a reduction of the gauge symmetries without the necessity of invoking the Higgs mechanism. Thus,
we consider grand unified theories in higher dimensions where reduction to 4 dimensions is accomplished by orbifold
compactification. It has been known for some time that an orbifold compactification can reduce symmetries beginning
with the work of Scherk and Schwarz [245,246] and follow up works [247–250]. (For a discussion of generalized
symmetry breaking on orbifolds see Refs. [251,252].) Orbifold compactifications have played a major role in recent
works in the exploration of low scale extra dimensions putting lower limits of a few TeV on such dimension [233–235].
More recently interest has focused on grand unified models with extra dimensions and here an interesting development
is the reduction of the gauge symmetry by orbifold compactification [251,253–257] which has in addition some very
interesting features such as automatic doublet–triplet splitting. The simplest possibility is a GUT theory formulated in
5 dimensions. Thus let us consider a 5D space with coordinates xM = (x�, x5) where � = 0, 1, 2, 3. We assume that
the fifth dimension x5 is compacted on S1/(Z2 × Z′

2) where the Z2 and Z′
2 are defined as follows: Z2 corresponds to

the transformation

x5 → −x5 (191)

while Z′
2 corresponds to the transformation

x5′ → −x5′
, (192)
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wherex5′=x5+�R/2.We focus on theZ2 orbifolding first and return to theZ′
2 orbifolding later.We begin by considering

a super Yang–Mills field in the bulk. The N = 1 super Yang–Mills in 5D consists of the multiplet (V M, �, �i , f a),
where V M is the vector field with M = 0, 1, 2, 3, 5, � is a real scalar field, �i are simplectic Majorana spinors and
f a (a = 1, 2, 3) are a triplet of auxiliary real fields. [VM is a Lie valued quantity so that VM = gV 


MT 
 where
tr(T 
T �) = 1

2�
�, and � and � are similarly defined.] For specificity we consider first the unified gauge group SU(5)

and assume that the superYang Mills multiplet belongs to the adjoint representation of SU(5). The 5D superYang–Mills
Lagrangian is given by [258–260]

Lg

5 = 1

g2

{
−1

2
tr(VMN)2 + tr(DM�)2 + tr(�̄i�MDM�) − tr(�̄[�, �]) + tr(f a)2

}
, (193)

where DM� = �M� − i[VM, �]. The action is invariant under the following supersymmetry transformations:

��V
M = i�̄

i
�M�i ,

��� = i�̄
i
�i ,

���
i = (�MNVMN − �MDM�)�i − (f a�a)ij�j ,

��f
a = �̄

i
(�a)ij �MDM�j − i[�, �̄

i
(�a)ij�j ], (194)

where �i are the transformation parameters and �MN = [�M, �N ]/4. From the 4D view point, the 5D N = 1 vector
multiplet is an N = 2, 4D multiplet. We would like to reduce this multiplet to an N = 1 multiplet on the x5 = 0 brane
which we consider to be the physical brane. To achieve this we consider the Z2 transformation which acts on the bulk
fields so that

f (x�, y) → f (x�, −x5) = Pf (x�, x5), (195)

where P = ±1. We take the fields V�, �1
L, f 3 to have even parity, and the fields V5, �, �2

L, f 1,2 to have odd parity.
Further, we assign to �1

L an even parity and to �2
L an odd parity. Now the fields with odd parity vanish on the x5 = 0

boundary, and the transformations on the x5 = 0 brane reduce to the following [261]:

��V
� = i�̄

1†
L �̄��1

L − i�1†
L �̄��1

L,

���
′
L = ���V���

1
L − iD�1

L,

��D = i�̄
1†
L �̄�D��1

L + h.c., (196)

where D ≡ (f 3 − �5�). Eqs. (196) constitute the transformations of an N = 1 gauge multiplet with components

V�, �1
L, D ≡ (f 3 − �5�), (197)

on the x5 = 0 brane. We note the appearance of �5� in the auxiliary field D. While � has odd Z2 parity and vanishes
on the x5 = 0 brane, �5� has even Z2 parity and is non-vanishing on the x5 = 0 boundary.

Analogous to the vector multiplet we assume that the Higgs multiplets reside also in the bulk and for model building
we consider two hypermultiplets consisting of two complex scalar fields and two Dirac fermions (Hs

i , �s) (i = 1, 2)

where Hs
i are complex Higgs doublets and �s are Dirac spinors. We identify these multiplets as follows:

{(H 1
1 , �1

R), (H 1
2 , �1

L)},
{(H 2

1 , �2
R), (H 2

2 , �2
L)}. (198)

The 5D bulk Lagrangian for the Higgs multiplet is then given by [259]

LH
5 = |DMHs

i |2 + i�̄s�
MDM�s − (i

√
2Hi†

s �̄i�
s + h.c.)

− �̄s��s − Hi†
s (�)2Hs

i − g2

2

∑
m.


[Hi†
s (�m)

j
i T


Hs
j ]2. (199)
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However, care is needed in the reduction of the Higgs bulk Lagrangian to the boundary. Analogous to the case of
the vector multiplet one should begin with off shell hypermultiplets (Hs

i , �s , F s
i ) which break up into the Z2 parity

even multiplets (H 1
1 , �1

R, F 1
1 ), (H 2

2 , �2
L, F 2

2 ) and the Z2 parity odd multiplets (H 1
2 , �1

L, F 1
2 ), (H 2

1 , �2
R, F 2

1 ). As we
go to the boundary x5 = 0 only the Z2 even parity multiplets survive and the surviving multiplets are [258,259]

H1 = (H
1†
1 , �̄

1
R, F

†
1 ), and H2 = (H 2

2 , �2
L, F2) where F1 = F 1

1 − �5H
1
2 and F2 = F 2

2 − �sH
2
1 . Here H2 is the multiplet

that couples to the up quark and H1 is the multiplet that couples to the down quark and the lepton. We note that on the
boundary the auxiliary fields are modified and this phenomenon is much similar to the modification of the D term on
the boundary discussed above for the case of the vector multiplet.

In the preceding analysis, we have seen that the action of Z2 orbifolding reduces N = 2 supersymmetry down to
N = 1 supersymmetry on the boundary. However, the SU(5) gauge symmetry is left intact. We consider now the action
of the Z′

2 orbifolding which leaves the N =1 supersymmetry intact but reduces the SU(5) gauge symmetry down to the
Standard Model gauge group. To accomplish this we consider Z′

2 transformation such that the field f (x�, x5) which
belongs to the fundamental representation of SU(5) transforms so that

f (x�, x5′
) → f (x�, −x5′

) = P ′f (x�, x5′
), (200)

where x5′ = x5 + �R/2 and P ′ is a 5 × 5 matrix with P ′ = diag(−1, −1, −1, 1, 1). Thus the fields with SU(3)C color
indices will transform with parity—and the fields with SU(2) indices will transform with Z′

2 parity +. We identify
H5 with H 2

2 as the one that gives mass to the up quarks, and H5̄ with H 1
1 which gives mass to the down quarks and

the leptons. Similarly, we define Ĥ5̄ = H 2
1 and Ĥ5 = H 1

2 . One has then the following transformations for the Higgs
multiplets under Z′

2 transformations

H5(x
�, x5′

) → H5(x
�, −x5′

) = P ′H5(x
�, x5′

),

H5̄(x
�, x5′

) → H5̄(x
�, −x5′

) = P ′H5̄(x
�, x5′

),

Ĥ5(x
�, x5′

) → Ĥ5(x
�, −x5′

) = −P ′Ĥ5(x
�, x5′

),

Ĥ5̄(x
�, x5′

) → Ĥ5̄(x
�, −x5′

) = −P ′Ĥ5̄(x
�, x5′

). (201)

Thus under Z2 × Z′
2 transformations a field can be classified as f±±(x�, x5). It is instructive to carry out a normal

mode expansion for these.

f++(x, x5) =
√

1

�R

∞∑
n=0

1√
2�n,0

f
(2n)
++ (x) cos

(
2nx5

R

)
,

f+−(x, x5) =
√

1

�R

∞∑
n=0

f
(2n+1)
+− (x) cos

(
(2n + 1)x5

R

)
,

f−+(x, x5) =
√

1

�R

∞∑
n=0

f
(2n+1)
−+ (x) sin

(
(2n + 1)x5

R

)
,

f−−(x, x5) =
√

1

�R

∞∑
n=0

f
(2n+2)
−− (x) sin

(
(2n + 2)x5

R

)
. (202)

The above implies that the modes f
(2n)
++ , f

(2n+1)
+− , f

(2n+1)
−+ , f

(2n+2)
−− have masses 2n/R, (2n + 1)/R, (2n + 1)/R and

(2n + 2)/R. One notices that only f++ contains massless modes corresponding to the case when n = 0. The other
modes all acquire masses scaled by the inverse of the compactification radius, i.e., proportional to 1/R. We exhibit
the mode expansion for the Higgs multiplets in Table 4 where we have decomposed the Higgs 5-plets in SU(3) color
triplets, and SU(2) doublets and the Higgs 5̄ in the SU(3) color anti-triplets, and SU(2) doublets, i.e., H5 = (Hu, HT ),
H5̄ = (Hd, HT̄ ), Ĥ5 = (Ĥu, ĤT ), and Ĥ5̄ = (Ĥd , ĤT̄ ).

In Table 4 the entries above the double horizontal line are the Higgs doublet modes. Here for n=0 we have massless
modes in Hu and Hd . The entries below the double horizontal line are the Higgs triplets (denoted by the subscript T)
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Table 4
P and P ′ parities of the components of bulk Higgs multiplets

4D fields Z2 × Z′
2 parity Mass

H
(2n)
u (+, +) 2n/R

Ĥ
(2n)
u (−, −) (2n + 2)/R

H
(2n)
d (+, +) 2n/R

Ĥ
(2n+2)
d (−, −) (2n + 2)/R

H
(2n+1)
T (+, −) (2n + 1)/R

H
(2n+1)

T̄
(+, −) (2n + 1)/R

Ĥ
(2n+1)
T (−, +) (2n + 1)/R

Ĥ
(2n+1)

T̄
(−, +) (2n + 1)/R

Table 5
P and P ′ parities for the components of bulk gauge multiplets

4D fields SU(3) × SU(2) reps Mass

V
a(2n)
�++ , �1a(2n)

++ (8, 1) + (1, 3) + (1, 1) 2n/R

V
a(2n+2)
5−− ,�2a(2n+2)

−− , �a(2n+2)
−− (8, 1) + (1, 3) + (1, 1) (2n + 2)/R

V
â(2n+1)
�+− , �1â(2n+1)

+− (3, 2) + (3̄, 2) (2n + 1)/R

V
â(2n+1)
5−+ ,�2â(2n+1)

−+ , �â(2n+1)
−+ (3, 2) + (3̄, 2) (2n + 1)/R

and the color anti-triplets (denoted by the subscript T̄ ). Here we see that none of the Higgs triplets and anti-triplets have
massless modes. Thus we see a natural doublet–triplet splitting by the assignment of the parities as described above.
The Higgs triplets and anti-triplet produce a tower of massive Kaluza–Klein modes whose masses are scaled by the
inverse radius of the circle S1.

We look now at the transformation properties of the vector multiplet. These fields have transformations like bi-
fundamentals because they carry two SU(5) indices. It is easily seen that the Lagrangian is invariant under the following
Z′

2 transformations:

V�(x�, x5′
) → V�(x�, −x5′

) = P ′V�(x�, x5′
)P

′−1,

�1
L(x�, x5′

) → �1
L(x�, −x5′

) = P ′�1
L(x�, x5′

)P
′−1,

�2
L(x�, x5′

) → �2
L(x�, −x5′

) = −P ′�2
L(x�, x5′

)P
′−1,

�(x�, x5′
) → �(x�, −x5′

) = −P ′�(x�, x5′
)P

′−1,

V5(x
�, x5′

) → V5(x
�, −x5′

) = −P ′V5(x
�, x5′

)P
′−1. (203)

It is easy to infer that the transformation of the generators of SU(5) under P ′ are

P ′T aP
′−1 = T a, P ′T âP

′−1 = −T â , (204)

where T a are the generators of the Standard Model gauge group GSM and T â are in the remaining set. The mode
expansion of the vector multiplet components is listed in Table 5 where the subscripts ± on the modes specify their
properties under Z2 × Z′

2 transformations. We find that only the fields with (+, +) parities have zero modes and they
transform under SU(3)C ×SU(2)L as (8, 1)+(1, 3)+(1, 1). These zero modes are precisely the gauge vector multiplets
of MSSM which we label V a

� . All the remaining vector fields V â
� , i.e., the lepto-quarks, acquire masses. Specifically,

we note that the vector multiplet which transforms like (3, 2)+ (3̄, 2) under SU(3)C × SU(2) has only massive modes.
Thus the above orbifolding naturally splits the lepto-quarks from the Standard Model gauge bosons.

In setting up the Lagrangian in 5D we have to make sure that the Lagrangian is invariant under the full Z2 × Z′
2

transformations. This set up is dependent on how the matter is located in the 5D space. One could locate such matter
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either in the bulk, or on the orbifolds. There are two invariant orbifold points corresponding to x5 = 0 and �R/2 which
are the end points of the fundamental domain x5 = (0, �). When matter, is located at the x5 =0 brane, one can maintain
the full SU(5) symmetry, while when matter is located at the x5 = �R/2 brane, only the standard model symmetry
can be maintained. In fact, there are three scenarios for the location of matter and we classify the three possibilities as
follows [257,262,256]:

1. Matter on the SU(5) brane.
2. Matter in the bulk.
3. Matter on the SM brane.

Let us begin by discussing case (1). We need to assign parities to the quark and lepton fields. For Z2 transformations,
P is + for color and + for SU(2). For quarks and leptons, one way to determine the P ′ parities is to require that cubic
SU(5) invariant interactions with matter–matter–Higgs transform with an over all sign when one uses the P ′ parities
of Higgs as given in Table 4. This gives the following possibilities:

10: P ′(Q, UC, EC) = �10(+, −, −),

5̄: P ′(DC, L) = �5̄(−, +), (205)

where �5̄,10 are overall signs of 5̄ and 10 multiplets, i.e., �5̄,10 = ±1. With the above we have

P ′(10.10.5H ) = −(10.10.5H ),

P ′(10.5̄.5̄H ) = −�5�10(10.5̄.5̄H ). (206)

Using Eq. (206) we can write a Z2 × Z′
2 invariant 5D Yukawa interaction in the form

L5 =
∫

d2�
1

2
(�(x5) − �(x5 − �R))f5u10.10.5H

+
∫

d2�
1

2
(�(x5) − �5̄�10�(x5 − �R))f5u10.5̄.5̄H + h.c. (207)

The Z2 × Z′
2 invariance of Eq. (207) is easily checked by using Eq. (206). On integration over the fifth coordinate one

gets the following effective Higgs–quark–lepton interaction in 4D:

L4 = L0 + LKK , (208)

L0 =
∫

d2�(f1QUcH(0)
u + f2QDcH

(0)
d + f2LEH

(0)
d ) + h.c., (209)

LKK =
∞∑

n=1

√
2
∫

d2�(f1QUcH(2n)
u + f2QDcH

(2n)
d + f2LEH

(2n)
d )

+
∞∑

n=1

√
2
∫

d2�(f1QQH
(2n+1)
T + f1U

CECH
(2n+1)
T + f2QLH

(2n+1)

T̄
+ f2QLH

(2n+1)

T̄
), (210)

where f1 =f5u/
√

2�R, f2 =f5d/
√

2�R. One finds that L0 which contains the zero Higgs modes is precisely what one
has in the minimal SU(5) theory for the Higgs doublets. However, unlike the minimal SU(5) of 4D theory, here one has
a natural Higgs doublet–triplet splitting and one has no zero Higgs triplet modes. The LKK contains the Kaluza–Klein
excitations of the Higgs doublets and the Higgs triplets and anti-triplets.

There is no dimension five proton decay in this theory since the Higgs triplet mass terms are of the form [257]

∞∑
n=0

R−1
∫

d2�(H
(2n+1)
T Ĥ

(2n+1)
T + H

(2n+1)
T Ĥ

(2n+1)
T ) + h.c. (211)



238 P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317

Since Ĥ does not connect to the quarks and leptons there is no dimension five proton decay mediated by Higgs triplets
in this model. Further, as shown in Ref. [257] the model has an overall U(1)R invariance which kills the proton decay
via dimension four operators from the term 10.5̄.5̄where all multiplets are matter multiplets. We pause to contrast
the situation here with that in 4D supersymmetric theories. As discussed in Section 5, in 4D supersymmetric grand
unified theories, even with R-parity one typically has baryon and lepton number violating dimension five operators
which lead to proton decay, and because of that there exist overlapping constraints on the GUT scale from the current
experimental limits on the proton lifetime and from the gauge coupling unification. This issue lead us to consider in
detail the twin constraints of gauge coupling unification in 4D theories and proton stability in Section 5.3. In contrast
in higher dimensional theories of the type discussed above, one does not have any dimension five induced proton
decay. However, the gauge coupling unification constraint can still affect proton decay via dimension six operators.
Specifically, here Kaluza–Klein tower of states can affect proton decay lifetimes. A detailed discussion of this topic
is given at the end of Section 6.4. It needs to be pointed out that the analysis of gauge coupling unification in higher
dimensional theories in by no means unique, but rather has a significant model dependence. However, in a class of
models the situation is even improved [263] over the supersymmetric SU(5) model in 4D. A more detailed discussion
of this topic is outside the scope of this report, but the reader is refereed to a number of recent works for an update
[239,257,263–265].

Although, there no proton decay from dimension four and five operators in models of the above type, there is,
however, proton decay from dimension six operators induced by gauge interactions.

Assuming that all the three generations are located on the SU(5) brane, one has a dimension six operator in this case,
leading to a proton decay width for the mode p → e+�0 which is [266]

�(p → e+�0) =
(

�g4

4MC

)4 5
2A2
Rmp

4�f 2
�

(1 + D + F)2. (212)

With F = 0.47, D = 0.8, f� = 0.13 GeV, 
 = 0.01 (GeV)3, g2
4/(4�) = 0.04, AR = 2.5 one finds

�(p → e+�0) � 1.4 × 1034
(

MC

1016 GeV

)4

yr. (213)

The current experiment already puts a lower limits on MC of MC � 8 × 1015 GeV.
We consider now case (2) where one has matter in the bulk. Here one starts with complete SU(5) multiplets involving

10 and 5̄. However, P ′ splits these so that only certain components of these multiplets have zero modes. For example,
with a specific choice of P ′ parities, only Uc and Ec in the 10-plet and only Dc in the 5̄-plet have zero modes. To
complete the multiplets one can add a copy of the 10 and 5̄ which have an overall opposite P ′ parity to the previous
multiplets. Since in this case the zero modes arise from different multiplets there are no X and Y gauge interactions
which can produce baryon and lepton number violating dimension six operators. There are, however, Kaluza–Klein
excitations of the bulk matter fields and X and Y gauge bosons do connect the zero modes matter fields with their KK
counterparts. But these lead to operators which are at least dimension eight and suppressed by M4

C . Their contributions
to proton decay is far too small to be relevant.

Next, we consider case (3) where one has matter confined to the SM brane. Here the X and Y boson wave-functions
vanish at the location of the SM brane and thus one has no couplings of these gauge bosons to the SM matter fields
and consequently no baryon and lepton number violating dimension six operator. So there is no proton decay from
the usual X and Y boson exchange. However, we now show that non-minimal couplings such as derivative couplings
can lead to proton decay. One can write in general on the SM brane a non-minimal operator with one derivative as
follows [266]:

L5N = �ij

MP

�(x5′
)

∫
d2� d2�̄�c†

i (D5e
2V )�j + h.c. (214)

The effective baryon and lepton number violating dimension 6 operators can be obtained by an integration over the
X and Y gauge bosons, and one has

O6 � ��ij �kl

g2
4

MCMP

∫
d2� d2�̄

∑
â

(�c†
i T â�j )(�

c†
k T â�l ). (215)
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In the above �ij and � are strong interaction parameters which are typically O(1). The proton lifetime resulting from
above is

�(p → e+�0) = 3.5 × 1034(��11)
−2

(
M

1/2
C M

1/2
P

1016 GeV

)4

years. (216)

Clearly the result of Eq. (216) has a significant model dependence. If one assumes that MP is around the Planck scale,
since such type couplings are expected to arise from Planck scale corrections, one has MP � 1018 GeV. Then an MC

around 1015 GeV or larger, will put this lifetime out of reach of the next generation of experiments unless a suppression
is manufactured from the front factors (��11)

−2.

6.2. SO(10) models in 5D

The SO(10) models in 5D which have been investigated by a number of authors [267,268]. Here the gauge multiplet
V is 45 dimensional belonging to the adjoint representation of SO(10). In 4D language the 5D vector multiplet will
consist of the N =1 vector multiplet V and an N =1 chiral multiplet �. We take the Higgs multiplet to lie in the 10-plet
representation of SO(10) so in 5D it is a 10 dimensional hypermultiplet H10. In 4D it would correspond to two N = 1
chiral superfields H10, Ĥ10. Similar to the SU(5) case we have the following transformations under Z2

H10(x
�, x5) → H10(x

�, −x5) = PH 10(x
�, x5),

Ĥ10(x
�, x5) → Ĥ10(x

�, −x5) = −P T Ĥ10(x
�, x5), (217)

with P 2 =I where P is now a 10×10 matrix. We choose P so that P =15×5 ×12×2. We assume similar transformations
under Z′

2, with x5′
replacing x5 and P ′ replacing P and for P ′ we choose [267,268]

P ′ = diag(−1, −1, −1, 1, 1) × (1, 1). (218)

As in the case of SU(5) the Z2 orbifolding breaks the N = 2 supersymmetry in 4D to an N = 1 supersymmetry . The
Z′

2 orbifolding breaks the SO(10) gauge group to an SO(6) × SO(4) gauge group. Since SO(6) ∼ SU(4) and SO(4) ∼
SU(2)L ×SU(2)R , we classify the fields according to their SU(4)×SU(2)L ×SU(2)R representations. Thus the 45-plet
of vector fields which belong to the adjoint representation of SO(10) can be classified in the SU(4)C ×SU(2)L×SU(2)R
representations as follows: V (15, 1, 1), V (1, 3, 1), V (1, 1, 3), V (6, 2, 2) and an identical decomposition holds for the
45-plet of the chiral scalar superfield �. The Higgs multiplets H and Ĥ which belong to the 10-plet representation of
SO(10) decompose as H(6,1,1), H(1,2,2), Ĥ (6, 1, 1), Ĥ (1, 2, 2). The Z2 × Z′

2 properties of these fields are exhibited
in Table 6. The 16-plet spinor representation of SO(10) can be decomposed under SU(4)C × SU(2)L × SU(2)R as

(4, 2, 1) + (4̄, 1, 2). The generalization of a Z′
2 transformation on a spinor is [267] P ′ = e− 3�

2 (B.L). Now under the
SU(4)C decomposition SU(4)C → SU(3)C × U(1)B.L, one finds (4, 2, 1) → 31/3 + 1−1 which leads to P ′ = −i for

the (4, 2, 1) multiplet. Thus 16-plet spinor has Z′
2 parities given by (4, 2, 1)−i + (4̄, 1, 2)i .

As discussed earlier in the Z2×Z′
2 compactification there are two in-equivalent orbifold points: x5=0 and x5=�R/2.

At x5 = 0, the wave-functions for all the gauge bosons are non-vanishing and one has an SO(10) invariance. On the

Table 6
P and P ′ parities of SO(10) vector and chiral multiplets

SU(4) × SU(2)L × SU(2)R N = 1 multiplets Z2 × Z′
2 parities

V (15, 1, 1), V (1, 3, 1), V (1, 1, 3), H(1, 2, 2) (+, +)

V (6, 2, 2), H(6, 1, 1) (+, −)

�(6, 2, 2), Ĥ (6, 1, 1) (−, +)

�(15, 1, 1),�(1, 3, 1),�(1, 1, 3), Ĥ (1, 2, 2) (−, −)
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other hand at x5 = �R/2, the V (6, 2, 2) gauge bosons have their wave-functions vanishing, and the gauge symmetry
is reduced to SU(4)C × SU(2)L × SU(2)R . Thus we can classify the models at the two orbifold points as

1. SO(10) brane model.
2. G(4, 2, 2) brane model.

Analogous to the SU(5) 5D model there is no proton decay in these models from dimension 4 or dimension 5 operators.
For the case of SO(10) brane proton decay from dimension six operators can occur. However, this proton decay is
proportional to M−4

C as seen in Eq. (213). An estimate of MC for the model of Ref. [268] gives a value too low to be
compatible with the current lower bounds on the proton lifetime. We focus next on the G(4, 2, 2) brane model. Here to
reduce the gauge symmetry further and to reduce the rank of the gauge group one needs to invoke the Higgs mechanism.
One possibility is to consider addition of 16+16 of Higgs multiplets. Now under SU(4)C×SU(2)L×SU(2)R the 16-plet
decomposes so that 16=(4, 2, 1)+(4̄, 1, 2) and one gives VEV to �c+�̄c where �c=(4̄, 1, 2).A VEV formation for this
combination then breaks the SU(4)C ×SU(2)L×SU(2)R symmetry down to the symmetry of the standard model gauge
group. Since the wave-function for the V (6, 2, 2) gauge bosons vanishes on the SU(4)C × SU(2)L × SU(2)R brane,
there is no proton decay of the usual sort from the mediation of X and Y gauge bosons. However, proton decay can
occur from derivative terms on the SU(4)C ×SU(2)L ×SU(2)R brane as given in Eq. (216). Analysis of gauge coupling
unification in Ref. [268] gives an estimate of MC ∼ 2 × 1014 GeV and MP is identified with the unification scale in
string models and taken to be ∼ 2 × 1017 GeV. In this case the analysis of Ref. [268] gives

�(p → e+�0) ∼ 7 × 1033±2 yr, (219)

where the ±2 reflects the uncertainties due to �, �11, MC and MP .
Another possible class of SO(10) models in 5D is based on embedding of a four-dimensional flipped SU(5) model

in a five-dimensional SO(10) model [269]. This approach can preserve the best features of both the flipped SU(5)

and of SO(10). Namely, the missing partner mechanism, which naturally achieves both doublet–triplet splitting and
suppression of dimension 5 proton decay operators, can be realized as in flipped SU(5), while the gauge couplings
unify as in SO(10) [270].

In this approach orbifold compactification leaves two inequivalent points. One has an SO(10) invariance while the
other has flipped SU(5) invariance. To break the rest of the way to the Standard Model one can either use Higgs fields
that originate from the bulk [269] or reside on the flipped SU(5) brane [270]. In both cases the split between the
doublets and the triplets is done through the four-dimensional flipped-SU(5) missing partner mechanism. As before,
there is no proton decay from dimension 4 or dimension 5 operators. On the other hand, the strength of dimension 6
gauge contributions depends on the exact location of matter fields. If they originate from the bulk then the dimension 6
operators are strongly suppressed; if they are situated on either the SO(10) or the flipped SU(5) brane some suppression
in the Yukawa sector is needed to avoid experimental bounds since MC ∼ 5.5 × 1014 GeV [270].

6.3. 5D Trinification

5D trinification models have also been considered [271,272]. The trinification is based on the gauge group SU(3)C ×
SU(3)L × SU(3)R × Z3 where the discrete symmetry permutes the three labels C, L, R which gives a single gauge
coupling constant g at the unification scale. The gauge fields for the system can be decomposed in representations of
SU(3)C × SU(3)L × SU(3)R so that they fall into the sets

(8, 1, 1) + (1, 8, 1) + (1, 1, 8). (220)

The Z2 ×Z′
2 parities of the vector multiplet V are defined as in Eq. (203) where P, P ′ are given by P =PC +PL +PR

and similarly for P ′. We make the following assignments

(PC; PL; PR) = (1, 1, 1; 1, 1, −1; 1, 1, −1),

(P ′
C; P ′

L; P ′
R) = (1, 1, 1; 1, 1, −1; 1, 1, 1). (221)
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With the above assignments one has

V (8, 1, 1) = , (222)

V (1, 8, 1) = , (223)

V (1, 1, 8) = , (224)

Now as usual in addition to the possibility of putting matter in the bulk one may put matter on the x5 = 0 brane or
on the x5 = �R/2 brane. Suppose we consider the last possibility. In this case the gauge bosons odd under P ′ vanish
at x5 = �R/2 and the gauge symmetry is reduced to SU(3)C × SU(2)L × U(1)L × SU(3)R . There are no dimension
six operators to produce proton decay in these models. In the usual triunification models, proton decay can arise from
the dimension five operators generated by the Higgs triplets in the 27-plet representations. Here, however, since at the
orbifold point one already has a reduced symmetry, a further reduction of the gauge symmetry involves only small
representations [271]. Consequently there are no dimension five operators arising from them and hence there is no
proton decay from this sector either.

6.4. 6D models

There are a number of works which have explored GUT model building in 6D [273–277]. In such models one begins
with a space R4 × T 2 where T 2 is a two torus and one orbifolds T 2 in a way similar to what we discussed in 5D. One
model studied in detail in the context of proton decay is the specific compactification [274,275] T 2/(Z2 × Z′

2 × Z′′
2 ).

The Lagrangian density for the vector multiplet in this case is

L6 = 1

g2 tr

(
−1

2
VMNV MN + i�̄�MDM�

)
, (225)

where �M satisfy the Clifford algebra in 6D. Defining VM = (V�, V
), where � = 0, 1, 2, 3 as usual and 
 = 5, 6 the
transformation properties of VM, �1, �2 under Z2 × Z′

2 × Z′′
2 are

PV �(x�, −x5, −x6)P −1 = V�(x�, x5, x6),

PV 
(x
�, −x5, −x6)P −1 = −V
(x

�, x5, x6),

P�1(x
�, −x5, −x6)P −1 = �1(x

�, x5, x6),

P�2(x
�, −x5, −x6)P −1 = −�2(x

�, x5, x6), (226)

and we choose P = I . Here (V�, �1) form an N = 1 vector multiplet and (V
, �2) form an N = 1 chiral multiplet. The
zero modes arise only from the vector multiplet. Next under Z′

2

P ′V�(x�, −x5, −x6 + �R6/2)P
′−1 = V�(x�, x5, x6 + �R6/2),

P ′V
(x
�, −x5, −x6 + �R6/2)P

′−1 = −V
(x
�, x5, x6 + �R6/2), (227)

where for P ′ we choose

P ′ = diag(1, 1, 1, 1, 1) × �2. (228)
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Similarly for Z′′
2

P ′′V�(x�, −x5 + �R5/2, −x6)P ′′−1 = V�(x�, x5 + �R5/2, x6),

P ′′V
(x
�, −x5 + �R5/2, −x6)P ′′−1 = −V
(x

�, x5 + �R5/2, x6), (229)

where for P ′′ we choose

P ′′ = diag(−1, −1, −1, 1, 1) × �0. (230)

Now the mode expansion of a function on the torus depends on its parities and there are eight cases corresponding to
the eight permutations ± ± ±. These have the following mode expansions:

f+++(x�, x
) =
∑
m�0

(�2R5R6)
−1/2 1

2�m,0,�n,0
f

(2m,2n)
+++ (x�) cos

(
2mx5

R5
+ 2nx6

R6

)
,

f++−(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m,2n+1)
++− (x�) cos

(
2mx5

R5
+ (2n + 1)x6

R6

)
,

f+−+(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m+1,2n)
+−+ (x�) cos

(
(2m + 1)x5

R5
+ 2nx6

R6

)
,

f+−−(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m+1,2n+1)
+−− (x�) cos

(
(2m + 1)x5

R5
+ (2n + 1)x6

R6

)
,

f−++(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m+1,2n+1)
−++ (x�) sin

(
(2m + 1)x5

R5
+ (2n + 1)x6

R6

)
,

f−+−(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m+1,2n)
−+− (x�) sin

(
(2m + 1)x5

R5
+ 2nx6

R6

)
,

f−−+(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m,2n+1)
−−+ (x�) sin

(
2mx5

R5
+ (2n + 1)x6

R6

)
,

f−−−(x�, x
) =
∑
m�0

(�2R5R6)
−1/2f

(2m,2n)
−−− (x�) sin

(
2mx5

R5
+ 2nx6

R6

)
, (231)

where the subscripts label the P, P ′, P ′′ parities. The vector multiplet in its G′
SM = SU(3)C × SU(2)L × U(1)2

decomposition takes on the following parity assignments:

(8, 1, 0, 0)+++, (1, 3, 0, 0)+++, (1, 1, 0, 0)+++, (1, 1, 0, 0)+++
(3, 2, −5, 0)++−, (3̄, 2, 5, 0)++−
(3, 1, 4, −4)+−+, (1, 1, 6, 4)+−+, (3̄, 1, −4, 4)+−+, (1, 1, −6, −4)+−+
(3, 2, 1, 4)+−−, (3̄, 2, −1, −4)+−−. (232)

Now at the orbifold point x5=�R/2, x6=0, one finds that the gauge vector bosons with parities ++− and +−− vanish
and thus only the first and third lines of Eq. (232) survive and these generators can be assembled into representations
of SU(4)C × SU(2)L × SU(2)R so that

(15, 1, 1) = (8, 1, 0, 0)+++ + (3̄, 1, −4, 4)+−+ + (3, 1, 4, −4)+−+ + (1, 1, 0, 0)+++,

(1, 3, 1) = (1, 3, 0, 0)+++,

(1, 1, 3) = (1, 1, 0, 0)+++ + (1, 1, 6, 4)+−+ + (1, 1, −6, −4)+−+. (233)
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We see then that the surviving gauge fields at this orbifold point consist of the sets (15, 1, 1)+(1, 3, 1)+(1, 1, 3) which
are precisely the gauge fields for the group SU(4)C × SU(2)L × SU(2)R . Thus the orbifold point x5 = �R5/2, x6 = 0,
can appropriately be labeled G(4, 2, 2) orbifold, since G(4, 2, 2) is the surviving gauge symmetry at this orbifold point.

Next, we consider the orbifold point x5 = 0, x6 =�R6/2. Here the surviving operators are those with parities +++
and ++− and consist of the first two lines of Eq. (232). They can be assembled into the (24, 0) and (1, 0) representations
of SU(5) × U(1) as follows:

(24, 0) = (8, 1, 0, 0)+++ + (1, 3, 0, 0)+++ + (1, 1, 0, 0)+++ + (3, 2, −5, 0)++− + (3, 2, 5, 0)++−,

(1, 0) = (1, 1, 0, 0)+++. (234)

Clearly then it is appropriate to call this orbifold point an SU(5) × U(1) orbifold. As in the 5D case a 10-plet of Higgs
multiplet in 6D contains two chiral multiplets H, Ĥ . For H the Z2 × Z′

2 × Z′′
2 parities can be assigned as follows in

GSM′ decomposition

H(1, 2, 3, 2)+++, H(1, 2, −3, −2)+−+, H(3, 1, −2, 2)++−, H(3̄, 1, 2, −2)+−−. (235)

Proceeding as before we consider the orbifold point x5 = �R5/2, x6 = 0. One finds that the non-vanishing Higgs
multiplets here fall into the (1,2,2) representation of SU(4)C × SU(2)L × SU(2)R since

H(1, 2, 2) = H(1, 2, 3, 2)+++ + H(1, 2, −3, −2)+−+. (236)

Similarly at the orbifold point x5, x6 = �R6/2, one finds that the following non-vanishing Higgs multiplets fall into
the (5,2) representation of SU(5) × U(1) [274]

H(5, 2) = H(1, 2, 3, 2)+++ + H(3, 1, −2, 2)++−. (237)

Thus we can classify the 6D orbifold points as follows:

1. SO(10) brane.
2. SU(5) × U(1) brane.
3. Flipped SU(5) × U(1) brane.
4. SU(4)C × SU(2)L × SU(2)R brane.

In the orbifold breaking of the gauge symmetry the rank of the group is typically not reduced. To reduce the rank
down to the standard model gauge group symmetry one needs to introduce 16 + 16 of Higgs. The choice of the Higgs
structure to break the symmetry down to the SM gauge group depends on the details of the model. Further, proton
decay is very sensitive to placement of generations in the compact space and there are a variety of models each with a
different scenario. We would not discuss the specific details of their constructions. Rather, in the following we comment
on some general features common to these constructions.

There is no dimension 4 or dimension 5 proton decay in models of this type for reasons similar to the case of 5D
models. Proton decay from dimension six operators is very model dependent. For example, placement of all three
generations on the SU(4)C × SU(2)L × SU(2)R brane will suppress proton decay from X and Y exchange. A similar
situation holds if the first generation is placed on the SU(4)C × SU(2)L × SU(2)R brane and the second and third
generations on the flipped SU(5) × U(1) and the SU(5) × U(1) branes. When dimension six operators from the X and
Y generations are allowed, one finds that there is a modification due to the exchange of the towers of KK states. Thus
the mass of a (m, n) KK state is

M2
X(m, n) = (2m + 1)2M2

5 + (2n)2M2
6 , (238)

where M5 ≡ R−1
5 and M6 ≡ R−1

6 . The effective mass that enters in the dimension six operator is M̃X where

(M̃X)−2 = 2
∞∑

m,n=0

((2m + 1)2M2
5 + (2n)2M2

6 )−1. (239)

For the case when M6/M5 → 0, one finds that (M̃X)2 = 4
�2 M2

5 which is correctly the 5D result. For the case of
the double summation the sum actually diverges. However, infinite summation on (n, m) is not really justified since
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above an effective scale M∗ the theory becomes strongly interacting. Because of this one ought to use a cutoff so that
one counts KK states only below M∗. This can be done by putting a cutoff so that MX(m, n)�M∗. One then using
M5 = M6 = MC

(M̃X)−2 � �

4
M−2

C

(
ln

M∗
MC

+ 2.3

)
. (240)

The above modification leads to an enhancement of the proton lifetime similar to what happens in the 5D case. Also as
in the case of the 5D analysis derivative couplings can produce proton decay. Beyond these general observations the
details of the proton decay are highly model dependent. As an example, we note that the work of Ref. [275] investigates
a specific model where the three generations of 16 plets of matter are located at different branes. Thus generation 1
is placed on the SU(5) × U(1) brane, generation 2 is placed on the flipped SU(5) × U(1) brane, and generation 3 is
placed on the SU(4)C × SU(2)L × SU(2)R brane. There are additional assumptions regarding the Higgs structure and
flavor sector of the theory. In this model the dominant proton decay branching ratios are [275].

BR(�0e+) = (71 − 75)%, BR(�̄�+) = (19 − 23)%,

BR(�+�0) = (4 − 5)%, (241)

while the other modes are typically less than 1%. An interesting signature of Eq. (241) is the strong suppression of the
mode �+K0 compared to the predictions of the 4D models. The analysis of Ref. [275] calculates the life time for the
e+�0 mode so that

�(p → e+�0) = 5.3 × 1033
(

0.01 GeV3




)2(
MC

9 × 1015

)4

yr. (242)

Using 
=0.01 GeV3, and MC =2×1016 GeV as indicated by the unification of the gauge coupling constants, one finds
that �(p → e+�0) � 1 × 1035 yr. This life time lies within reach of the next generation of proton decay experiments.

6.5. Gauge–Higgs unification

Another class of model which are closely related are models with gauge–Higgs couplings unification [273]. Here
the Higgs doublet fields arise as a part of the vector multiplet and hence there is a unification of the gauge and
Higgs couplings. There are several variants of such models. We discuss briefly an SU(6) model in 6D compactified
on T 2/(Z2 × Z′

2) of Ref. [273]. One introduces an SU(6) vector multiplet in the bulk which can be decomposed
under 4D N = 1 supersymmetry as the multiplets V, V5, V6, �. To construct the T 2/(Z2 × Z′

2) orbifold one considers
the following operations: Z5: (x5, x6) → (−x5, x6); Z6: (x5, x6) → (x5, −x6); T5: (x5, x6) → (x5 + l5, x

6); T6:
(x5, x6) → (x5, x6 + l6) where l5 = 2�R5 and l6 = 2�R6. One can choose the transformations for the fields under the
above transformations so that the zero modes correspond to the SU(3)C ×SU(2)L×U(1)Y components. Corresponding
to Z5 and Z6 transformations we choose

V (−x5, x6) = PZV (x5, x6)P −1
Z ,

V (x5, −x6) = PZV (x5, x6)P −1
Z ,

�(−x5, x6) = −PZ�(x5, x6)P −1
Z ,

�(x5, −x6) = −PZ�(x5, x6)P −1
Z . (243)

and similarly

V5(−x5, x6) = −PZV5(x
5, x6)P −1

Z ,

V5(x
5, −x6) = PZV5(x

5, x6)P −1
Z ,

V6(−x5, x6) = PZV6(x
5, x6)P −1

Z ,

V6(x
5, −x6) = −PZV6(x

5, x6)P −1
Z , (244)
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where PZ is chosen so that [273]

PZ = diag(1, 1, 1, 1, 1, −1). (245)

Under T5 and T6 the fields transform as follows:

V (x5 + l5, x
6) = PT V (x5, x6)P −1

T ,

V (x5, x6 + l6) = PT V (x5, x6)P −1
T (246)

and identical relations hold for the other fields, where PT is chosen so that [273]

PT = diag(1, 1, 1, −1, −1, −1). (247)

With the above assignments, SU(6) breaks down to SU(3)C × SU(2)L × U(1)Y × U(1)X. The PZ, PT parities of the
V and � components can now be exhibited.

V : , (248)

� : , (249)

where (3×3)(+, +) means that all elements of a (3×3) matrix have PZ, PT parities (+, +) and (3×2)(+, −) etc are
similarly defined. Looking at the � fields, one finds that fields with (+, +) parities have the SU(3)C ×SU(2)L ×U(1)Y
quantum numbers of (1, 2, 1

2 ) + (1, 2, − 1
2 ). These fields then qualify as Higgs doublets of MSSM allowing for the

possibility of gauge–Higgs unification since � is part of the original vector multiplet in 5D. Before proceeding further,
it is instructive to identify the residual gauge symmetry at various orbifold points. We label the orbifolds by (x5, x6)

values. Thus the residual symmetries at the various orbifold points are: (i) (0,0): SU(5)×U(1)X, (ii) (�R, 0): SU(3)C ×
SU(2)L×U(1)Y ×U(1)X, (iii) (0, �R): SU(3)C×SU(2)L×U(1)Y ×U(1)X, (iv) (�R, �R): SU(3)

C̃
×SU(2)L×U(1)

X̃
.

As in previous scenarios, proton decay is sensitive to how matter is located in the compact extra dimensions. If we
place matter on the (0, 0) orbifold point, the residual symmetry is SU(5)×U(1)X and one has dimension six operators
from X and Y gauge bosons. On the other hand if the quarklepton generations are placed at the other orbifold points
with reduced gauge symmetry, e.g., at the orbifold point (0, �R), dimension six proton decay from the X and Y gauge
bosons will be absent. However, as discussed earlier one can have proton decay from derivative couplings although
such decays will be suppressed by volume of the extra dimensions. We note in passing that dimension 5 proton decay
through Higgs triplet mediation is absent since there are no couplings of the Higgs triplets to quarks and leptons.

6.6. Proton decay in universal extra dimension (UED) models

We turn now to a discussion of proton decay in the universal extra dimension (UED) models. In these models it
is possible to control proton decay via the use of extra symmetries that might arise in models with universal extra
dimensions [278,279]. Thus in six dimensions with two universal extra dimensions the standard model particles are
charged under the U(1) symmetry which arises due to the extra dimensions x4 and x5 and thus this symmetry may be
labeled as U(1)45. Even after compactification a discrete Z8 symmetry survives. The symmetry allows only very high
dimension baryon and lepton number violating operators, i.e., dimension sixteen or higher which leads to a suppression
of proton decay. In six dimensions the Lorentz symmetry is SO(1, 7) and in six dimensional space on can introduce
Dirac matrices �M (M = 0, 1, . . . , 5) which are 8 × 8 and can define a �7 matrix so that �7 = �0�1 . . . �5. Using
�7 one can define chiral eigenstates �± of chiralities ± and thus a six dimensions � can be broken up into two �±.
Each of the six dimensional chiralities states are full four component Dirac fields in four dimensions and can be further
decomposed in left and right chiral projections under the four dimensional chiral projection. An interesting result is
that the Standard Model gauge and gravitational anomalies cancel only for certain combinations of chiral assignments
which are one of the following two possibilities [278]

(i) Q+, U−, D−, L+, E−, N−; (ii)Q+, U−, D−, L−, E+, N+, (250)



246 P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317

where all the quark–lepton fields are in six dimensions and where N is a gauge singlet that is needed for the cancellation
of gravitational anomaly. On compactification the zero modes of Q+, U−, D− etc. fields will be the standard model
fields. The U(1)45 quantum numbers of the fields are as follows:

(uL, dL, uR, dR)(− 1
2 ), (�L, eL, �R, eR)(∓ 1

2 ). (251)

Because of Eq. (251) one can immediately see that lepton and baryon number violating operators of the type QQQL/M

are forbidden. Thus Lorentz invariance in six dimensions severely constraints the operators and the allowed lepton and
baryon number violating operators must have at least three quarks and three leptons. This constraint leads to interesting
new signals for proton decay. Thus consider the following operator allowed by the above constraints [278]:

O17 = C17

�11 ( ¯L+D−)3H̃, (252)

where H̃ is the conjugate Higgs doublet in six dimensions, and � is the scale up to which the six dimensional effective
theory is valid. On compactification one can obtain the effective baryon and lepton number violating operator in four
dimensions. The effective operator in four dimensions contains the term (�̄LdR)2(l̄LdR) which implies proton decay
modes of the type, �+�+e−�� and �+�+�−��. As estimate of proton decay into these modes is then

�(p → �+�+l−��) � 1035 yr

C2
17

(
2 × 10−12

P5f (�)

)(
MC

0.5T eV

)12( �

5MC

)22

. (253)

Here P5 is the phase space factor which is estimated to be �2 × 10−12, f (�) is a �� form factor which is expected to
be O(1), and MC = 1/R is the compactification scale. Setting C17 = 1 and the ratios within the braces to unity one find
that �(p → �+�+l−��) � 1035 yr. The current experimental limits on the mode p → �+�+e− is �p > 3 × 1031 yr.
Thus we see that with the default values of the parameters in Eq. (253) the partial lifetime �(p → �+�+l−��) is
much larger by orders of magnitude than the current limits of similar type processes. One must, however, keep in
mind the extreme sensitivity of the theoretical predictions because of the high powers on quantities which are currently
unknown. The above results have been derived using the six dimensional symmetry. On compactification of the two
extra dimensions, the SO(1, 5) symmetry including the U(1)45 subgroup symmetry is broken and a simple choice is
compactification of T 2/Z2 orbifold of equal radii. In this case the U(1)45 symmetry is broken down to a Z8 symmetry.
This discrete symmetry is sufficient to guarantee that there are no baryon and lepton number violating processes with
less than three quarks and three leptons. Of course it remains to be seen if the considerations of Casimir energy
indeed lead to the vacuum state with the desired symmetry. Some progress along this direction is made in Ref. [280].
Further development of this scheme has been carried out in the analysis of Ref. [281] where issues of neutrino masses
and of dark matter are also addressed. The gauge group investigated here include SU(2)L × U(1)I3R

× U(1)B.L and

SU(2)×SU(2)R ×U(1)B.L and compactifications on a T 2/Z2 or T 2/Z2 ×Z′
2 orbifolding is considered. The dominant

decay mode of the neutron in this model is n → 3�. Aside from the power law suppression of proton decay, a similar
mechanism for the generation of small neutrino masses is also valid. Further, in this model dark matter could consist of
two components consisting of Kaluza–Klein excitations of the neutrino and of the photon. In summary in UED models
a discrete subgroup of the Lorentz symmetry in six dimensions continues to forbid dangerous proton decay operators
when reduction to four dimension is carried out.

6.7. Proton decay in warped geometry

Warped geometry presents a possible solution to the hierarchy problem without necessarily using supersymmetry.
Thus in Refs. [282,283] Randall and Sundrum proposed a metric of the form

ds2 = e−2k|y|��� dx� dx� + dy2, (254)

where y is the coordinate of the extra dimension limited to 0�y��rc where rc may be considered the compactification
radius for the extra dimension. The action of the theory consists of a Planck brane at y = 0 and a TeV brane at y = �rc
and the geometry is a slice of AdS5. The AdS geometry creates a warp factor and mass scales at the two branes are
related by an exponential hierarchy. In the original formulation of RS all the standard model particles are located
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at the TeV brane. Later it was realized that to solve the hierarchy problem one needs only the Higgs fields on the
TeV brane and the remaining standard model fields including quarks, leptons and the gauge bosons could live in the
bulk [284–287]. This procedure leads naturally to a hierarchy of the Yukawas couplings if different generations of
standard model fermions are located at different points in the bulk [286–289]. One still has to address the issue of
dangerous proton decay operators in the theory. A possible way to address this problem is to assume a gauged baryon
number symmetry [290,291]. However, to make such a symmetry compatible with grand unification, one needs to
break 5D GUT by boundary conditions [253,257,292] and extract zero modes for a single generation from different
multiplets. The remaining components of the multiples have only KK modes. Thus in the work of Refs. [293,294] a
non-supersymmetric extra dimensional Randall–Sundrum (RS) model [283] has been explored. The specific model of
Ref. [293] assumed the grand unified group is broken to the Standard Model gauge group by boundary conditions on
the Planck brane and the matter is composed from different replicas of multiplets [291]. For example, for the case of
SO(10) one assumes three 16-plet representations for each generation as shown below:⎛⎜⎜⎝

(uL, dL, uc′
R, dc′

R , �′
L, e′

L, ec′
R, �c′

R)B=1/3

(u′
L, d ′

L, uc
R, dc

R, �′
L, e′

L, ec′
R, �c′

R)B=−1/3

(u′
L, d ′

L, uc′
R, dc′

R , �L, eL, ec
R, �c

R)B=0

⎞⎟⎟⎠ , (255)

where only the unprimed fields have zero modes and the subscript indicates the baryon number of the multiplet. Thus
one finds that a full generation of matter arises from three replicas of 16-plet of matter. The baryon number assignment
of the multiplets corresponds to the baryon number of the zero modes. The assumption that baryon number is conserved
leads to a Z3 symmetry

� → exp

(
2�i

(
B − nc − n̄c

3

))
�. (256)

Here the multiplet � carries the baryon number B and nc(n̄c) is the color (anti-color) index. The quantum numbers
assignments are such that the zero modes which constitute the standard model particles are not charged under Z3 while
the other states are. This also applies to the gauge vector bosons of SO(10) where the gauge bosons which enter in the
Standard Model are not charged under Z3 but the lepto-quarks are charged. Thus exotic particles with non-vanishing
baryon number B cannot decay into the Standard Model particles. In this scenario the lightest Kaluza–Klein particle
(LKP) will be stable and could be a candidate for dark matter. Of course, the baryon number gauge symmetry cannot be
exact as it would lead to an undesirable massless gauge boson. The analysis of Ref [293] has analyzed the implications
of such breaking on the Planck brane. It is shown that if the symmetry is broken such that �B 
= 1

3 , 2
3 , proton decay

will be suppressed by a Planck mass and the LKP mode could be long lived with as much as 1010 times the age of the
universe [293,295].

In another work which is motivated by RS models [296,297] unification of gauge couplings with composite Higgs
and a composite right handed top quark are considered [298]. Thus RS models where most or all of the Standard Model
fields are in the RS bulk may have a dual to a purely 4D composite Higgs scenario via a AdS/CFT correspondence
[299,300]. Motivated by this observation it is then suggested that in the running of the gauge unification one should
project out the Higgs above a compositeness scale �comp. It is further suggested that the largeness of the top Yukawa
couplings indicates that either tL or tR or both may be composite. However, precision electroweak data on Z → bb̄

indicate the elementarily of bL and hence of tL and thus it is argued that tR should be composite [296]. In running of
the gauge coupling constants above the scale �comp one should then replace H and tR by the strong dynamics so that


i (Q) = 
U + SM − {H, tR} + strong dynamics + MU − corrections. (257)

Now if the strong dynamics cancels out in the differential running as would be the case if the SM gauge group is
embedded in a simple factor of G then one will have


i (Q) − 
1 = SM − {H, tR} + MU − corrections. (258)

While Eq. (258) improves the unification relative to the Standard Model running, a variant of the scenario improves it
still further. Here one include tcR along with H, tR on the right hand of Eq. (258). With this modification and assuming
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that the corrections from heavy states at the unification scale are small as is conventional, one finds a unification scale
of MU ∼ 1015 GeV. This scale is too low to suppress proton decay from the exchange of states with masses of this
size which generate baryon and lepton number violation such as lepto-quarks. Additionally there are also composite
states which can generate proton decay in this model. However, it is envisioned that the model arises from a string or
orbifold compactification where processes of the above type are suppressed by symmetries or orbifold projections.

6.8. Proton stability in kink backgrounds

Another approach to suppression of proton decay operators in extra dimensional models comes from fermion local-
ization mechanism [301–303] where chiral fermions are localized in solitonic backgrounds [304]. With this mechanism
the quarks and leptons have Gaussian wave functions in the extra dimension under a kink background. In this scenario
the Yukawa couplings will be suppressed since they involve overlap of two quark or lepton wavefunctions. This mech-
anism for the suppression of proton decay in extra dimensional models is explored in Ref. [305] where it is proposed
that the same mechanism that leads to a hierarchy of quark–lepton masses and couplings is also responsible for the
longevity of the proton. Specifically, in the analysis of Ref. [305] the quark–lepton chiral multiplets are localized under
a kink background along a spatial extra dimension and the smallness of the Yukawa couplings and of the operators that
govern proton decay result from the overlap of their wave functions and are exponentially suppressed.

In summary, in this section we have investigated proton decay in grand unified models based in extra dimensions. The
most commonly studied models are those using compactifications of five and six dimensions to four dimensions. While
the focus of most model building has been on SU(5) and SO(10) in extra dimensions, other possibilities such as SU(6)

and SU(3)3 have also been investigated. The main attractive feature of such model building is a natural doublet–triplet
splitting, which makes the color triplets superheavy while the SU(2)L Higgs doublets remain light. In some models
there is a residual U(1)R invariance which kills proton decay from dimension four and five operators leaving the
exchange of X and Y gauge bosons as the main possible source of proton decay. However, proton decay from X and
Y exchanges turns out to be highly model dependent as it depends critically on how the matter fields are located in
the extra dimensions. If the matter fields are assumed to propagate in the bulk, then a full generation of quarks and
leptons must arise from split multiplets which have no normal X and Y gauge interactions among them. In such models
proton decay can arise only via higher than six dimensional operators which is far too small to be of relevance for any
experiment in the foreseeable future. The usual dimension six operators can also be forbidden by location of matter on
certain brains. For example, for the SO(10) case placing all three generations on the SU(4)C ×SU(2)L ×SU(2)R brane
will give vanishing dimension six operators from the normal X and Y exchanges since the wave functions for the X

and Y gauge bosons vanish on the SU(4)C × SU(2)L × SU(2)R brane. However, with other choices of locating matter
on branes, one will have in general proton decay from dimension six operators. Additionally, proton decay can arise
from derivative couplings. Consequently, predictions of proton decay in higher dimensional models vary over a wide
range, from predictions of an essentially absolutely forbidden case to the case where it could be just around the corner.
Turning this observation around, whole classes of models would be eliminated by the observation of proton decay.
Thus proton decay is an important discriminator of higher dimensional grand unified models.

7. Proton decay in string models

The string theory holds out the hope of unifying all the interactions of nature including gravity (For a review see
[306,307]). There are five types of known string theories: Type I, Type IIA, Type IIB, SO(32) heterotic and E8 × E8
heterotic. These theories are known to be connected by a web of dualities. Indeed all these five theories may have a
common origin in a more fundamental theory which is the so called M-theory, and whose low energy limit is an 11
dimensional supergravity. We will first discuss proton decay in the heterotic string models [308]. Historically this is
the class of models which were investigated in great detail in the beginning [309,310] and there has been a revival
of interest in these models more recently. The E8 × E8 heterotic string model after compactification can generate a
large variety of models since models with rank up to 22 are allowed. Many possibilities for model building exist and
the models investigated include those based on free fermionic constructions, on orbifolds [311] and on Calabi–Yau
compactifications [312]. The number of possibilities is rather large one may use additional principles to reduce the
number of models. Below we will discuss in some detail models based on some specific Calabi–Yau manifolds which
come close to being realistic. We will also discuss the situation regarding proton stability in string models based on
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Kac–Moody levels k > 1. Later we will discuss proton stability in the more recent class of models, based on Type IIA
or Type IIB or more generally M theory models. We will also discuss proton decay induced by quantum gravity via
wormhole and blackhole effects and the role of U(1) abelian gauge symmetries and discrete symmetries in controlling
dangerous proton decay.

A brief outline for the rest of the section is as follows: In Section 7.1 we discuss proton stability in Calabi–Yau
models. A discussion of grand unification in Kac–Moody levels k > 1 is given in Section 7.2. The k > 1 levels are
needed to realize massless scalars in the adjoint representation necessary to break the GUT symmetry. It turns out,
however, that at level 2 it is difficult to obtain 3 massless generations but it is possible to overcome this problem at level
3. Baryon and lepton number violating dimension four operators are absent in these models due to an underlying gauge
and discrete symmetry. There are, however, present the baryon and lepton number violating dimension five operators
and it is necessary to suppress them by heavy Higgs triplets. One problem in such models concerns the generation of
proper quark–lepton masses. In the absence of such mass generation it is difficult to carry out a detailed analysis of
proton lifetime. A new class of heterotic string models are discussed in Section 7.3.

This class of model have an MSSM massless spectrum, and no baryon and lepton number violating operators exist
except for those induced by quantum gravity. Also discussed in Section 7.3 are other attempts at realistic 4D model
building.

In Section 7.4 proton decay in M-theory compactifications are discussed. While quantitative predictions of proton
lifetime do not exist in models based on such compactifications due to an unknown overall normalization factor, still
qualitative predictions of proton life time are possible and are discussed. A review of proton decay in intersecting D
brane models is given in Section 7.5. The case discussed in some detail is of SU(5) like GUT models in Type IIA
orientifolds with D-6 branes. The analysis focuses on the baryon and lepton number violating dimension six operators
while it is assumed that the baryon and lepton number violating dimension 4 and dimension 5 operators are absent.
Quite interestingly the predictions of proton lifetime lie within reach of the next generation of proton decay experiment.
A discussion of proton stability in string landscape models is given in Section 7.6. There exist a number of scenarios
of soft breaking of supersymmetry where the squarks and sleptons can become superheavy and proton decay from
dimension five operators is suppressed. A discussion of proton decay arising from quantum gravity effects is given in
Section 7.7. It is widely conjectured that quantum gravity does not conserve baryon number and can generate proton
decay. Also discussed in Section 7.7 is proton decay in higher dimensional models via quantum gravity effects. The
suppression of proton decay from U(1) string symmetries is given in Section 7.8. Finally a discussion of discrete
symmetries that allow for the suppression of proton decay is given in Section 7.9.

7.1. Proton stability in Calabi–Yau models

We begin with a discussion of a class of heterotic string models which on compactifications maintain N = 1 super-
symmetry [312]. These compactifications are of the type M4 × K where M4 is the four dimensional Minkowski space
and K is a compact six-dimensional Calabi–Yau manifold [313]. The fact that one has residual N = 1 supersymmetry
after compactification is attractive for model building. A specific interesting case is the manifold CP 3 × CP 3/Z3
with coordinates xi, yi (i = 0, 1, 2, 3) [These obey the constraints P1 ≡ ∑

x3
i + ax0x1x2 + a2 + x0x1x3 = 0,

P2 = x0y0 + c1x1y1 + c2x2y2 + c3x3y3 + c4x2y3 + c5x3y2 = 0, and P3 = ∑
y3
i + b1y0y1y2 + b2y0y1y3 = 0.].

There are nine complex or 18 real parameters that enter in K . The zero modes of K are given by the Hodge numbers.
For the model above one has [310]

h2,1 = 9, h1,1 = 6, (259)

which imply that there are nine 27-plet generations and six 27 generations which leads to a net three generations
of matter. The non-simply connected nature of CP 3 × CP 3/Z3 manifold allows for the breaking of the E6 gauge
symmetry by Wilson loops and one has [249,314]

E6 → SU(3)C × SU(3)L × SU(3)R . (260)

In terms of [SU(3)]3 there will be nine families of nonets of leptons Ll
r(1, 3, 3̄) from the nine generations of 27, and six

families of mirror leptons L̄l
r (1, 3̄, 3). There would also be seven nonet of quarks Qa

l (3, 3̄, 1) and four families of mirror
quarks Q̄l

a(3̄, 3, 1); seven nonents of anti-quarks (Qc)ra(3̄, 1, 3) and four nonets of mirror anti-quarks (Q̄c)ar (3, 1, 3̄).
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Table 7
C parities and matter parities from Ref. [310] where L1± = (L1 ± L2)/

√
2, etc

C-even states C-odd states

L1+, L3+, L5, L7, L8+ L1−, L3−, L6, L8−
Q1, Q2, Q3, Q4+, Q6+ Q4−, Q6−
QC

1 , QC
2 , QC

3 , QC
4+, QC

6+ QC
4−, QC

6−
L̄1, L̄ − 2 L̄3, L̄4, L̄5, L̄6

Q̄1+, Q̄3+, Q̄C
1+, Q̄C

3+ Q̄1−, Q̄3−, Q̄C
1−, Q̄C

3−
M2-even states M2-odd states

lr , e
C
r , �C

r ln, e
C
n , �C

n

qr , u
C
r , dC

r qn, u
C
n , dC

n

Dn, D
C
n , Nn DrD

C
r , Nr

Hn, H
′
n Hr , H

′
r

Here (a, l, r) = (1, 2, 3) label (color, left, right) components. In the standard particle notation these nonets are
given by

L = (l
, H 
, H ′

, e

C, �C, N), Q = (q
, D), Qc = (uC, dC, DC), (261)

where l
, l
, H 
, H ′

, and q
 are the lepton, Higgs-boson, and quark SU(2)L doublets, D and DC are color Higgs

triplets, and N, �C are SU(5) singlets while N is also an SO(10) singlet.
An important constraint in model building on Calabi–Yau manifolds is that of matter parity M2 which for the three

generation models is defined by [315,316]

M2 = CUZ; C = (1, 1, �) × (1, 1, �), � =
(

0 1

1 0

)
,

UZ = diag(1, 1, 1) ⊗ diag(−1, −1, −1) ⊗ diag(−1, −1, 1), (262)

where C is a transformation of the Calabi–Yau coordinates (x0, x1, x2, x3) × (y0, y1, y2, y3) and UZ is an element
of SU(3)C × SU(3)L × SU(3)R . Under the constraint of the discrete symmetry C the number of parameters on the
Calabi–Yau manifold reduce to five complex parameters. [In this case the constraints read P1 ≡ ∑

x3
i + a(x0x1x2 +

x0x1x3)=0, P2 =x0y0 +c1x1y1 +c2(x2y2 +x3y3)+c3(x2y3 +c5x3y2)=0, and P3 =∑ y3
i +b1(y0y1y2 +y0y1y3)=0.

Thus instead of nine complex parameters for the general case, we have here just five complex parameters for the restricted
space.] To distinguish between C even and C odd states we will adopt the following convention: i = (n, r), n=C even,
r = C odd. From Table 7 we find that for the lepton nonet one has n = 1+, 3+, 5, 7, 8+, and r = 1−, 3−, 6, 8−.
Combining these with the values of UZ one gets the M2 parities of the particle states listed in Table 7.

Now matter parities restrict the interaction structure. To exhibit this we first display the superpotential for the
Calabi–Yau models without any restriction. Here one has

W3 = �1 det QC + �2 det Q + �3 det L − �4 tr(QLQC), (263)

where we have suppressed the generation indices. The superpotential in explicit detail is given by1,2

W3 = �1
ijkdiUjDk + �2

ijku
CdCDC + �3

ijk(−HiH
′
jNk − Hi�

Clk + H ′eClk)

− �4
ijk(DiNjD

C
k − Die

CuC
k + Di�

CdC
k + qiljD

C
k − qiHju

C
k − qiH

′
j d

C
k ). (264)

1 The full analysis of the couplings from first principles for the general case is difficult. Part of the problem relates to the computation of the
kinetic energy normalizations which require that one calculate not just the superpotential but also the Kahler potential. While progress has been
made [317], a complete determination of Yukawa interactions from first principles is still lacking.

2 A related topic is the phenomenology of string inspired E(6) models. See, e.g., [318,319] and references therein.
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Matter parity restricts the couplings.3 Interactions of Eq. (264) contain two SU(5) singlets: the C even N and the C odd
�c, and a VEV growth for these leads to a spontaneous breaking of the [SU(3)]3 symmetry down to the Standard Model
gauge group symmetry. The breaking occurs in two steps where first N develops a VEV which breaks the [SU(3)]3

symmetry as follows:

SU(3)C × SU(3)L × SU(3)R
〈NC+〉−→ SU(3)C × SU(2)L × SU(2)R × U(1)B.L,

while the C odd �C VEV breaks it down further to the SM gauge group

SU(3)C × SU(2)L × SU(2)R × U(1)B.L
〈�c

C−〉−→ SU(3)C × SU(2)L × U(1)Y .

Quite remarkably the lowest minimum after spontaneous breaking is the one that preserves matter parity [320]. After
spontaneous breaking there will be mass growth for the matter fields. One finds that only three generation remain and
the remaining (exotic) states become massive. There is also a mixing among D and d states. Here including symmetry
breaking at the electro-weak scale one finds

WD−d
3 = DMDC + DM ′dC + d�dc, (265)

where M, M ′, � are matrices. Only the combinations that preserve matter parity enter so that Mmn = −�4
mjn〈Nj 〉,

M ′
mr=−�4

mjr 〈�C
j 〉, �rs=�4

rjs〈H ′
j 〉 etc. Diagonalization by a bi-unitary transformation leads to eigenstates D̂, d̂, D̂C, ˆdC .

One has [321](
Dc

dc

)
=
(

C1 S1

S1 C1

)(
D̂c

d̂c

)
, (266)

where S1, C1 etc are mixing matrices and only states with the same matter parity mix but states of different C parities
get mixed. Similarly one can define a relation between D, d and D̂, d̂, by replacing C1, S1 by C2, S2. The sizes of S1

and S2 are very different

S1 ∼ M ′

(M2 + M
′2)1/2 ∼ 1, S2 ∼ �M ′

M2 + M
′2 ∼ 10−13. (267)

Thus S2 is much suppressed compared to S1. There are two types of exchanges that can mediate proton decay through
dimension five operators. These are from [322,323]

1. D̂ exchange,
2. d̂ exchange.

The D̂ exchange gives the dominant contribution to proton decay and the contribution from this exchange is [322]

�(p → �̄� + K+) = f 2
2

M2
D̂

MN

32�f 2
�

[
1 − M2

K

M2
N

]
|A��K |2A2

L(AL
S )2|1 + ytK |2, (268)

where MD is the D quark mass, AL
S (AL) are the short-range (long-range) RG factors, 
 is the three-quark matrix

element of the proton, ytk is the correction from the third generation exchange, and A��K is the dressing loop function.
In the above we have included a fudge factor f which is put there to account for the fact that the couplings in Calabi–Yau
manifolds are not fully known (The normalization f =1 corresponds to the SU(5) GUT model). Using the current data
on the �̄�K+ mode one finds the following limit on MD:

MD �
(

Bf

10−5

)(



0.01 GeV3

)
× 1016 GeV, (269)

where B depends on the dressing loops that convert dimension five to dimension six operators. Next, we consider the
p decay that can arise from the exchange of d̂ . One finds that because of mixings of Eq. (266), there are interactions of

3 The couplings satisfy the restrictions �1,2,3
rst = �1,2,3

mnr , �4
rst = 0 = �4

mnr = �4
mrn = �4

rmn.
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the type �2S1uc
nd̂

c
nd̂

c
s , �

4S2d̂se
c
nu

c
s , where n mean C parity plus and s means C parity minus. The proton lifetime via

exchange of the C odd ds can be estimated [323]

�p ∼
(

m̃
d̃s

109 GeV

)4(

em

�2�4

)2(10−13

S1S2

)2

× (1034 yr). (270)

For the superstring models being considered on has m̃
d̃s

∼ 1015 GeV. Thus proton decay via ds exchange is totally
negligible and the dominant decay comes from the D exchange as discussed above. An alternative approach is to
suppress proton decay from the isosinglet D exchange by use of discrete symmetries, specifically by extension of the
so called Z3 baryon parity of Refs. [58,324] to include the isosinglet quarks [325].

7.2. Kac–Moody level k > 1 string models and proton decay

As discussed above there is a large number of possibilities for models building in string theory and one way to limit
such constructions is to use the constraint of grand unification. Such constructions depend on the nature of the gauge
symmetry which is turn depend on the Kac–Moody level which enters in the operator product expansion of world
sheet currents [The product of two currents can be expanded so that ja(z)Jb(w) ∼ if abc(z − w)−1jc(w) + (k/2)�ab

(z − w)−2 + · · · where k is the Kac–Moody level. k is a positive integer for the case of non-abelian gauge groups but
for abelian case k is not constrained.]. The level 1 is the most widely studied case. In these models grand unified groups
such as SU(5), SO(10), and E6 can be obtained [326]. One problem encountered here is the absence of massless scalar
fields in the adjoint representation of the gauge group which can be used to break the unified gauge symmetry. In grand
unified theories based on the weakly coupled heterotic string massless scalars in the adjoint representation along with
N = 1 supersymmetry and chiral fermions can only be realized for k > 1 [326]. At level 2, while it is possible to get
massless scalars in the adjoint representation, it is difficult to get three massless generations of quarks and leptons in
this case. Although there is no firm theorem to this effect, all analyzes to achieve k = 2 models with three generations
have been unsuccessful. Perhaps a simple way to understand this result is that the orbifold group for level 2 is Z2.
Since the numbers of chiral families are related to the fixed points in the twisted sectors, this number will then be even
[327]. At level three it is possible to get the massless scalars in the adjoint representation as well as get three massless
generations of quarks and leptons [327].

Thus there has been considerable work over the past few years on the level 3 models [327–331]. The construction
of the models requires realizing a Z3 outer automorphism symmetry not present in 10 dimensions and one needs rules
for model building which have been realized within the framework of asymmetric orbifolds. Thus models building at
level 3 requires special techniques and is significantly more difficult than level 1 constructions. Using these techniques,
models with gauge groups SU(5), SO(10), and E6 have been constructed which have N =1 space–time supersymmetry,
three chiral families and massless scalars in the adjoint representation of the gauge groups. Specifically the number
of adjoint scalars is just one. Additionally these models have a non-abelian hidden sector. The phenomenology of the
E6 model as well as of the related SO(10) model has been worked out in some detail [328]. Here with the assumption
of dilaton stabilization by a non-perturbative mechanism, the gaugino condensation scale in this model is found to be
around 1013 GeV which gives a weak SUSY breaking scale of ∼ TeV. However, there are some undesirable features as
well. Thus although one has massless scalars in the adjoint representation, the adjoint Higgs is flat modulus. Further, the
Higgs doublet mass matrix is rank six and all the Higgs are in general superheavy. If one uses the Dimopoulos–Wilczek
mechanism then one gets two pairs of light Higgs doublets which is undesirable. Thus typically one needs a fine
tuning to get a pair of light Higgs doublets. Lepton-number violating dimension four operator LLEC and LQDC , and
the baryon-number violating dimension four operator UCDCDC are absent due to the underlying gauge and discrete
symmetries of the model. However, baryon and lepton number violating dimension five operators are present and one
needs to use heavy Higgs triplets to suppress proton decay rates from these operators. A detailed analysis of proton
decay life time would require computation of the quark–lepton textures. But these are problematic since the leptons
and down quarks have the same mass matrices. Thus while many of the features of the models investigated have the
right flavor, on the whole the models appear not to be phenomenologically viable rendering a detailed investigation of
proton stability in these models not compelling.
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7.3. A new class of heterotic string models

Recently a new class of heterotic string [308] have been proposed which lead to some remarkably attractive features
from the point of view of phenomenology and these models are worthy of attention. The models have the remarkable
feature that the spectrum is exactly that of MSSM. Specifically in the work of Ref. [332] a compactification of the
heterotic string on a Calabi–Yau threefold with Z2 fundamental group coupled with an invariant SU(5) bundle is
achieved. The spectrum of this model consists of three generation of matter and in addition 0, 1, or 2 Higgs doublet
conjugate pairs depending on the part of the moduli space one is in. Specifically it is possible to get a heterotic
string model with precisely the MSSM spectrum with a single pair of Higgs. The gauge group in the visible sector is
SU(3)C × SU(2)L × U(1)Y . In this model proton decay from dimension 4, 5 and 6 operators is absent. Another recent
work which finds an exact MSSM spectrum from string theory is that of Ref. [333]. Here one finds three families of
quarks and leptons, each family with a right-handed neutrino and one pair of Higgs doublets while the gauge group in
the visible sector is SU(3)C ×SU(2)L ×U(1)Y ×U(1)B.L. The proton is again stable in this model with no dimension
four, five, or six lepton and baryon number violating operator present. However, it has been pointed out [334] that the
hidden sector bundle of the work of Ref. [333] is not slope-stable which would require changing the hidden sector
and will result in different phenomenological properties [333]. Further discussions of these models can be found in
[335,336].

Among other attempts at realizing 4D string model building in heterotic strings is the work of Ref. [337]. The analysis
is motivated by orbifold GUTs discussed in the previous section. Specifically they consider the 5D SO(10) models of
Refs. [267,268] with a bulk extension where the extra dimension is a half circle S1/Z2. The effective gauge group in
4 dimensions is the Pati-Salam group [338] SU(4)C × SU(2)L × SU(2)R . The model has the interesting feature that
three generations of matter can be realized with two generations localized on the Z2 orbifold fixed point while one
generations propagates in the bulk. It predicts a gauge–Yukawa unification at the 5D compactification scale. However,
the model has a problem in that there is no identifiable symmetry for suppression of dangerous proton decay operators.

7.4. Proton decay in M theory compactifications

As discussed already in the beginning of this section M theory is conjectured to be the source of all string theories.
The low energy limit of this theory is the 11 dimensional supergravity [339,340] formulated in the late seventies.
An interesting phenomenon is that N = 1 supersymmetry can be preserved if one compactifies the 11 dimensional
supergravity to 4 dimensions on a seven-compact manifold X of G2 holonomy. But if X is a smooth manifold then one
obtains only an abelian gauge group and no chiral fermions [341,342]. How to get a non-abelian gauge symmetry in
compactification of such a theory is non-trivial. One way is to compactify M-theory on a manifold with boundary [343].
Another possibility is to get gauge fields and chiral fermions from singularities in geometry [344–346]. Thus A–D–E

orbifold singularities can produce gauge fields [347] and conifold singularities can produce chiral fields [348]. For
example, consider M-theory on R4 × X, where X is the manifold of G2 holonomy. If X looks locally like Q × R4/�
where Q is a three-manifold, then one will get gauge fields on the singular set R4 × Q. The case � = Z5 will lead to
the SU(5) gauge fields on the R4 × Q [349,350].4

We discuss now proton decay in the above framework following closely the analysis of Friedmann and Witten in
Ref. [349]. In the analysis of models in R4 × Q, we begin by assuming that in general quark–lepton multiplets are
located at different points qi , in the manifold Q. Thus effective operator for proton decay will arise from interactions
of the type

g2
7

∫
d4xj�(x; q1)j̃

�(0; q2)D(x; q1; 0; q2), (271)

where j�, j̃� are the currents and D(x, q; y, q ′) is the gauge boson propagator function in the space R4 × Q and
satisfies the relation

(�R4 + �Q)D(x, q; y, q ′) = �4(x − y)�(q, q ′) (272)

4 A detailed study of these compactifications including the � = Z5 case has been carried out in the quantum moduli space of M-theory
compactifications in Refs. [351,352].
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For heavy gauge bosons one can use the conventional ‘local’ approximation where we put currents at the same spatial
point and in that approximation the effective operator is

j�(0; q1)j̃
�(0; q2)g

2
7F(q1, q2), (273)

where F(q1, q2) = ∫
d4xD(x, q1; 0, q2). Now F(q1, q2) is bounded for large separation |q1 − q2| and for small

separations as q1 → q2, one has F(q1, q2) → 1/4�|q1 − q2|. Thus in computing the dimension six operators for
multiplets residing at the same point in the compact space, the limit q2 → q1 is necessary which, however, is a singular
limit. In a realistic treatment a cutoff should emerge to render such an analysis a meaningful exercise. A rough fix is
to replace 1/|q1 − q2| by M11 and replace g2

7F(q1, q2) as q2 → q1 by Cg2
7M11/4�, where C is a constant which in

principle can be computed by the details of an M theory calculation. Using Eq. (591) of Appendix I for g2
7M11 one

finds an effective dimension six operator of the form [349]

O
M-theory
eff =

∑
q

2�Cj�(q)j̃�(q)
2/3
G L

2/3
Q M−2

G . (274)

Eq. (274) contains an interaction of the type 10210
2

which gives rise to the decay p → e+
L�0. Unlike the case of

proton decay in intersecting D brane models [353] which will be discussed next it is not possible to make a definitive
statement here whether this decay is enhanced or not relative to what one expects in a grand unified theory due to
the unknown constant C. One hopes that further progress in M-theory calculations would allow one to make a more
predictive statement.

We discuss now the decay p → e+
R�0 which arises from the interaction 1025̄2. If 10 and 5̄ are located at different

points in Q, one expects a suppression for this decay relative to p → e+
L�0. It is important then to be able to detect the

helicity of the outgoing charged lepton to check on this model. Finally, this class of models have a natural doublet–triplet
splitting [354] and also because of a discrete symmetry the dimension five operators from Higgs triplet exchange do
not arise [349].

7.5. Proton decay in intersecting D brane models

An interesting class of models are those based on intersecting D branes [355–359] and attempts have been made
to build semi-realistic models based on these [360–365], and issues of gauge coupling unification, soft breaking and
possible applications to the real world have also been discussed [366–368] (For reviews see Ref. [369–371]). Here we
follow closely the work of Klebanov and Witten in Ref. [353] which investigates proton decay on SU(5) GUT like
models in Type IIA orientifolds with D6-branes (Also see in this context Ref. [372]). We will assume that proton decay
from dimension four and dimension five operators which arise in supersymmetric GUT theories are absent due to a
symmetry in the model and thus we focus on the dimension six operators. In the analysis of Ref. [353] one assumes a
stack of D6 branes which intersect an orientifold fixed six-plane along the 3 + 1 directions. The above can be viewed
as a stack of D6 branes intersecting an image set of D6′ branes on the covering space. If the stack has five D6 branes,
the covering space contains the SU(5) × SU(5) gauge group, and the open strings are localized at the intersection and
lie in (5, 5̄) + (5̄, 5) representations. An orientifold projection gives an SU(5) theory with matter in 10 + 10. In 4

dimensional SU(5) grand unification dimension six operators are of type 525̄2,101055̄, and 10210
2
. The 525̄2 do not

have baryon and lepton number violation and 101055̄ operators do not appear in the D brane analysis being discussed

here. However, 10210
2

operators do arise and we discuss their contribution to proton decay.
The analysis is done in the covering space and for specificity it is assumed that the D6 branes are oriented in the

0123468 directions and the D6′-branes intersect them along the 0123 directions, resulting in a 3 + 1 dimensional
intersecting brane world. The orientation in the six transverse directions are specified by the complex coordinates
z1 = x4 + ix5, z2 = x6 + ix7, z3 = x8 + ix9. N = 1 supersymmetry in (3 + 1) dimensions can be preserved if the
rotations act on an SU(3) matrix on the three complex coordinates. A diagonal rotation that transforms D6 branes to
D6′ branes is

zi → ei��i zi , (i = 1, 2, 3),
∑

i

�i = 2 mod 2Z. (275)
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An analysis of 4 fermion amplitude in Ref. [353] gives

Ast = i�gs

′I (�1, �2, �3) (276)

where

I (�1, �2, �3) = 2
∫ ∞

0
dt

3∏
i=1

(sin(��i ))
1/2F(�i , 1 − �i; 1; e−t )[F(�i , 1 − �i; 1, 1 − e−t )]−1/2 (277)

and where F is a hypergeometric function. To fix the size of gs and 
′ one may consider the gravitational action for a
Type IIA superstring

((2�)−7

′−4
∫

d10x
√−Ge−2�R, (278)

where � is a dilaton field and the string coupling constant is gs = e�. Reduction to 4 dimensions is necessary to make
contact with the familiar 4 D quantities such as the GUT coupling constant 
G and the GUT scale MG. The details can
be found in Ref. [353] (see also Appendix I). Thus the relation connecting 
′ and gs with 
G and MG is given by


′ = 
2/3
G L

2/3
Q

4�2g
2/3
s M2

G

, (279)

where LQ is the Ray–Singer [349,373,374] topological invariant of the compact three-manifold. The Ray–Singer
torsion is a model dependent quantity and requires the specification of the compact three-manifold for its computation.
Eliminating 
′ in Eq. (276) using Eq. (279) we can write Ast in the form

Ast = g
1/3
s 
2/3

G

L
2/3
Q I (�1, �2, �3)

4�M2
G

. (280)

To compare the string calculation with the comparable result in a grand unification model one can carry out a field
theory analysis of the four-fermion scattering and here one gets

AG = 2�
G

M2
X

. (281)

Eqs. (280) and (281) lead to the relation

AG

Ast
= g

1/3
s L

2/3
Q I (�1, �2, �3)

8�2
1/3
G

M2
G

M2
X

. (282)

One can now compare the life time for the decay mode p → e+�0 in the string model compared to its life time in a
GUT model. One finds

�st(p → e+�0) = �GUT(p → e+�0)Cst
M4

G

M4
X

, (283)

where Cst is the string enhancement factor of the proton lifetime and is given by

Cst = 1

1 − y

(
8�2
1/3

G

g
1/3
s L

2/3
Q I (�1, �2, �3)

)2

. (284)

Here y is the fraction of p → e+
R�0 to p → e+

L�0 which is y = 1/[1 + (1 + |Vud |2)2] where Vud ∼ 1. The factor
1/(1 − y) is inserted in Eq. (284) to take account of the missing p → e+

R�0 mode in the intersecting D brane model
here. We note that the factor M−4

X cancels out in the product �GUT(p → e+�0)M−4
X , and thus �st is determined directly
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in terms of MG. In this sense �st is more model independent since it depends directly on MG rather than on the X gauge
boson mass.

To numerically estimate the proton lifetime one may consider Q = S3/Zk (lens space) where k in an integer. In this
case [349]

LQ = 4k sin2(5�m/k), (285)

where m is an integer such that 5 m is not divisible by k. For the case m = 1, k = 2, one finds LQ = 8. The analysis of
Ref. [353] finds I in the range 7–11. Setting gs ∼ 1, 
G = 0.04, y = 0.2, and MG = MX gives Cst � 0.5 − 1.2. Since
the current estimate of the GUT prediction is �GUT = 1.6 × 1036 yr for values of 
G = 0.04 and MX = 2 × 1016 GeV,
one finds that the string prediction in this case is (0.8 − 1.9)× 1036 years. The more recent analysis of Ref. [375] gives
the range (0.5 − 2.1)× 1036 yr. The current experimental limit on this decay mode is �exp(p → e+�0) > 1.6 × 1033 yr
(Table 1. See, however, Ref. [376] which gives �exp(p → e+�0) > 4.4 × 1033 yr). The next generation of proton decay
experiment using underground water Cherenkov detectors may improve the experimental lower limit for this mode by
a factor of 10 close to 1035 yr [31] which, however, falls short of the theory prediction above. However, one must keep
in mind the model dependence of the theoretical prediction arising from the assumed values of LQ, gs , assumption
on fermion mixings etc. Thus, for example, if LQ lies in the range 1–10 [377], then Cst will lie in the range (0.4–19)
which is a significant shift from the previous estimate.

7.6. Nucleon stability in string landscape models

The natural scale of vacuum energy density �V is the Planck scale while �obs is much smaller.

�V ∼ M4
Pl, �obs �(3 × 10−3 ev)4. (286)

To fit observation this requires a fine tuning of order O(10120) to get the observed scale. With softly broken SUSY of
scale MS = O(1) TeV one gets

�V ∼ M4
S. (287)

Here one needs a fine tuning of order O(1060). There are two ways out to resolve the problem. The first one is the
possibility that some as yet unknown symmetry principle sets the vacuum energy effectively to zero. However, as
exhibited above one does not need an exactly vanishing value of vacuum energy but a small one, and thus one would
still need to find a way to give the vacuum energy a tiny positive value consistent with current experiment. The second
possibility is to invoke the anthropic principle. Thus Weinberg [378] has observed that the seeding of the galaxies
requires that the value of the cosmological constant lie in a rather restricted range of the current value. The idea is that
there are a large number of different vacua and the one we live in corresponds to a small value of the cosmological
constant. In this sense the current value of the vacuum energy becomes just an ‘environmental’ parameter rather than
something intrinsically fundamental.

Some support for the anthropic idea has come from studies of string landscapes [171,172]. We discuss now the idea
of string landscape briefly as such ideas have implications also for string model building and for proton stability. As
is well known a common feature of string models is the presence of many moduli. Often the moduli potential is flat
leaving the moduli undetermined. Thus one needs to lift the flat directions to fix or stabilize the moduli. This is the
so-called moduli stabilization problem. There has been recent progress in this direction in that inclusion of fluxes in
the compactification of extra dimensions allow one to lift the flat directions and with fluxes turned on it is possible
to stabilize the moduli. An example of this phenomenon is the type IIB string theory where one has three form RR
and NS and fiveform RR fluxes which can be turned on in compactification. There are many choices for these fluxes
and the possibilities are very large. In the presence of the fluxes one has a non-vanishing tree level superpotential W0
which is moduli dependent [379]. In addition it has been observed [380] that there will be in general a non-perturbative
contribution to the superpotential WNP arising from strong coupling dynamics such as from gaugino condensation,
instantons etc which can be parametrized by WNP =A exp(−c�) where c depends on strong interaction dynamics and
� is a size modulus. Together the potential then will have the form [380]

W = W0 + Ae−c�. (288)
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It is then possible to stabilize the moduli but one ends up with anti-de Sitter (AdS) vacua with a negative vacuum energy.
However, with inclusion of supersymmetry breaking it is possible to get de Sitter vacua with positive energy. There are
a huge number of allowed possible states. An order estimate can be gotten as follows [381]: Consider an integer flux
lattice of dimension K in Type IIB strings. The vectors in the lattice �n are constrained by �n2 �L where L is an integer
determined by the tadpole cancellation condition. To compute the number of allowed states one computes the number
of states in a K dimensional sphere with radius

√
L. This results in the number of allowed states to be [381]

Nvac ∼ LK/2

�(K/2)
. (289)

With L ∼ 103, K ∼ 102 one has Nvac ∼ 101000. Thus there are a huge number of metastable de Sitter vacua. This huge
number allows the possibility that the cosmological constant takes on fine grain values and there is a range in which
the physically observed value of the cosmological constant could lie. Such calculations could be impacted by a further
restriction of proton stability by a study of the gauge group ranks [382,383]. Further, the same principle may be used
to fine tune the Higgs mass if the SUSY breaking scale was high. Specifically it is advocated that the scalars except for
the Higgs could all lie at the Planck scale and be superheavy while the light particles would consist of gauginos and
Higgsinos [71,72]. Unified models with landscape scenarios have been discussed in Refs. [384,170].

In the above scenario the proton decay via dimension five operators will be highly suppressed since the squarks and
sleptons fields in split supersymmetry scenario are typically supermassive. It is interesting to ask how a large mass
hierarchy in supersymmetry breaking can arise in string models. It turns out that a natural hierarchy in supersymmetry
breaking scales can arise in D brane models [385] and more generally in string models with Fayet-Illiopoulos D

terms [386,73]. One can illustrate this even in the framework of global supersymmmetry. Thus we consider extended
gauge symmetry SU(3)C × SU(2)L × U(1)n, where the extended U(1) sector aside from the hypercharge contains
an anomalous U(1), a situation which is quite common in string theory, where the anomaly in then canceled by
Green–Schwarz (GS) mechanism [The corresponding gauge boson develops a Stueckelberg mass and decouples (see
e.g. [387])]. This provides a motivation for inclusion of an FI term. Including the FI term the D term potential in
global supersymmetry takes the form

VD =
∑
a

g2
a

2
D2

a =
∑
a

g2
a

2

(∑
i

Qi
a|f̃i |2 + �a

)2

. (290)

A single extra U(1) cannot lead to a SUSY hierarchy but with multiple extra U(1)’s it is possible. Thus consider an
extra U(1)X where we add two oppositely charged scalars ±1 under the extra U(1)X and assume an interaction of the
type W± = m�+�− in the superpotential [388,389]. Minimization yields 〈�+〉 = 0, and 〈�−〉2 = �X − m2/g2

X. This
leads to 〈DX〉=m2/g2

X and 〈F�+〉=m
√

�X + · · · where F�+ is the supersymmetry breaking scale. The above analysis

gives for the scalar masses mi the result m2
i =∑ag

2
aQ

i
a〈Da〉 and for the gaugino masses m� the result m� ∼ m�X/M2

Pl.
In this case both the scalar and the gaugino masses are scaled by the same mass m and we find no hierarchy. Thus for
m ∼ O(TeV) and � ∼ O(M2

Pl) and all masses are at the electro-weak scale. However, the situation changes drastically
if one considers multiple anomalousU(1)’s. Here it is possible to split the masses of the scalars and the gauginos. A
realistic scenario requires that one carry out the analysis within the framework of supergravity unification. Then one
finds that the condition that the vacuum energy vanish requires that 〈FI 〉�m3/2MPl and 〈Da〉�m3/2MPl. Since the
scalar masses are proportional to 〈Da〉1/2 one finds that for m3/2 ∼ O(TeV), the above relation implies [73]

m
f̃

�
√

m3/2MPl ∼ 1010−13 (GeV), (291)

which is the usual intermediate supersymmetry breaking scale that arises in SUGRA models. The F -term masses are
FI/MPl ∼ O(TeV). Thus the scalar masses arising from the D terms are much larger than the F term masses. In the
context of the heterotic strings the FI parameter is of size M2

Pl and thus the gaugino mass is of size MPl if its mass
arises from the above mechanism. However, the FI -parameter can in principle be of any size in orientifold D-brane
models, and thus the above problem is circumvented in orientifold D-brane models. In this case one has a hierarchical
symmetry breaking with scalars superheavy which put the proton decay rates much above the current experimental
limits. It is to be noted that large scalar masses naturally arise on the Hyperbolic branch (HB) of radiative breaking
of the electro-weak symmetry [104]. The quite interesting phenomenon is that it is possible to keep the parameter �
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small while the scalar masses get large. The parameter MZ/� also provides at least one measure of fine tuning and
naturalness. Thus the larger � gets, the more fine tuned is the radiative breaking. The fact that it is possible to achieve
large m0 while keeping � small implies that large scalar masses can be construed as being natural when they arise on
HB. Now numerical analysis indicates that scalar masses as large 10–20 TeV arise quite naturally on HB [104]. It is
interesting then that the HB branch of radiative breaking leads to a suppression of proton decay.

7.7. Proton decay from black hole and wormhole effects

Quantum gravity does not conserve baryon number and thus can catalyze proton decay. There is a significant amount
of literature trying to analyze proton decay lifetime arising from such effects [14–18,390,391,244]. Thus in quantum
gravity one will have not only the exchange of gravitons but also exchange of mini black holes and wormhole tunneling
effects. For example, the mass (mBH) of a mini black hole will be typically the Planck mass, and its Compton length
typically the Planck length

〈mBH〉 ∼ MPl, 〈LBH〉 ∼ lPl ∼ 10−33 cm. (292)

It is possible then that the two quarks in the proton might end up falling into the mini black hole and since one expects
black holes not to conserve baryon number, such virtual black hole processes will lead to baryon number violating
processes such as

q + q → q̄ + l, . . . (293)

These processes can be simulated by effective four-fermi interaction, with an effective coupling scaled by the inverse
of the quantum gravity scale MQG. A typical proton lifetime from such interactions will be

�p � 1036 yr

(
MQG

1016 GeV

)4

. (294)

For MQG = MPl the above leads to a proton lifetime of ∼ 1045 yr. A lifetime of this size is certainly beyond the
experimental reach. However, it will have significance in determining the ultimate fate of the universe [392,390].

It is also instructive to investigate proton decay from quantum gravity effects in the context of large extra dimensions
[244]. In theories of large extra dimensions the fundamental scale is lowered. Now the geometry of extra dimensions
affects the physics of the virtual black holes and also the quark–lepton interactions. Thus suppose the quarks can
propagate in n extra dimensions rather than being confined to the four dimensional wall. Since the quarks can propagate
in more dimensions they are less likely to encounter each other and this effectively weakens their interactions. The
above must be folded with the effect arising from the black holes now living in (4 + n) dimensions. Together these
modify the proton lifetime so that [244]

�p ∼
(

MQG

mp

)4+n

m−1
p . (295)

Using the current experimental data of �p > 1033 yr, one finds that MQP should satisfy the constraint [244]

MQG > 1064/(4+n)GeV. (296)

The above implies that for the case when quarks are confined to the four dimensional wall, so that n = 0, one has
MQG > 1016 GeV. Even for the case when n = 6, one finds that MQP > 2.5 × 103 TeV. These results appear to be
disappointing from the point of view of observation of the fundamental scale MQG at accelerators.

7.8. U(1) string symmetries and proton stability

We are already familiar with the fact that in supersymmetric theories the baryon and lepton number dimension
four operators QLDc, UcDcDc, and LLE are eliminated by the gauge B.L symmetries [393]. This is so because
these operators have B.L = −1, and an imposition of B.L invariance does not allow these operators to appear in the
superpotential. On the other hand dimension five operators QQQL and UcUcDcEc have B.L = 0 and thus imposition
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Table 8
The U(1) quantum numbers of the fields in a class of string derived models [394]

Fields (generations) Q� Qε Q� + Qε

Q(1, 2) 1/2 −1/2 0
L(1, 2) 1/2 3/2 2
UC, EC (1,2) 1/2 3/2 2
DC, NC

R (1, 2) 1/2 −1/2 0

Q(3) −1 −1/2 0
L(3) −1 3/2 2
UC, EC (3) −1 3/2 2
DC, NC

R (3) −1 −1/2 0

of B.L invariance alone would not eliminate these operators. While symmetries of SO(10) are not sufficient to suppress
these operators, one may investigate if a larger group such as E6 could provide the additional U(1) symmetry to suppress
such operators. Indeed, E6 → SO(10) × U(1)� so there is an indeed an extra U(1) that may help. However, on closer
scrutiny one finds that color triplets H3 and H3̄ arising from the 27-plet exist in the spectrum and the exchange of these
triplets will induce baryon and lepton number dimension five operators. Thus the symmetries arising from E6 are not
sufficient to suppress the dangerous operators [393,394]. It is possible, however, that string derived symmetries are
more powerful. This issue has been explored at some length by Pati [394] with focus on the standard like models by
Faraggi [395–399] using free fermionic constructions [400–402]. In these models either the Higgs triplets are absent
from the spectrum or the extra U(1) symmetries suppress their couplings with quarks and leptons. Thus in the model
of Refs. [395–398] one has six U(1) factors, such that

1
2 Tr U1 = 1

2 Tr U2 = 1
2 Tr U3 = −Tr U4 = −Tr U5 = −Tr U6 = 12, (297)

so all the U(1)’s are anomalous. However, it is possible to choose five anomaly free and one anomalous combination
[The anomaly free combinations can be chosen so that U
 = U − 1 − U2, U� = U4 − U5, U� = U4 + U5 − 2U6,
U� = U1 + U2 − 2U3, and Uε = U1 + U2 + U3 + 2U4 + 2U5 + 2U6. The anomalous combination can be chosen so
that UA = U1 + U2 − 2U3].

From Table 8 one finds that baryon and lepton number dimension four operators UCDCDC , QLDC , and LLEC

are not allowed if one requires invariance under Q� +Qε. Further, baryon and lepton number dimension five operators
QQQL are also eliminated if one requires invariance under Q� + Qε. For the case of UCUCDCEC , this operators is
eliminated for all cases under the Q� + Qε invariance except when all four fields are from generation 3. However,
here if one requires that in addition one also has invariance under either Q� or Qε then these dimension five operators
are also eliminated and thus there in no proton decay from this set of operators. At the same time some combination
of safe operators such as LLHiHj where Hi are the Higgs doublets of the model are allowed. This operator violates
lepton number but is desirable as it enters in the neutrino mass matrix. Thus here one finds that a combination of the
symmetries generated by Q� and Qε eliminate dangerous baryon and lepton number operators but allow for desirable
lepton number violating operators. So in this sense the string derived symmetries are more powerful than the symmetries
that can be gotten from the grand unified models. While the additional exact U(1) gauge symmetries suppress proton
decay they also bring in additional massless modes which are not acceptable on phenomenological grounds. Thus one
must break these symmetries spontaneously and such breakings lead to additional Z′ gauge bosons whose masses
depend on the scale of spontaneous breaking.

7.9. Discrete symmetries and proton stability

Dimension 4 and dimension 5 proton decay operators can be eliminated by specific choice of discrete symmetries.
However, if the symmetries are global they would not be respected by quantum gravity [14–16] specifically, for example
in virtual blackhole exchange and in wormhole tunneling, and thus such phenomena can lead to new sources for proton
decay [18]. The way out of this problem suggested by Krauss and Wilczek [403] is to use discrete gauge symmetries.
An example of this phenomenon is a U(1) gauge theory where the gauge invariance is broken by condensation of
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a scalar Higgs field � with charge NQ while the charges of the remaining fields �i in the theory are all Q. In this case
one will have after condensation of the Higgs field a residual ZN symmetry

U(1) → ZN, �i → e2�i/N�i . (298)

So ZN is just the residual symmetry that is a remnant of the broken abelian gauge symmetry. As pointed out by
Krauss and Wilczek, although Eq. (298) looks very much like a global symmetry, the fact that it is remnant of a local
symmetry means that it is protected against even worm hole tunneling and black hole interactions. Consequently such
symmetries are then an ideal instrument to protect the proton against dangerous decays via virtual black hole exchanges.
Ibanez and Ross (IR) [58,324] have analyzed the generalized ZN parities for the standard model superfields such that
�i → exp(2�i
i/N)�i where

{�i} = (Q, uc, dc, L, ec), {
i} = (
Q, 
uc , 
dc , 
L, 
ec ). (299)

Not listed above are the Higgs superfields H1, H2 whose charges are determined via their couplings with the SM fields.
Since each of the charges assume N values there are N5 possibilities. However, not all are independent. IR reduce this
set by imposing the restriction that all elements related by hypercharge rotation exp(2�iY/N) are equivalent, which
corresponds to an invariance under the shift �
 → �
 + (1, −4, 2, 3, −6) mod N . Further, the constraint that the Higgs
field H couple to Qdc and Lec imposes the constraint 
Q +
d =
L +
e. With the above constraints there is a reduction
in the allowed number of possibilities.

The symmetries can be classified according to the constraints they impose on dimension four operators. These
are [58]: (i) symmetries which forbid both lepton and baryon number violation. These require the constraint 
uc +
2
dc 
= 0 (mod N) and 2
L + 
e 
= 0 (mod N). Specifically they forbid cubic interactions ucdcdc and LLec in the
superpotential. One might call these constraints generalized matter parity constraints (GMP); (ii) symmetries which
forbid lepton number violation but allow for baryon number violation, i.e., ucdcdc is allowed but LLec is forbidden in
the superpotential. These require the constraint 
u + 2
d = 0 (mod N), 2
L + 
e 
= 0 (mod N). One might call this
the generalized lepton parity (GLP); (iii) symmetries which allow for the lepton number but not the baryon number
violation, i.e., ucdcdc is forbidden but LLec is allowed in the superpotential. These require 
u + 2
d 
= 0 (mod N),
2
L + 
e = 0 (mod N). One might call this the generalized baryon parity (GBP); and finally (iv) symmetries which
allow both lepton number and baryon number violation. Here both ucdcdc and LLec are forbidden and the constraints
are 
u + 2
d = 0 (mod N), 2
L + 
e = 0 (mod N). Possibility (iv) is excluded as it allows for dangerous proton decay.

Further constraints arise from anomaly cancellation conditions. Analogous to the anomaly cancellation condition for
gauge symmetries, there are also anomaly cancellation conditions for discrete symmetries arising as remnants of gauge
symmetries. [The discrete gauge anomalies can be understood in the low energy theory in terms of instantons and are
required for the consistency of the low energy discrete gauge theory [404,405].] One might call these discrete gauge
anomaly cancellation conditions [324]. The ZN arising from the extra U(1) must be considered in conjunction with
SU(3)×SU(2)×U(1) of the standard model. Consequently all non-trivial anomalies involving ZN and factors of SU(3),
SU(2) and U(1)Y must be considered. Thus typically we will have anomalies from the combinations Z3

N , Z2
N ×U(1)Y ,

ZN ×U(1)2
Y , ZN ×SU(M)×SU(M) (M=2, 3) as well as mixed ZN -gravitational anomalies.An analysis with inclusion

of anomaly cancellation constraints shows that with the particle content of the minimal supersymmetric standard model
there are two discrete anomaly free generalized parities. One of these is the familiar Z2 R-parity symmetry, while the
second is a Z3 symmetry B3 which allows for lepton number violation. The phase assignment for this symmetry are
(1, 
2, 
, 
2, 
2) for elements (Q, uc, dc, L, ec). The analysis of Ref. [58] assumed that the hypercharge is unbroken.
However, hypercharge is a broken symmetry below the electroweak scale after the Higgs field gets a VEV. The analysis
of Ref. [406] re-examined the IR analysis without the assumption of an unbroken hypercharge symmetry. Here the
constraints that arisefrom the fermion mass terms give


Q + 
uc = 
Q + 
dc = 
L + 
ec = 
L + 
�c = 0 (mod N), (300)

where we have assumed generational independence.
The above gives �
=(
Q, −
Q, −
Q, 
L, −
L, −
L) where the elements corresponds to the set (Q, uc, dc, L, ec, �c).

The analysis of Ref. [406] requires that dimension five operators QQQL and ucdcdcec be absent which leads to the
constraint 3
Q+
L=0 (mod N) and in addition requires that the neutron-antineutron oscillation mediated by operators
uddudd be absent which implies 6
Q 
= 0 (mod N). Along with the above there is one anomaly cancellation condition
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from the ZN × SU(2) × SU(2) sector which gives 9
Q + 3
L = 0 (mod N). The lowest N consistent with the above is
N = 9 and the allowed (
Q, 
L) sets are (1, 0), (1, 3), (2, 0), (2, 6), (4, 0) and (4, 3). These choices suffice to suppress
proton decay from dimension 4 and dimension 5 operators as well as from gravitationally induced wormhole tunneling
and blackholes induced processes.

A more recent analysis shows that the conclusion of IR that only B3 symmetry (also called B3-triality) forbids
the problematic dimension five proton decay operators is a consequence of the restriction to ZN for N = 2, 3 discrete
symmetries. The more general analysis of Ref. [407] has extended the work of IR to arbitrary values of N . In doing so the
authors of Ref. [407] find 22 new anomaly-free discrete gauge symmetries. After imposition of the phenomenological
requirements (i) the presence of the mu-term in the superpotential, (ii) baryon-number conservation up to dimension-
five operators, and (iii) the presence of the See-Saw neutrino mass term LHLH, they are left with only two anomaly-free
discrete gauge symmetries. These are the B3 symmetry discussed above and in addition a new symmetry which the
authors call proton-hexality, P6. This symmetry is a Z6 symmetry and reproduces the low-energy R-parity conserving
superpotential without the undesirable dimension-five proton decay operators. Thus the main problem of the MSSM
with R-parity with respect to proton decay is solved with proton hexality symmetry.

In the context of string theory an interesting issue in model building concerns the question if the imposition of the
anomaly cancellation condition is always essential. It may be that in string models all anomalies in discrete symmetries
are cancelled [408] by the Green–Schwarz mechanism [409]. In that case one may obviate the necessity of imposing
the anomaly cancellation condition.

8. Other aspects

In this section we discuss a number of topics related to proton stability. One important issue concerns the relationship
of proton stability to neutrino masses and mixings in grand unified models. This topic is discussed in Section 8.1 in
the context of SO(10) grand unified models. Another phenomena which is closely associated with proton stability in
supersymmetric grand unified models is dark matter. Thus grand unified models with R-parity automatically have the
LSP which is absolutely stable and if the LSP is neutral, it becomes a candidate for dark matter. It turns out that in
such a circumstance severe constraints exist in obtaining amounts of dark matter consistent with experiment and at the
same time achieving proton lifetime consistent with data. This topic is discussed in Section 8.2. A discussion of exotic
baryon and lepton number violation is given Section 8.3 where �B = 3 such as 3H → e+�0, and baryon and lepton
number violation involving higher generations, e.g., p → �∗ → �̄��+, are discussed. Also discussed in this section
is proton decay via monopole catalysis where M + p → M + e+ + mesons. Speculations on proton decay and the
ultimate fate of the universe are discussed in Section 8.4.

8.1. Neutrino masses and proton decay

As pointed out above an important issue concerns the implications of neutrino masses and mixings for proton decay
lifetime. A grand unified model such as SO(10) has a right handed neutrino which is an SU(5) singlet along with a
left handed neutrino, which resides in the 5̄ in the decomposition 16 = 1 + 5̄ + 10. This allows for the possibility of
both Dirac and Majorana type mass terms for the neutrino states. Together, they combine to produce neutrino masses
by the see-saw type mechanism. The see-saw contains information on the nature of unification and thus a study of
neutrino masses may also have implication for proton decay in unified models. It is thus desirable to discuss the issue
of neutrino masses. We first summarize the current status of neutrino oscillation experiments which yield results on
masses and mixings of neutrinos [410]. We will then discuss the theoretical aspects relevant for grand unification and
proton stability. The flavor states of the neutrino can be related to the mass diagonal states by

(�e, ��, ��) = U

⎛⎝�1

�2

�3

⎞⎠ , (301)

where U is a unitary matrix which can be parameterized in terms of three mixing angles �12, �23, �13 and one phase.
The natural range for the angles are 0��ij ��/2 and 0���2�. An explicit parameterization is

U = U23U13U12, (302)
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where Uij are defined by

U12 =
⎛⎝ c12 s12 0

−s12 c12 0

0 0 1

⎞⎠ , U13 =
⎛⎝ c13 0 s13e

i�

0 1 0

−s13e
−i� 0 c13

⎞⎠ , U23 =
⎛⎝1 0 0

0 c23 s23

0 −s23 c23

⎞⎠ , (303)

where cij = cos(�i − �j ) and sij = sin(�i − �j ). The neutrino mass matrix m� in the flavor diagonal basis is related to
the mass matrix mD

� in the mass diagonal basis by

m� = U∗mD
� U†. (304)

The solar neutrino and the atmospheric neutrino data give [411–413]

�m2
sol = (5.4 − 9.5) × 10−5 eV2, �m2

atm = (1.4 − 3.7) × 10−3 eV2. (305)

Within the three neutrino-generations fits to the data give

�m2
sol = ‖m2|2 − |m1|2|, �m2

atm = ‖m3|2 − |m2|2|,
sin2 �12 = (0.23 − 0.39), sin2 �23 = (0.31 − 0.72), sin2 �13 < 0.054. (306)

The neutrino oscillation experiments measure only the mass squared differences and cannot tell us about the absolute
value of the neutrino masses.

Information on the absolute values comes from other sources. Thus neutrinoless double beta decay gives an upper
limit of [414,415]

|mee| < (0.2 − 0.5) eV, (307)

where

mee = (1 − s2
13)(m�1c

2
12 + m�2s

2
12) + m�3e

2i�s2
13, (308)

while the WMAP collaboration gives [416,417]∑
i

|m�i
| < (0.7.1) eV. (309)

A variety of neutrino mass patterns are possible. Some possibilities that present themselves are

(a) |m�3 |?|m�1,�2 |.
(b) |m�1 | ∼ |m�2 |, |m�1,�2 |?|m�3 |.
(c) |m�1 | ∼ |m�2 | ∼ |m�3 |, |m�1,�2,�3 |?‖m�i

| − |m�j
||.

The remarkable aspect of Eq. (306) is that the mixing angles �12 and �23 are large with �23 being close to maximal
while �13 is small. This is quite in contrast to the case of mixings for the case of the quarks and it appears difficult a
priori to see how the neutrino mass textures and the quark mass textures could arise from the same unified structure.
However, such a conclusion may be hasty as the neutrino masses have a more intricate structure. Thus unified models
typically produce Dirac neutrino masses MD , LL type neutrino masses MLL, and RR type neutrino masses MRR which
combine to produce the neutrino mass matrix

m� = MLL − MDM−1
RRMT

D . (310)

The second term involving MRR is the so called Type I see-saw contribution while the first is the Type II see-saw
contribution. We see then that the neutrino mass matrix is more complex than the corresponding ones in the quark-
sector. While MD has a direct correspondence with the quark–lepton textures, their connection with MLL and MRR

is more dependent. Further, the matrices MLL and MRR can be helpful in connecting the two very different type of
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hierarchies, i.e„ the hierarchies in the quark sector vs those in the neutrino sector. For example, it is proposed that MRR

textures may have a hierarchy similar to the hierarchy in the Yukawa sector. The simplest such possibility is [418]

MRR = MR diag(ε1R, ε2R, 1), (311)

which leads to

M−1
RR = (MR)−1

⎛⎜⎝ε−1
1R 0 0

0 ε−1
2R 0

0 0 1

⎞⎟⎠ . (312)

With M−1
RR of the form given by Eq. (312) and ε1R>ε2R>1 it is possible to generate the neutrino textures compatible

with data. Such possibilities along with a variety of others have been investigated within the SO(10) grand unification
[419]. Over the years attempts have also been made to understand neutrino masses within string models [420] and this
effort is likely to grow with discovery of additional realistic or semi-realistic string based models.

We turn now to the connection of the neutrino masses to proton decay. It turns out that the connection between the
two is very much model dependent. This connection can vary from one extreme of little or no connection to a strong
correlation. To begin with in the general analysis of dimension five operators in MSSM it is possible to suppress proton
decay from dimension five operators by the elimination of certain operators while allowing for lepton number violating
operators such as

fij

1

M
LiLj��′, (313)

where Li are lepton doublets and �, �′ are Higgs doublets. A VEV formation for the Higgs doublets then produces
MLLij �Li

�Lj
where MLLij = 〈�〉〈�′〉/M . With 〈�〉 ∼ 〈�′〉 ∼ MEW and M ∼ MG one can generate neutrino masses

in the O(10−1.10−5) eV range which is a large enough range to accommodate a variety of possible scenarios. A mass
term of type Eq. (313) can arise naturally in a variety of SU(5) and SO(10) models.

In SU(5) models the right handed neutrino is absent in the 5̄ and the 10-plet representations but can be added to
the spectrum by hand in an ad hoc fashion. Because of this there is no correlation between the neutrino masses and
proton decay in minimal SU(5) models in the case of Type I see-saw. However, in the case of Type II see-saw one
can use 15H in SU(5), and there is a correlation between B.L non-conserving channels for proton decay and neutrino
masses (see, for example, Ref. [211]). In SO(10) the right handed neutrino appears as a basic element of the 16-plet
representation and because of this typically there is some correlation between neutrino masses and proton decay. For
example, in SO(10) the textures for the Dirac neutrino masses are directly correlated with the up quark mass textures
and arise from the same common couplings of the Higgs fields with matter. Further, in SO(10) the Majorana masses
for the right handed neutrinos can arise from the 126H interaction with matter, i.e., from the couplings

�12616i16j 126H , (314)

since 126 contains an SU(5) singlet as can be seen from the SU(5) decomposition of 126

126 = 1 + 5̄ + 10 + 15 + 45 + 50. (315)

Alternately, one can generate Majorana masses from the couplings of matter with 16H of Higgs, i.e.,

�′
16

1

M
16i16j 16H 16H . (316)

For example, with 〈16H 〉 ∼ MG and M ∼ MPl, one has MRR ∼ 1012−14 GeV which is typically the intermediate scale
mass. Thus with restricted number of couplings a strong correlation between the neutrino masses and proton decay can
arise. However, the degree of correlation between the two phenomena depends on the number of assumed interactions.
Thus, for example, in the SO(10) model of Ref. [168] the Higgs fields that couple with matter consist of 10H , 120H ,
and 126 while the breaking of SO(10) includes the 210H representation. In this case it is possible to suppress proton
decay from dimension five operators to the current experimental level and at the same time get consistency with the
solar and the atmospheric neutrino oscillation data.
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A model where predictions of proton decay are connected with the prediction of neutrino masses is discussed in
Ref. [421]. Here a new source of proton decay from dimensions five operators is suggested which arises from 126H

couplings. Normally the mediation of 126H does not produce dimension five operators, the reason being that the 126H

mass term involves 126H and 126H and 126H has no couplings with 16-plet of matter. However, consider the couplings
where 126H and 126H couple with a 54H with SO(10) invariant couplings

W ′
H = �(126H .126H .54H ) + �̄(126H 126H 54H ). (317)

Now in the SU(2)L × SU(2)R × SU(4)C (G224) decomposition, the 54-plet has the decomposition: 54 = (1, 1, 1) +
(3, 3, 1)+(1, 1, 20)+(2, 2, 6). Similarly, 126 has the decomposition 126=(1, 3, 10)+(3, 1, 10)+(2, 2, 15)+(1, 1, 6).
Here (1, 1, 6) contains the color triplet and the color anti-triplet. If the 54H acquires a VEV in the (1, 1, 1) direction
then the superpotential of Eq. (317) generates a (1, 1, 6).(1, 1, 6) mass term for the Higgs color triplets and color
anti-triplets. This mass term will mix with the mass term from 126H 126H and produce an effective color triplet mass
MH3 to suppress the dimension five operators. If we assume

W126 = fij (16i16j )126H , (318)

then the size of these couplings fij can be estimated. One can assume that the size of all the VEVs including the VEV of
the 45, 54 and 126H which break the GUT symmetry are order the GUT scale MG=2×1016 GeV. With the assumption
of a universal Majorana mass of (1.3) × 1012 GeV, one finds fij ∼ 10−4. With these parameters one finds dimension
five operators with strengths which can generate proton decay at observable rates. With the above assumptions one
of the predictions of the model is a non-hierarchical nature of the couplings which lead to predictions such as [421]
�(l+K0) : �(l+�0) � 2 : 1. A later analysis involving 16H + 16H rather than 126H + 126H is given in Ref. [148]
which appears to give more realistic pattern of fermion masses and mixings. However, it is clear that the predictions
from this sector depend strongly on the nature of the neutrino sector and thus different assumptions on couplings in this
sector, specifically, for example, on the nature of the Majorana mass matrix will lead to different predictions on proton
decay modes. The inclusion of Planck slop can modify the correlation between proton decay and neutrino masses. Thus
the addition of higher dimensional operators whose number increases sharply with dimensionality typically weaken
the correlation between proton decay and neutrino masses because of the greater arbitrariness that such operators
bring in. Finally, in the string framework there is no logical necessity for proton decay operators to be correlated with
neutrino masses.

8.2. Proton stability and dark matter

There is a strong correlation between dark matter and proton stability in supersymmetric theories. One may recall that
in MSSM one introduces the R-parity symmetry to suppress dangerous proton decay from dimensions four operators
and this R-parity then serves to make the lowest mass supersymmetric particle (LSP) absolutely stable. Further, if the
LSP is neutral it becomes a candidate for dark matter [422,423]. Quite remarkably one finds that in a large class of
supergravity based models the LSP is a neutralino which then becomes a candidate for non-baryonic cold dark matter
(CDM) [424]. On the experimental side the Wilkinson Microwave Anisotropy Probe (WMAP) has placed stringent
bounds on the amount of cold dark matter present in the universe. The analysis of WMAP data gives [425–427]

�CDMh2 = 0.1126+0.008
−0.009, (319)

where �CDM = �CDM/�c, and where �CDM is the matter density of cold dark matter and �c is the critical matter
density needed to close the universe, and h is the Hubble parameter measured in units of 100 km/s/MPc. A reasonable
assumption is that our Milky way contains cold dark matter in similar amounts and this has led to much experimental
activity for the detection of cold dark matter in terrestrial experiments and larger experiments for future are also being
proposed. On the theoretical side the result of Eq. (319) puts a stringent constraint on the unified models. Not only do
the unified models need to provide a candidate for the CDM, but also predict a CDM in the amounts consistent with
Eq. (319). It is then of interest to investigate what correlations exist between dark matter and proton stability in some
of the current unified models of particle interactions. In spite of the very strong connection between dark matter and
proton stability, there are only a few detailed studies exploring these constraints [428]. In supergravity unified models,
where proton decay via dimension five operators is allowed, the connection between proton stability and dark matter
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arises since both depend strongly on the soft breaking sector. Typically, proton stability requires sparticle spectrum
to be heavy to suppress proton decay while dark matter prefers a lighter sparticle spectrum to facilitate efficiently
excess CDM produced in the early universe. Thus the requirement that the constraints be satisfied simultaneously
limits severely the parameter space of the model. In models with universal soft breaking proton decay is governed
by m1/2/m2

0 which very roughly requires larger values of m0 and relatively smaller values of gaugino masses. But
large values of m0 and squark masses tend to suppress the annihilation of neutralinos. Thus typically satisfaction of
the proton decay constraints renders the detection of dark matter more difficult [428]. Recently such connections have
also been explored in other scenarios with large extra dimensions [429,293,295,430].

8.3. Exotic B and L violation

8.3.1. |�B| > 1 violation and other non-standard B and L violation
In Section 6.6 it was found that in models with two universal extra dimensions, the surviving discrete Z8 symmetry

which is a remnant of the U(1)45 symmetry in the extra dimensions x4 and x5 suppresses the dimension six baryon
and lepton number violation but does allow such operators at high order. One possibility is to dispense with the extra
dimensional constructions and simply focus on discrete symmetries to generate the appropriate constraints. An analysis
along this line is given in Ref. [431] where an anomaly free Z6 symmetry is imposed and it is shown that such a
symmetry can emerge from (I 3

R + Li + Lj − 2Lk) where Li is the lepton number for the ith generation. With the Z6
symmetry all �B = 1 and �B = 2 effective operators are forbidden but �B = 3 operators are allowed and these give
rise to some very exotic processes. To illustrate this symmetry one may consider the interaction

LY = QucH + QdcH ∗ + l�cH ∗ + l�cH + MR�c�c, (320)

where a Majorana mass term has been included for generating the see-saw type neutrino masses. With the Z6 charge
assignments

Q(6), uc(5), dc(1), l(2), ec(5), �c(3), H(1), (321)

the Lagrangian of Eq. (320) is invariant under the Z6 symmetry. With the above charge assignments the Z6 discrete
group is anomaly free. Now it can be easily seen that the Z6 is a subgroup of U(1)2Y−B+L since under U(1)2Y−B+L,
the fields have the quantum numbers: Q(0), uc(−1), dc(1), l(2), ec(−1), �c(−3), H(1) as can be easily checked by
recalling the B, L and Y quantum numbers for these fields. The above implies that any effective operator allowed by
the Z6 symmetry must satisfy the constraint

�(2Y − B + 2L) = 0 mod 6. (322)

Using the invariance under U(1)Y (�Y = 0) it is then easily seen that �B = 1 and �B = 2 effective operators are
forbidden but �B = 3 effective operators are allowed. Examples of such operators include

1

�11 {Qūc3d̄c5l, Q5d̄c4l, Q8d̄cēc, . . .}. (323)

These lead to processes such as [431]

3H → e+�0, 3He → e+�+. (324)

It is now seen that an estimate of the triple nucleon decay lifetime is proportional to �22 and a quantitative analysis
shows that even a � ∼ 102 GeV is sufficient to suppress the process to current experimental limits [431].

Among other models where non-standard B&L violation occurs is the analysis of Ref. [432] where a generic
lepto-quark extension of the Standard Model is considered. Here one finds dimension nine operators of the type

(�̄PRd)(ēPRd)(ucPRe), (325)

which induce �L = −�B = 1 proton decay producing decay channels of the type

p → e−e+��0�+, e−�̄��+�+, e−e+��+, ���̄�+. (326)
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8.3.2. B and L violation involving higher generations
Another phenomenon concerns baryon number violation (BNV) involving decays of higher generations [433,434].

It was noted in Ref. [433] that an estimate of baryon number violating � decays can be given by using limits on proton
decay lifetimes. This can be done using dimension six operators which have all been classified. Let us label these
operators by On

ijkl where i, j, k, l are generation indices. The effective interaction that governs baryon and lepton
number violating processes is then

6∑
n=1

C
(n)
ijklO

(n)
ijkl , (327)

where n = 1, . . . , 6 indicates the different types of dimension six operators. Now a possible decay mode of the proton
is through an off-shell �∗ such that

p → �∗ → �̄��
+. (328)

The effective Cuud� coupling that enters this process can be constrained by the current limit on �(p → ��+) > 2.5 ×
1031 year to yield [434] Cuud� �6 × 10−24 GeV−2. The same coefficient then can be utilized to compute the decay
branching ratio of � → p�0 and one finds [434]

B(� → p�0)�5.9 × 10−39. (329)

Similar considerations also apply to a variety of other decay modes such as � → p̄K0, � → p̄�. However, as one
can see from Eq. (329) the branching ratio for such decays is extremely small and one has no hope of observing such
decays at colliders. Decay modes of the above type have also been calculated in D and B decays such as D0 → p̄l+
and B0 → �+

c l− and the branching ratios for these are also highly suppressed as expected [434]. Still there have been
searches for such decays to put experimental limits of BNV processes in � decays. Thus the CLEO collaboration [435]
has looked for five modes of the � lepton that violate baryon and lepton number while preserving B.L. These searches
which yield negative results include the decay modes �− → p̄�, p̄�0, p̄�0�0, p̄� and p̄�0�.

8.3.3. Monopole catalyzed proton decay
The existence of magnetic monopoles [436] is a generic prediction of grand unified theories (GUTs). The magnetic

monopoles appear in the early universe at the phase transition corresponding to the breaking of the unified gauge group
(G → H ×U(1)) [437]. The mass of the magnetic monopoles Mm is related to the mass of the superheavy gauge bosons
which mediate nucleon decay, Mm �MV /
GUT. The GUT magnetic monopoles have a complex structure: a very small
core (r ∼ 10−29 cm), an electroweak region, a confinement region, a fermion–antifermion condensate region, and for
r �3 fm it behaves as a point particle generating a magnetic field B = g/r2.

A remarkable property of monopoles discovered by Rubakov and Callan is that monopoles can catalyze proton decay
[438–441]. The catalysis of the proton decay is due to the interaction of the GUT monopole core which at the quark
level leads to the reaction dL + M → e+

L + ūR + ūR and at the nucleon level leads to the process

M + p → M + e+ + mesons.

The above phenomenon is caused by boundary conditions which must be imposed on fermion fields at the monopole
core. These boundary conditions mix quarks and leptons and cause the monopole to have an indefinite baryon number.
An equally remarkable property of monopole catalysis is that the scattering amplitude is not suppressed by a factor
1/MX, i.e., by inverse power of the unification mass. However, it is difficult to predict with precision the rate of
the proton decay induced by the monopole [442]. Current estimates for the catalysis cross-sections lie in the range
10−27–10−21 cm2. Typically Big Bang cosmology leads to an abundance of monopoles, while realistic estimates with
Mm ∼ 1016 GeV lead to a number density nm < 10−14np where np is the number density of the proton [443]. This
is the familiar monopole problem of grand unification to which inflationary cosmology provides a solution [444]. It
is still important from the experimental view point to put limits on the magnetic monopole flux. Since monopoles
are heavy one expects the monopoles to be non-relativistic with � = v

c
>1. The most recent bounds on the monopole

flux come from the MACRO collaboration which has put upper limits on the magnetic monopole flux at the level of
∼ 3 × 10−16 cm−2 s−1 sr−1 for � lying in the range 1.1 × 10−4 ���5 × 10−3, based on the search for catalysis events
in the MACRO data [445].
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8.4. Proton decay and the ultimate fate of the universe

Since quantum gravity effects could destabilize the proton, the eventual fate of the universe would be governed by
the proton lifetime [392,390]. Thus, for example, over long time span white dwarfs and neutron stars will be powered
by proton decay. The proton decay mode p → e+�0 within a white dwarf will result in the process

p + e− → � + � + � + �, (330)

where two of the �’s come from the decay of the �0 and the other two arise from the annihilation of e+ + e−, and where
the energy of each of the photons will be ∼ mp/4. The photons have a short mean free path and will quickly thermalize.
Other decay modes would involve neutrinos which would escape. An estimate of the luminosity of the white dwarf
powered by proton decay gives [390]

L∗ � 10−22L�

(
1035

�P yrs

)
, (331)

where L� stands for stellar luminosity. The white dwarf luminosity arising from proton decay is indeed extremely
small relative to the solar luminosity. If we assume that the white dwarf consists of N nucleons initially, then the time
for it to deplete to N0 because of nucleon disintegration is given by [390]

� = �P ln

(
N

N0

)
. (332)

For N ∼ 1057 and N0 = 1 one finds � ∼ 131�P . A similar analysis holds for neutron stars and for planets although the
evolution of the neutron star under nucleon decay processes is more involved.

9. Summary and outlook

We summarize now the main conclusions of this report.
Non-supersymmetric grand unification. In non-supersymmetric models proton decay proceeds via dimension six

operators which are induced by gauge interactions and via exchange of scalar lepto-quarks. In these models one needs
an extreme fine tuning to get light Higgs doublets, which however, may be justified in the context of string landscape
models. An analysis of proton lifetime requires that one first address properly the fermion mass and mixing issues to
predict in a realistic fashion proton lifetime. These issues are discussed in detail in Section 3 where it is shown that
some of the non-supersymmetric unified models may still pass the stringent experimental proton lifetime constraints.
As an example one may consider a simple extension of the Georgi–Glashow [9] model with a Higgs sector composed
of 5H , 24H , and 15H [211]. In this case one finds an upper-bound on the total proton decay lifetime in this scenario of
�p �1.4 × 1036 years [212]. More discussion on this topic is given in Section 5.6.

SUSY and SUGRA grand unified models. Supersymmetric unified models have several advantages over the non-
supersymmetric models. The Higgs sector of the theory is free of quadratic divergences and no extreme fine tuning as in
non-supersymmetric models is needed. Globally supersymmetric unified models are not viable because of the difficulty
of breaking supersymmetry which is overcome in supergravity unified (SUGRA) models. Interestingly supergravity
models also allow for radiative breaking of the electro-weak symmetry which is accomplished without the addition of
ad hoc tachyonic mass terms as is done in non-supersymmetric models. SUGRA models predict a sparticle spectrum
in the TeV mass range accessible at accelerators and such spectrum is consistent with the gauge coupling unification.
An apparent drawback of supersymmetric models is the possibility of proton decay via dimension 4 operators which,
however, can be eliminated by an R-parity invariance. Proton decay dimension five operators still remains and typically
dominates over proton decay from dimension six operators. This puts stringent limits on the allowed parameter space
of the theory to be consistent with experiment. In Section 4 a number of topics were considered. They include the
constraints on R-parity violating interactions using experimental bounds, doublet–triplet splitting, and an analysis of
proton decay in SU(5) and SO(10) models.

Tests of grand unification. In grand unified models predictions of the proton lifetime are intimately tied with the
fermion masses and mixings since they arise from the same commonYukawas interactions. In a more technical language
one needs to have realisticYukawa textures. In an analogous fashion, the Higgs triplet sector also has textures which are
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in general different from textures in the Higgs doublet sector and these enter into proton lifetime predictions (Section
5.1). A phenomenon which can affect proton lifetime in supergravity models is that of gravitational smearing. It arises
from the possibility of a non-trivial gauge kinetic energy functions which can split the gauge coupling constants at the
unification scale. These splittings effectively modify the heavy thresholds and specifically the Higgs triplet mass and
consequently affect proton lifetime (Section 5.2). The masses of the Higgs triplet and other heavy thresholds are also
constrained by the gauge coupling unification constraints but the analysis depends sensitively on the inputs (Section
5.3). The important topic of testing grand unification through proton decay modes was discussed in Section 5.4 with
special attention to the gauge groups SU(5), SO(10) and flipped SU(5). An investigation of the conditions under which
gauge dimension six proton decay can be eliminated in flipped SU(5) is given in Section 5.5. An analysis of the
upper bounds on proton decay lifetimes in GUT models is given in Section 5.6 where it is shown that it is possible
to find a model independent upper bound on the total proton decay lifetime. Such bounds are useful in testing unified
models.

Grand unified models in extra dimensions. The most attractive feature of extra dimensional models is that they
provide a mechanism for a natural doublet–triplet splitting where one achieves a light Higgs doublet necessary for
electroweak symmetry breaking while the Higgs triplet becomes superheavy. A large number of models in 5D and
6D with gauge groups SU(5), SO(10), SU(6) and SU(3)3 have been investigated which, however, differ vastly in
their predictions for proton decay. For example, proton decay from dimension 4 and dimension 5 operators can be
killed in some models by a residual U(1)R symmetry which leaves the exchange of X and Y gauge bosons as the
main source of proton decay. However, proton decay from these is typically dependent on the way matter is located
in the extra dimensions. As discussed in Section 6 if, for example, the matter fields propagate in the bulk, then a full
generation of quarks and leptons must arise from split multiplets which have no normal X and Y gauge interactions
among them. In such models proton decay can arise only via higher than six dimensional operators and is suppressed.
The usual dimension six operators can also be forbidden by location of matter on certain brains. For example, for the
SO(10) case placing all three generations on the SU(4)C × SU(2)L × SU(2)R brane will give vanishing dimension
six operators from the normal X and Y exchanges since the wave functions for the X and Y gauge bosons vanish on
the SU(4)C × SU(2)L × SU(2)R brane. However, with other choices of locating matter on branes, one will have in
general proton decay from dimension six operators. Additionally proton decay can arise from derivative couplings.
Consequently, predictions of proton decay in higher dimensional models vary over a wide range, from highly suppressed
to the possibility of observation in the next generation of experiment.

We emphasize, however, that the branching ratios into various modes can be used as probes of models including extra
dimensional models. As an example in Section 6, we discussed the work of Ref. [275] which investigates a specific
model in 6D where the three generations of 16-plets of matter are located at different branes: generation 1 is placed
on the SU(5) × U(1) brane, generation 2 is placed on the flipped SU(5) × U(1) brane, and generation 3 is placed on
the SU(4)C × SU(2)L × SU(2)R brane. With additional assumptions regarding the Higgs structure and flavor sector
of the theory, the model predicts the dominant proton decay branching ratios so that [275] BR(�0e+) = (71.75)%,
BR(�̄�+)=(19.33)%, and BR(�+�0)=(4.5)% (Section 6.4). Clearly the branching ratios provide important signatures
for testing the models. Another example, is proton decay in universal extra dimension models where in a class of such
models one finds [278] p → �+�+e−��, �+�+�−�� (Section 6.6). Again such signatures provide a possible avenue
to differentiate among various classes of models if proton decay is observed and branching ratios measured.

String unified models. There are five types of known string theories: Type I, Type IIA, Type IIB, SO(32) heterotic
and E8 ×E8 heterotic which are connected by a web of dualities and may have a common origin in a more fundamental
theory—the M theory. Of these the E8 × E8 heterotic case has been investigated the most from the point of view of
model building but considerable progress has also occurred recently in model building based on Type IIA and Type
IIB. In Section 7 we discussed the status of proton decay in a class of Calabi–Yau compactifications of the heterotic
string. The dominant decay mode of the proton in these models as in supersymmetric SU(5) is p → �̄K+ but further
progress in needed in computations of the Kahler potential to make precise lifetime predictions. There has been a
revival of interest recently in the heterotic string models. One class of models is successful in achieving the MSSM
particle spectrum without exotics, and here are no dimension four, five, or six proton decay operators in these models.
For k > 1 Kac–Moody string models, generally dimension four proton decay operators are absent due to the underlying
gauge and discrete symmetries of the model but dimension five proton decay operators are present [327]. However, it
is difficult to get realistic quark–lepton textures in these models and hence difficult to make reliable estimates of proton
decay lifetime in these models [327].
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An interesting recent result on proton decay comes from the M theory analysis discussed in Section 7.5 where one
considers M theory on R4 × X, where X is the manifold of G2 holonomy [349]. If X looks locally like Q × R4/�
where Q is a three-manifold, then one will get gauge fields on the singular set R4 × Q. The case � = Z5 leads to the
SU(5) gauge fields on the R4 ×Q [350,351]. Here the assumption that the quark–lepton multiplet are in general located
at different points in the manifold Q leads to the prediction that the decay p → e+

L�0 which arises from the interaction

10210
2

is enhanced relative to p → e+
R + �0 which arises from 1025̄2. Since 10 and 5̄ are located at different points

in Q the e+
R mode is in general suppressed [349]. Unfortunately, the decay lifetime is not predicted due to unknown

normalization factors in the effective proton decay dimension six operator that arises from M theory. Further, it remains
to be seen if experiment can be geared to measure the polarization of the exiting charged lepton. Another interesting
analysis of proton decay is the one based on intersecting D branes [353] which investigates proton decay on SU(5)

GUT like models in Type IIA orientifolds with D6-branes. Here the analysis of the proton decay modep → e+�0 gives
a lifetime which may lie within reach of the next generation experiment (see Section 7.5).

Proton decay from black hole and wormhole effects. Quantum gravity does not conserve baryon number and thus
can catalyze proton decay. Such an effect can arise from virtual black hole exchange and wormhole tunneling (Section
7.7). It is then possible that the two quarks in the proton might end up falling into the mini black hole and since one
expects black holes not to conserve baryon number, a process such as this can lead to baryon number violation through
q + q → l + � and q + q → q̄ + l and consequently to proton decay. If the scale of quantum gravity MQG = MPl, the
proton lifetime will be very high, i.e., ∼ 1045 years and outside the realm of experimental observation. However, such
lifetimes still have significance in determining the ultimate fate of the universe.

Outlook. Search for proton decay should continue as one of the prime experimental efforts as it probes the nature
of particle interactions at extremely short distances which the accelerators can never hope to reach. Fortunately there
are proposals already being pursued which will improve the sensitivity of the proton decay searches by an order
of magnitude or more. Chief among these are the HYPERK, UNO, MEMPHYS, ICARUS, LANNDD at the Deep
Underground Science and Engineering Laboratory (DUSEL), and LENA. On the theoretical side one finds that in
general predictions of absolute proton lifetime in unified models contain significant uncertainties. These arise from
uncertainties in extrapolations from the GUT/string scale to the proton decay scale of mp ∼ 1 GeV, uncertainties in
the 3-quark matrix element between the proton and the vacuum state, uncertainties due to the quark–lepton textures
and uncertainties due to the approximation of using the effective Lagrangian to compute prediction of dimension six
operators. However, models do better in predicting the relative branching ratios since these are subject to a smaller
subset of uncertainties. Thus even with a fuzzy knowledge of the absolute decay rates, one can use branching ratios as an
instrument for differentiating models. Examples of this possibility are provided by the e+�0 for the non-supersymmetric
minimal SU(5) model, by �̄K+ mode for the minimal SUSY SU(5) model, by the branching ratios for the specific six
dimensional model of Ref. [275] and by the modes �+�+e−��, �+�+�−�� for UED models, and by the dominance of
e+
L�0 over e+

R�0 for the M-theory model of Ref. [349].
The preceding discussion points up that given sufficient data one can distinguish among a variety of unified models

arising from 4D, 5D, 6D and from strings and branes. However, as one of the main observations of this report it
is imperative that more theoretical effort is needed in the prediction of absolute rates to coincide with the larger
experimental effort in improving proton lifetime sensitivities by an order of magnitude or more. It is only then that
the maximum benefit from the new generation of proton decay experiment will accrue. In summary, if proton decay is
found it will winnow down the allowed set of unified models. Further, as exhibited in this report a detailed knowledge
of its decay modes will help to test specific grand unified, string and M theory scenarios. Even if no proton decay is
found in the next generation experiments, the improved theoretical predictions and the improved experimental lower
limits will eliminate or more stringently constrain unification models of particle interactions and gravity.

10. Summary table of p decay predictions

It is useful to summarize in a tabular form the range of theory predictions for the proton lifetime vs the current
experimental limits. As the report exhibits the literature on this topic is enormous,and in the table below we show only
a sample of the models discussed in the report. Thus the table should be used only as a guide to the more detailed
discussion in the body of the report. Further,the numerical estimates on the lifetimes exhibited are gotten under specific
assumptions which should be kept in mind while using these estimates. For example,in entry (3) a different choice of
the Ray–Singer torsion can change the estimate by more than a factor of 10. In entry (7) we have used in Eq. (212) the
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value of the compactification scale MC = 2 × 1016 GeV. Even a factor of 2 shift on MC would modify the estimate by
more than an order of magnitude. In entry (10) we have used in Eq. (294) the value MQP =MPl for the scale of quantum
gravity. In entry (12) we have assumed that the coupling f that appears in the Calabi–Yau manifolds is ∼ .05 in the
relation Eq. (268). In entry (16) the proton lifetime in proportional to �22 where � is the scale to which the 6D effective
theory is valid. Thus the predictions are highly unstable,and the estimate can change by six orders of magnitude by a shift
in the value of � by a factor of 2. In entries (15) and (17),the terminology ‘suppressed’ implies that the parameters of the
respective models can be adjusted to suppress proton decay to the current experimental limits. Thus,in these models the
possibility exists of detecting proton decay just beyond the current limits. Conservatively,overall the estimates given
should be considered accurate to no better than a factor of 10. Finally,we note that in the Table we have presented only
some sample set of decay modes. Models typically have many more such as �̄�+,�+K0,etc. The reader is directed to
the original references listed in the table and in the various sections, for estimates on these decay modes.

Summary of proton decay lifetime estimates in years for various models

Mode Reference Lifetime estimate Exp. limit

1. p → e+�0 [446] 1.6 × 1034 1.6 × 1033

2. p → e+�0 [447] 1033−38

3. p → e+�0 [353] (0.8.1.9) × 1036

4. p → e+�0 [268] ∼ 7 × 1033±2

5. p → e+�0 [167] ∼ 5 × 1035±1

6. p → e+�0 [275] ∼ 5 × 1034±1

7. p → e+�0 [266] ∼ 4 × 1036

8. p → e+�0, �̄K+, . . . [211,212] �1.4 × 1036

9.p → e+�0 [448] ∼ 1037

10. p → e+�0 etc. Black holes (Section 7.7) ∼ 1045

11. p → �̄K+ [142,155,158–160] ∼ 1034 6.7 × 1032

12. p → �̄K+ [323] ∼ 1034

13. p → �̄K+ [147] (6.6.3 × 102)1033

14. p → �̄K+ [167,148] (1/3.2) × 1034

15. p → �̄K+ [168,170] suppressed
16. p → �+�+l−�� [279] �1035 3 × 1031

17. p → e−e+��+ etc. [432] suppressed 1.5 × 1025

18. p(n) → � + e+(�̄) [153] > 1038±1 6.7 × 1032
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Appendix A. Mathematical aspects of SU(5) and SO(10) unification

In this appendix we will give some technical details of group theory that will facilitate reading the main body of
the report. We begin by discussing SU(5) where a single generation of quarks and leptons is placed in the 5̄ and the
10-plet of SU(5). The particle decomposition of 5̄ is

5 =
⎛⎝ dc

La

e−
L

−�eL

⎞⎠ , (333)

where sub a is the color index. For the 10-plet of SU(5) we have

10 =

⎛⎜⎜⎜⎜⎜⎝
0 uc

3 −uc
2 −u1 −d1

−uc
3 0 uc

1 −u2 −d2

uc
2 −uc

1 0 −u3 −d3

u1 u2 u3 0 e+

d1 d2 d3 −e+ 0

⎞⎟⎟⎟⎟⎟⎠
L

. (334)

To recover the interaction of the Standard Model particles from their SU(5) invariant couplings one needs to carry
out their SU(3)C × SU(2)L × U(1)Y invariant reduction. Here we will illustrate the basic technique for the reduction
of SU(5) tensors into tensors which are irreducible under SU(3)C × SU(2)L × U(1)Y . First it is useful to record the
tensorial representations of irreducible representations of SU(5) which commonly surface in model building based on
the group SU(5). As we have seen the matter falls in the SU(5) representations 5̄M + 10M while, the Higgs could be
in any of the fields 5H , 5̄H , 10H , 10H , 24H , 45H , 45H , 50H , 50H , 75H , etc. The tensors representing these are

5i , 5̄i , 10ij , 10ij , 24i
j , 45ij

k , 45
i

jk, 50ijk
lm , 50

ij

klm, 75ij
kl , (335)

where one has anti-symmetry in all the sub indices and in all the super indices. Further, the 24i
j is traceless, while the

50-plet, 50-plet, and the 75-plet satisfy the following constraints:

5∑
n=1

45in
n = 0 =

5∑
n=1

45
n

in;
5∑

n=1

50in
jkn = 0 =

5∑
n=1

50
ijn

kn ;
5∑

n=1

75in
jn = 0. (336)

The following decomposition is useful in the reduction of the SU(5) irreducible tensors into irreducible components
under SU(3)C × SU(2)L × U(1)Y

�i
j =

3∑
a=1

�i
a�

a
j +

5∑

=4

�i

�



j , (337)

where a = 1, 2, 3 is the color index and 
 = 4, 5 is the SU(2) index. Thus consider the 24-plet which has the following
SU(3)C × SU(2)L × U(1)Y decomposition

24 = (1, 1, 0) + (1, 3, 0) + (8, 1, 0) + (3, 2, −5/3) + (3̄, 2, 5/3). (338)

Using the above technique (1, 1, 0) takes the form

24i
j (1, 1, 0) =

√
2

15

(
3∑

a=1

�i
a�

a
j − 3

2

5∑

=4

�i

�



j

)
�(110), (339)

where �(110) is the SU(3)C × SU(2)L × U(1) singlet field and the other components in Eq. (338) can be similarly
obtained.
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We now give some mathematical background relevant for the group SO(10). For reasons of computation of SO(10)

couplings it is found useful to decompose them in the more familiar SU(5) representations. We begin by defining the
45 generators of SO(10) in the spinor representation so that

��� = 1

2i
[��, ��], (340)

where elements �� (� = 1, 2, . . . , 10) which satisfy Clifford algebra

{��, ��} = 2���. (341)

It is convenient to define �� in terms of creation and destruction operators, bi and b
†
i (i = 1, 2, . . . , 5) [449,450] so that

�2i = (bi + b
†
i ); �2i−1 = −i(bi − b

†
i ), (342)

where

{bi, bj } = 0; {bi, b
†
j } = �j

i ; {b†
i , b

†
j } = 0 (343)

and where the SU(5) singlet state |0〉 satisfies bi |0〉 = 0. One can define an SO(10) chirality operator (1 ± �0)/2
where �0 = i5�1�2 . . . �10 so that the 32-plet spinor of SO(10) can be split into semi-spinors (±)á (á = 1, 2, 3 is the
generation index) which are eigen-states of SO(10) chirality

(±)á = 1
2 [1 ± �0]á . (344)

Now (±)á transforms as a 16(16)-dimensional irreducible representation of SO(10). They can be expanded in SU(5)

decomposition so that 16 = 1 + 5 + 10(16 = 1 + 5 + 10) and are given by

|16á〉 = |0〉1á + 1
2b

†
i b

†
j |0〉10ij

á
+ 1

24εijklmb
†
j b

†
kb

†
l b

†
m|0〉5̄ái , (345)

|16á〉 = b
†
1b

†
2b

†
3b

†
4b

†
5|0〉1′

á
+ 1

12 εijklmb
†
kb

†
l b

†
m|0〉10′

áij
+ b

†
i |0〉5′

á

i . (346)

One generation of quarks and leptons can be identified as residing in a single 16-plet representation of SO(10), i.e., in
the 5̄ and 10 SU(5) multiplets, while the SU(5) singlet field is a right handed neutrino which is needed in generation
of neutrino masses in a see-saw mechanism. One may also define a charge conjugation operator in SO(10) by

B =
∏

�=odd

�� = −i

5∏
k=1

(bk − b
†
k). (347)

This operator is needed in forming the SO(10) invariant interactions.
In building models using SO(10) grand unification, one needs the explicit decomposition of the SO(10) invariant

couplings in terms of the Standard Model fields. This task in facilitated by decomposition of the SO(10) invariant
couplings in terms of the SU(5) invariant couplings, since SU(5) invariant couplings can be easily decomposed in
terms of the Standard Model states. The decomposition of the SO(10) invariant couplings in terms of SU(5) invariant
couplings can be easily achieved by use of the so called Basic Theorem [164,451–454] which we explain briefly
below. We note that an SO(10) invariant vertex can be expanded in a specific set of SU(5) reducible tensors �ck

and
�ck

defined as follows: �ck
≡ �2k + i�2k−1, �ck

≡ �2k − i�2k−1. We can extend the above easily to define the
quantity �cicj c̄k .. which has an arbitrary number of barred and unbarred indices where each c index is defined so that
�cicj ck... = �2icj ck... + i�2i−1cj ck..., etc. The above implies that the quantity �cicj ck...cN

is a sum of 2N terms gotten
by expanding all the c indices. �cicj ck...cn is completely anti-symmetric in the interchange of its c indices whether
unbarred or barred: �cicj ck...cn = −�ckcj ci ...cn . Further, �∗

cicj ck...cn
= �cicj ck...cn , etc. It is now clear that the quantity

�cicj ck...cn transforms like a reducible representation of SU(5). This reducible representation can be further decomposed
into a sum of irreducible tensors. Thus the procedure is that one first computes the SO(10) invariant couplings in terms of
the SU(5) reducible tensors and then decomposes them further in terms of the irreducible tensors. The above procedure
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can be summarized in terms of the following result in a compact form: The SO(10) invariant vertex ������..�� ����..�,
where ����..� is a tensor field, can be expanded as follows [164]:

������ . . . ������...� = b
†
i b

†
j b

†
k . . . b†

n�cicj ck...cn + (bib
†
j b

†
k . . . b†

n�cicj ck...cn

+ perms) + (bibj b
†
k . . . b†

n�cicj ck...cn + perms) + · · ·
+ (bibj bk . . . bn−1b

†
n�cicj ck...cn−1cn + perms) + bibj bk . . . bn�cicj ck...cn . (348)

The quantity �cicj ck...cn transforms like a reducible representation of SU(5) and can be further decomposed into
irreducible SU(5) parts. The above technique is easily extended to the expansion of an SO(2N) vertex in terms of
SU(N) vertices.

With the above technique the cubic couplings in the superpotential involving 16-plet of matter and the 10, 120 and
126 of Higgs fields, and cubic couplings in the Lagrangian involving the 16-plet of matter fields and the 45-plet of gauge
fields can be computed. We give now the explicit computations. For the 16–16–10 couplings one finds the following
expansion in their SU(5) decomposed form

W(10) = (2
√

2i)f (+)
ab (10ij

a 5̄ib5̄Hj − 1a 5̄ib5i
H + 1

8εijklm10ij
a 10kl

b 5m
H ), (349)

where the 10-plet of SO(10) Higgs fields is decomposed in SU(5) representations so that 10H = 5H + 5̄H . In Eq. (349)
the Higgs fields are identified with the subscript H while the remaining fields are the matter fields. In analyzing the
16–16–120 coupling in the superpotential in terms of SU(5) representations we note that the 120-plet representation
can be decomposed in SU(5) representations as follows: 120 = 5 + 5̄ + 10 + 10 + 45 + 45. Thus one has

W(120) = i
2√
3
f

(−)

áb́
[2(1á5

ib́
5i
H ) + 10ij

á
1
b́
10Hij + 5iá5

j b́
10ij

H

− 10ij

á
5̄
ib́

5̄Hj + 5̄iá10jk

b́
4̄5i

Hjk − 1
4εijklm10ij

á
10mn

b́
45kl

Hn], (350)

where the fields with subscripts H are the Higgs fields in SU(5) representations. In decomposing the vertex involving
the 126 coupling we note that the 126 and 126 have the SU(5) decompositions: 126 = 1 + 5 + 10 + 15 + 45 + 50 while
126 = 1 + 5̄ + 10 + 15 + 45 + 50. The 16.16.126 vertex can be expanded as follows:

W( ¯126) = if (+)

áb́

√
2√
15

[
− √

2(1á1
b́
1H ) − √

3(1á 5̄
ib́

5i
H ) + 1á10ij

b́
10Hij

− 1

8
√

3
10ij

á
10kl

b́
5m
H εijklm − 5̄iá 5̄

j b́
15ij

HS + 10ij

á
5̄
b́k

45
k

Hij − 1

12
√

2
εijklm10lm

á
10rs

b́
50ijk

Hrs

]
, (351)

where again the Higgs fields have been displayed with a subscript H while the other fields are matter fields.
The SO(10) gauge invariant couplings involve the couplings of the 45-plet of gauge vector bosons with 16-plet of

matter. The supersymmetric Yang-Mills part of the Lagrangian in superfield notation is∫
d2� tr(W 
W
)) +

∫
d2�̄ tr(W 
̇W


̇
), (352)

where W
 is the field strength chiral spinor superfield. Since we are interested in dimension six fermion operators
arising from these interactions, such interactions arise only from the elimination of gauge vector bosons. Thus we
exhibit only the gauge vector boson interactions of the 45 gauge vectors VA�� where A is a Lorentz index (A = 0, 1.3)

L(45) = 1

i

1

2!g
(45)

áb́
〈(+)á|�0�A���|(+)b́

〉VA��. (353)

Here �A spans the Clifford algebra associated with the Lorentz group, and g is the gauge coupling constant. Now in
SU(5) decomposition the 45-plet of SO(10) can be decomposed as follows:

45 = 1 + 10 + 10 + 24. (354)
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We exhibit the 16.16.45 couplings in the decomposed form

L(45) = g
(45)

áb́
[√5(− 3

5 5̄á

i
�A5̄

b́i
+ 1

10 10áij �
A10ij

b́
+ 1á�

A1
b́
)VA + 1√

2
(1á�

A10lm

b́
+ 1

2 εijklm10áij �
A5̄

b́k
)VAlm

− 1√
2
(10álm�A1

b́
+ 1

2 εijklm5̄
i

á�
A10jk

b́
)Vlm

A + √
2(10áik�

A10kj

b́
+ 5̄

j

á�
A5̄

b́i
)Vi

Aj ], (355)

where VA, V
ij
A , VAij , V i

Aj are the 1, 10, 10, and 24 plets of SU(5). The same technique can be used to compute the

interactions involving Higgs fields lying in representations 10, 45, 54, 120, 126, 210 (For later works using different
techniques, see [455–457,190].).

We discuss now briefly the vector-spinor 144(144) which requires special care [454]. The reason for this is that the
144(144) arise via a constraint on the reducible vector spinor 160(160). Thus the 160 vector-spinors has an expansion
in SU(5) oscillator modes so that:

|(+)á�〉 = |0〉Pá� + 1
2b

†
i b

†
j |0〉Pij

á� + 1
24εijklmb

†
j b

†
kb

†
l b

†
m|0〉Pái� (356)

while the 160 vector-spinor has an expansion in SU(5) oscillator modes so that:

|
(−)b́�〉 = b

†
1b

†
2b

†
3b

†
4b

†
5|0〉Q

b́� + 1
12 εijklmb

†
kb

†
l b

†
m|0〉Q

b́ij� + b
†
i |0〉Qi

b́�
, (357)

where i, j, k, l, m, . . .= 1, 2, . . . , 5 are SU(5) indices, �, �, �, . . .= 1, 2, . . . , 10 are SO(10) indices, while á, b́, ć, d́ =
1, 2, 3 are generation indices. The SU(5) field content of 160 multiplet is

160((+)�) = 1(̂P) + 5̄(Pi ) + 5(Pi ) + 5(̂Pi ) + 10(Pij ) + 10(̂Pij )

+ 15(P(S)
ij ) + 24(Pi

j ) + 40(Pi
jkl) + 45(Pij

k ), (358)

while the SU(5) field content of 160 multiplet is

160((−)�) = 1(Q̂) + 5(Qi ) + 5̄(Qi ) + 5̄(Q̂i ) + 10(Qij ) + 10(Q̂ij )

+ 15(Qij

(S)) + 24(Qi
j ) + 40(Qijk

l ) + 45(Qi
jk). (359)

To get the 144144 multiplets these must be subject to the constraint

��|Υ(±)�〉 = 0. (360)

Imposing these constraints on the 160 multiplet gives

��|(+)�〉 = b
†
1b

†
2b

†
3b

†
4b

†
5|0〉̂P + 1

12 εijklmb
†
kb

†
l b

†
m|0〉(Pij + 6P̂ij ) + b

†
i |0〉(Pi + P̂i ). (361)

Thus to get the 144 spinor, |Υ(+)�〉 the following constraints must be imposed on the components in |(+)�〉:
P̂ = 0, P̂i = −Pi , P̂ij = − 1

6 Pij . (362)

Similarly to reduce the 160-plet |Υ(−)�〉 to 144-plet we need to impose the constraints

Q̂ = 0, Q̂i = −Qi , Q̂ij = − 1
6 Qij . (363)

The SO(10) invariant cubic couplings in the superpotential involving two vector-spinors and the tensors 1, 10, 45, 120,

210, and 126-plet of Higgs etc. can be written analogous to the couplings of the 16-plet spinor. We display the couplings
for the 1, 45, 10 tensors. The couplings for these are

W(1) = h
(1)

áb́
〈Υ ∗

(−)á�|B|Υ
(+)b́�〉�,

W(10) = h
(10)

áb́
〈Υ ∗

(+)á�|B��|Υ(+)b́�〉��,

W(45) = 1

2!h
(45)

áb́
〈Υ ∗

(−)á�|B���|Υ
(+)b́�〉���. (364)
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Here � is the 1-plet, �� is the 10-plet, and ��� is the 45-plet Higgs field. A detailed computation of these and other
couplings is given in Ref. [454].

Appendix B. d = 5 contributions to the decay of the proton

In this appendix we present the complete set of diagrams responsible for d = 5 nucleon decay in supersymmetric
scenarios. In this case proton decay is mediated by scalar leptoquarks and their superpartners. The relevant interactions
for proton decay are the following:

W = MT T̂ T̂ + W3 (365)

W3 = Q̂AQ̂T̂ + ÛCBÊCT̂ + Q̂CLT̂ + ÛCDD̂CT̂ (366)

where we use the conventional notation for all MSSM superfields. The superfields T̂ , and T̂ transform as (3, 1, −2/3),
and (3, 1, 2/3), respectively [158].

Decay channels

p → (K+, �+, �+)�̄i , and n → (�0, �0, �, 	, K0)�̄i , with i = 1, 2, 3.

T̃

˜̄ ¯T

t̃

˜

w̃+

w̃
 

d1,2

u �i

d2,1

τ
∝ (DT ASŨ)13,23(Ũ

†D)32,31(N
T Ẽ∗)i3(ẼT CT U)31. (367)
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†D)32,31. (368)
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˜̄
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b̃

w̃+

w̃- 

d1,2

�i u
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∝ (DT ASŨ)13,23(Ũ
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Ṽ0

Ṽ0
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∝ (DT CÑ)13,23(Ñ
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Decay channels

p → (K0, �0, �, �0, 	)e+
i , and n → (K−, �−, �−) e+

i with i = 1, 2.
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ēi
c
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ēi
c

∝ (DT CÑ)13,23(Ñ
†Y

†
EE∗

c )3i (U
†
c Y

†
UD̃∗)13(D̃

T ASU)31. (390)

T �̃

b̃

˜̄
h-

†

 

h̃+
†

d1,2

u ūc
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†Y

†
EE∗

c )3i . (391)



278 P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317
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ūc ēi

u

τc
∝ (D†

cD
†Ũ∗
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ūc ēi

u

τc

∝ (D†
cD

†U∗
c )11,21(E

T Y T
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˜̄
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ēi
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T
c Y T
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T YU Ũc)13(Ũ

†
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c )3i . (396)
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˜̄
h0

ēi
c

ūc d1,2

u

∝ (E†
cB†U∗

c )i1(D
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†
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c )33(Ũ

T
c Y T
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†
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†
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u ēi
c

ūc

τ
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UU∗
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†
c Y ∗
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T
 ̃

t̃

˜̄
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†

h̃0
†

u
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ēi
c

d1,2

τ
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†
c Y
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†Y

†
EE∗
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T̃
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T

b̃
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Ṽ0

Ṽ0

u

ei u
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∝ (UT ASD̃)13(D̃
†D)31,32(U

T Ũ∗)13(Ũ
T CE)3i . (400)

T̄ b̃

t̃

Ṽ0

Ṽ0

u

ei u

d1,2

∝ (UT CE)1i (U
T Ũ∗)13(Ũ

T ASD̃)33(D̃
†D)31,32. (401)
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˜̄
T

T̃

 ̃

t̃

Ṽ0

Ṽ0

u

d1,2 u

ei

τ ∝ (UT CẼ)13(Ẽ
†E)3i (U

T Ũ∗)13(Ũ
T ASD)31,32. (402)

T
 ̃

t̃

Ṽ0

Ṽ0

u

d1,2 u

ei
τ

∝ (UT ASD)11,12(U
T Ũ∗)13(Ũ

T CẼ)33(Ẽ
†E)3i . (403)
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T

†
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Ṽ0
†

Ṽ0
†

ūc
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c

ūc

ēi
c

∝ (U†
c D∗D̃∗

c )13(D̃
T
c D∗

c )31,32(U
†
c Ũc)13(Ũ

†
c B∗E∗

c )3i . (404)
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t̃c

Ṽ0
†

Ṽ0
†

ūc

ēi
c

ūc
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c

∝ (U†
c B∗E∗

c )1i (U
†
c Ũc)13(Ũ

†
c D∗D̃∗

c )33(D̃
T
c D∗

c )31,32. (405)

T̃ †

˜̄
T

†

 ̃ c

t̃c

Ṽ0
†

Ṽ0
†

ūc

d̄1,2
c

ūc

ēi
c

τ ∝ (U†
c B∗Ẽ∗

c )13(Ẽ
T
c E∗

c )3i (U
†
c Ũc)13(Ũ

†
c D∗D∗

c )31,32. (406)

T̄
 ̃ c

t̃ c

Ṽ0
†

Ṽ0
†

ūc

d̄1,2
c

ūc

ēi
c

τ

∝ (U†
c D∗D∗

c )11,12(U
†
c Ũc)13(Ũ

†
c B∗Ẽ∗

c )33(Ẽ
T
c E∗

c )3i , (407)

where

AS = A + AT . (408)

For the case when there are more than one pair of Higgs triplet and anti-triplet, as is often the case in SO(10) models,
one must go to the mass diagonal basis for these fields to compute the dimension five operators generated by their
elimination. The preceding diagrammatic analysis exhibits that the baryon and lepton number violating d =5 operators
are quite model dependent and generic predictions are not possible. Specifically the proton lifetime predictions depend
on the structure of the Higgs sector, and on the mixing between the fermion and the sfermions. However, calculations
with greater predictivity are possible if the model is fully well defined, including the Higgs sector, and the supersymmetry
breaking sector is well defined as, for example, is the case for the minimal supergravity model (mSUGRA).

Appendix C. Dressing of the d = 5 operators

In this appendix we exhibit the expressions for the dimension six operators after the dressing of the d = 5 operators.
The full analysis of the dressings of LLLL and RRRR dimension five operators including the chargino, gluino, and
neutralino exchanges and including the sfermion mixings is given in the context of supergravity grand unification in
Ref. [142], and later in Refs. [144–146]. The dressings are carried out at the electroweak scale which one may take as the
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average scale of sparticle masses (MSUSY). Here we exhibit the results in a compact form (See Refs. [142,144–146]):

L5 = C
(ũd̃ue)abij
L ũad̃buLieLj + C

(ũũde)abij
L

1
2 ũaũbdLieLj

+ C
(ũd̃ue)abij
R ũad̃buRieRj + C

(ũũde)abij
R

1
2 ũaũbdRieRj

+ C
(ũd̃d�)abij
L ũad̃bdLi�Lj + C

(d̃d̃u�)abij
L

1
2 d̃ad̃buLi�Lj

+ C
(ũẽud)abij
L ũaẽbuLidLj + C

(d̃ẽuu)abij
L

1
2 d̃a ẽbuLiuLj

+ C
(ũẽud)abij
R ũaẽbuRidRj + C

(d̃ẽuu)abij
R

1
2 d̃a ẽbuRiuRj

+ C
(d̃ �̃ud)abij
L d̃ã�buLidLj + C

(ũ�̃dd)abij
L

1
2 ũã�bdLidLj . (409)

These coefficients are obtained from the coefficients of the original dimension-five operators including their renormal-
ization from MGUT to MSUSY. For the renormalization of the d =5 operators see the next appendix. After the sparticles
dressing, we obtain the following dimension-six operators for nucleon decays:

L6 = C
(udue)ij
LL (uLdLi)(uLeLj ) + C

(udue)ij
RL (uRdRi)(uLeLj )

+ C
(udue)ij
LR (uLdLi)(uReRj ) + C

(udue)ij
RR (uRdRi)(uReRj )

+ C
(udd�)ijk
LL (uLdLi)(dLj �Lk) + C

(udd�)ijk
RL (uRdRi)(dLj �Lk)

+ C
(ddu�)ijk
RL

1
2 (dRidRj )(uL�Lk). (410)

For the dimension-six operator, we have three contributions according to the dressed sparticles. Thus, for example,

C
(udue)ij
LL = C

(udue)ij
LL (g̃) + C

(udue)ij
LL (̃�0) + C

(udue)ij
LL (̃�±) (411)

and the same for the rest of the coefficients. After the dressing we have the following expressions:

C
(udue)ij
LL (g̃) = 4

3

1

mg̃

C
(ũd̃ue)ab1j
L �(G)

L(u)
1a �(G)

L(d)
ib I
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m2

g̃

m2
ũa

,
m2
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m2
d̃b

)
, (412)

C
(udue)ij
LL (̃�±) = 1

m�̃+
m

⎡⎣−C
(ũd̃ue)ab1j
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m

m2
ũa
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1ma �(C)
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jmbI

⎛⎝m2
�̃+

m

m2
d̃a

,
m2

�̃+
m

m2
�̃b

⎞⎠⎤⎦ , (413)

C
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m
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m
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⎞⎠
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m
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ẽb
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(udue)ij
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1

mg̃
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, (415)
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C
(udue)ij
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ũa
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ũa
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(ũd̃ue)ab1j
R �(N)

L(u)
1ma �(N)

L(d)
imb I

⎛⎝m2
�̃0

m

m2
ũa
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ũa
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ũa

,
m2

�̃+
m

m2
d̃b

⎞⎠
+ C
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ũa

,

m2
�̃0

m

m2
d̃b

⎞⎠ , (429)
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C
(ddu�)ijk
RL (̃�±) = 0, (431)

C
(ddu�)ijk
RL (̃�0) = 1

m�̃0
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L �(N)
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where the loop function is defined by

I (a, b) ≡ 1

16�2

a b

a − b

(
1

1 − a
log a − 1

1 − b
log b

)
. (433)
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For the dimension-five operators, we have the following expressions (using the following notation for the anti-symmetric
tensor, C[ijk]l ≡ Cijkl − Ckjil).

C
(ũd̃ue)abij
L = C

[ijk]l
L (O ∗̃

u)ak(O
∗̃
d
)bl , (434)

C
(ũũde)abij
L = C

[kj l]m
L (O ∗̃

u)ak(O
∗̃
u)bl(VCKM)im, (435)

C
(ũd̃ue)abij
R = (C

∗klj i
R − C

∗iljk
R )(O ∗̃

u)a,k+3(O
∗̃
d
)b,l+3, (436)

C
(ũũde)abij
R = (C

∗klj i
R − C

∗iljk
R )(O ∗̃

u)a,k+3(O
∗̃
u)b,l+3, (437)

C
(ũd̃d�)abij
L = (Cmnkl

L − Clknm
L )(O ∗̃

u)ak(O
∗̃
d
)bl(VCKM)im(VPMNS)jn, (438)

C
(d̃d̃u�)abij
L = (Clnik

L − Cknil
L )(O ∗̃

d
)ak(O

∗̃
d
)bl(VPMNS)jn, (439)

C
(ũẽud)abij
L = C

[kli]m
L (O ∗̃

u)ak(O
∗̃
e )bl(VCKM)jm, (440)

C
(d̃ẽuu)abij
L = C

[ilj ]k
L (O ∗̃

d
)ak(O

∗̃
e )bl , (441)

C
(ũẽud)abij
R = (C

∗jkli
R − C

∗kj li
R )(O ∗̃

u)a,k+3(O
∗̃
e )b,l+3, (442)

C
(d̃ẽuu)abij
R = (C

∗jkli
R − C

∗iklj
R )(O ∗̃

d
)a,k+3(O

∗̃
e )b,l+3, (443)

C
(d̃ �̃ud)abij
L = (Cklim

L − Cmlik
L )(O ∗̃

d
)ak(O

∗̃
� )bl(VCKM)jm, (444)

C
(ũ�̃dd)abij
L = (Cnlkm

L − Cmlkn
L )(O ∗̃

u)ak(O
∗̃
� )bl(VCKM)im(VCKM)jn, (445)

where

�(G)
R(u)
ia = g3(Oũ)a,i+3, (446)

�(G)
L(u)
ia = g3(Oũ)ai , (447)

�(G)
R(d)
ia = g3(Od̃

)a,i+3, (448)

�(G)
L(d)
ia = g3(Od̃

)ak(VCKM)ki , (449)

�(C)
R(u)
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mui√
2MW sin �

(O
†
+)m2(Od̃

)ai , (450)

�(C)
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†
−)m1(Od̃
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2MW cos �

(O
†
−)m2(Od̃
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†
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}
, (451)

�(C)
R(d)
ima = −g

mdi√
2MW cos �

(O−)2m(Oũ)ak(VCKM)ki , (452)
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{
(O+)1m(Oũ)ak + muk√

2MW sin �
(O+)2m(Oũ)a,k+3

}
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�(C)
L(�)
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{
−(O

†
−)m1(Oẽ)ak + mek√

2MW cos �
(O

†
−)m2(Oẽ)a,k+3

}
(VPMNS)ik , (454)
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�(C)
R(e)
ima = g

mei√
2MW cos �

(O−)2m(O�̃)ai , (455)

�(C)
L(e)
ima = −g(O+)1m(O�̃)ai , (456)

�(N)
R(u)
ima = − g√

2

{
mui

MW sin �
(O

†
N)m4(Oũ)a,i − 4

3
tan �W(O

†
N)m2(Oũ)a,i+3

}
, (457)

�(N)
L(u)
ima = − g√

2

{
mui

MW sin �
(ON)4m(Oũ)a,i+3 +

[
(ON)2m + 1

3
tan �W(ON)1m

]
(Oũ)ai

}
, (458)

�(N)
R(d)
ima = − g√

2

{
mdi

MW cos �
(O

†
N)m3(Od̃

)ak(VCKM)ki + 2

3
tan �W(O

†
N)m1(Od̃

)a,i+3

}
, (459)

�(N)
L(d)
ima = g√

2

{
− mdk

MW cos �
(ON)3m(O

d̃
)a,i+3 +

[
(ON)2m − 1

3
tan �W(ON)1m

]
(O

d̃
)ak(VCKM)ki

}
, (460)

�(N)
L(�)
ima = − g√

2
[(ON)2m − tan �W(ON)1m](O�̃)a,k(VPMNS)ki , (461)

�(N)
R(e)
ima = −g

√
2

{
mei

2MW cos �
(O

†
N)m3(Oẽ)ai + tan �W(O

†
N)m1(Oẽ)a,i+3

}
, (462)

�(N)
L(e)
ima = g

√
2

{
− mei

2MW cos �
(ON)3m(Oẽ)a,i+3 +

[
1

2
(ON)2m + 1

2
tan �W(ON)1m

]
(Oẽ)ai

}
, (463)

where the squark, slepton mass-squared matrix M2
f̃

, chargino and neutralino mass matrices MC and MN are diagonalized

by the unitary matrices Of̃ , O−, O+ and ON , respectively.

Of̃ M2
f̃
O

†
f̃

= (M2
f̃
)diag, (464)

O
†
−MCO+ = (MC)diag, (465)

O∗
NMNO

†
N = (MN)diag. (466)

Appendix D. Sparticle spectrum and renormalization

In this appendix we exhibit the sparticle mass matrices that enter in the analysis of the dressings of the dimension
five operators. The matrices are given at the electroweak scale, and they are the most general ones including CP phases.
We list all relevant renormalization group equations at the one-loop level for the soft parameters in the MSSM. As
discussed already in Sec.(4.2), in MSSM the superpotential is given by

W = ÛCYuQ̂Ĥu + D̂CYdQ̂Ĥd + ÊCYeL̂Ĥd + �ĤuĤd , (467)

where Yu,d,e are matrices in family space. The soft SUSY-breaking Lagrangian contains scalar couplings

Lsoft � ũChuQ̃Hu + d̃ChdQ̃Hd + ẽCheL̃Hd + BHuHd + h.c, (468)

where hu,d,e are 3 × 3 matrices. There are also scalar masses

Lsoft � m2
Hu

H †
uHu + m2

Hd
H

†
d Hd + Q̃†M2

Q̃
Q̃ + L̃†M2

L̃
L̃ (469)

+ũC†m2
ũũ

C + d̃C†m2
d̃
d̃C + ẽC†m2

ẽ ẽ
C . (470)
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Here again M2
Q̃

, M2
L̃

, m2
ũ
, m2

d̃
, and m2

ẽ
are 3 × 3 matrices in family space. The renormalization group equations for

the gauge couplings are:

dga

dt
= g3

a

16�2 B(1)
a + g3

a

(16�2)2

⎛⎝ 3∑
b=1

B2
abg

2
b −

∑
x=u,d,e

Cx
a Tr(Y †

x Yx)

⎞⎠ (471)

with B
(1)
a = (33/5, 1, −3) for U(1)Y , SU(2)L and SU(3)C , respectively.

B
(2)
ab =

⎛⎜⎜⎝
199
25

27
5

88
5

9
5 25 24

11
5 9 14

⎞⎟⎟⎠ , (472)

Cu,d,e
a =

⎛⎜⎝
26
5

14
5

18
5

6 6 2

4 4 0

⎞⎟⎠ . (473)

The one-loop renormalization group equations for the three gaugino mass parameters are [103]:

dMa

dt
= 2g2

a

16�2 B(1)
a Ma , (474)

while for the � term, and the Yukawa couplings one has

d�

dt
= �(1)

�

16�2 , (475)

dYu,d,e

dt
=

�(1)
Yu,d,e

16�2 , (476)

where

�(1)
� = �(Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e ) − 3g2

2 − 3
5g2

1), (477)

�(1)
Yu

= Yu(3 Tr(YuY
†
u ) + 3Y †

u Yu + Y
†
d Yd − 16

3 g2
3 − 3g2

2 − 13
15g2

1), (478)

�(1)
Yd

= Yd(Tr(3YdY
†
d + YeY

†
e ) + 3Y

†
d Yd + Y †

u Yu − 16
3 g2

3 − 3g2
2 − 7

15g2
1), (479)

�(1)
Ye

= Ye(Tr(3YdY
†
d + YeY

†
e ) + 3Y †

e Ye − 3g2
2 − 9

5g2
1). (480)

For the trilinear terms the RG equations are

dhu,d,e

dt
=

�(1)
hu,d,e

16�2 , (481)

where

�(1)
hu

= hu(3 Tr(YuY
†
u ) + 5Y †

u Yu + Y
†
d Yd − 16

3 g2
3 − 3g2

2 − 13
15g2

1)

+ Yu(6 Tr(huY
†
u ) + 4Y †

u hu + 2Y
†
d hd + 32

3 g2
3M3 + 6g2

2M2 + 26
15g2

1M1), (482)

�(1)
hd

= hd(Tr(3YdY
†
d + YeY

†
e ) + 5Y

†
d Yd + Y †

u Yu − 16
3 g2

3 − 3g2
2 − 7

15g2
1)

+ Yd(Tr(6hdY
†
d + 2heY

†
e ) + 4Y

†
d hd + 2Y †

u hu + 32
3 g2

3M3 + 6g2
2M2 + 14

15g2
1M1), (483)
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�(1)
he

= he(Tr(3YdY
†
d + YeY

†
e ) + 5Y †

e Ye − 3g2
2 − 9

5g2
1)

+ Ye(Tr(6hdY
†
d + 2heY

†
e ) + 4Y †

e he + 6g2
2M2 + 18

5 g2
1M1). (484)

The renormalization group equation for the B-term is given by

dB

dt
= �(1)

B

16�2 , (485)

where

�(1)
B = B(Tr(3YuY

†
u + 3YdY

†
d + YeY

†
e ) − 3g2

2 − 3
5g2

1)

+ �(Tr(6huY
†
u + 6hdY

†
d + 2heY

†
e ) + 6g2

2M2 + 6
5g2

1M1) (486)

while the RG equations for the soft masses are

d

dt
m2 = �(1)

m2

16�2 , (487)

where

�(1)

m2
Hu

= 6 Tr((m2
Hu

+ M2
Q̃

)Y †
u Yu + Y †

u m2
ũYu + h†

uhu) − 6g2
2 |M2|2 − 6

5g2
1 |M1|2 + 3

5g2
1S, (488)

�(1)

m2
Hd

= Tr(6(m2
Hd

+ M2
Q̃

)Y
†
d Yd + 6Y

†
d m2

d̃
Yd + 2(m2

Hd
+ M2

L̃
)Y †

e Ye + 2Y †
e m2

ẽYe

+ 6h
†
dhd + 2h†

ehe) − 6g2
2 |M2|2 − 6

5 |M1|2 − 3
5g2

1S, (489)

�(1)

M2
Q̃

= (M2
Q̃

+ 2m2
Hu

)Y †
u Yu + (M2

Q̃
+ 2m2

Hd
)Y

†
d Yd + (Y †

u Yu + Y
†
d Yd)M2

Q̃
+ 2Y †

u m2
ũYu, (490)

�(1)

M2
L̃

= (M2
L̃

+ 2m2
Hd

)Y †
e Ye + 2Y †

e m2
ẽYe + Y †

e YeM
2
L̃

+ 2h†
ehe − 6g2

2 |M2|2 − 6
5g2

1 |M1|2 − 3
5g2

1S, (491)

�(1)

m2
ũ

= (2m2
ũ + 4m2

Hu
)YuY

†
u + 4YuM

2
Q̃

Y †
u + 2YuY

†
u m2

ũ

+ 4huh
†
u − 32

3 g2
3 |M3|2 − 32

15g2
1 |M1|2 − 4

5g2
1S, (492)

�(1)

m2
d̃

= (2m2
d̃

+ 4m2
Hd

)YdY
†
d + 4YdM2

Q̃
Y

†
d + 2YdY

†
d m2

d̃
+ 4hdh

†
d

− 32
3 g2

3 |M3|2 − 8
15g2

1 |M1|2 + 2
5g2

1S, (493)

�(1)

m2
ẽ

= (2m2
ẽ + 4m2

Hd
)YeY

†
e + 4YeM

2
L̃
Y †

e + 2YeY
†
e m2

ẽ + 4heh
†
e − 24

5 g2
1 |M1|2 + 6

5g2
1S, (494)

and where

S = m2
Hu

− m2
Hd

+ Tr(M2
Q̃

− M2
L̃

− 2m2
ũ + m2

d̃
+ m2

ẽ ). (495)

The full two loop RG equations can be founds in Refs. [458,103]. Now, let us list the mass matrices for the sparticles
in the MSSM. The chargino mass matrix was already given in Eq. (84). For the neutralino mass matrix one has

M�̃0 =

⎛⎜⎜⎜⎝
M1 0 −MZsWc� MZsWs�

0 M2 MZcWc� −MZcWs�

−MZsWc� MZcWc� 0 −�

MZsWs� −MZcWs� −� 0

⎞⎟⎟⎟⎠ , (496)
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where �W is the weak angle, sW = sin �W , s� = sin �, c� = cos �, and s� = sin �. The squark (mass)2 matrix for ũ at
the electroweak scale is given by

M2
ũ =

(
M2

Q̃
+ m2

u + M2
Z( 1

2 − Qus
2
W) cos 2� mu(A

∗
u − � cot �)

mu(Au − �∗ cot �) m2
ũ

+ m2
u + M2

ZQus
2
W cos 2�

)
, (497)

where Qu = 2
3 , and the squark (mass)2 matrix for d̃ is given by

M2
d̃

=
(

M2
Q̃

+ m2
d − M2

Z( 1
2 + Qds2

W) cos 2� md(A∗
d − � tan �)

md(Ad − �∗ tan �) m2
d̃

+ m2
d + M2

ZQds2
W cos 2�

)
. (498)

We note that here we are using the relations hu,d,e = Yu,d,eAu,d,e for the trilinear terms. Qd = − 1
3 . Finally, the slepton

mass matrix is given by

M2
l̃

=
(

M2
L̃

+ m2
e − M2

Z( 1
2 − s2

W) cos 2� me(A
∗
e − � tan �)

me(Ae − �∗ tan �) m2
ẽ
+ m2

e − M2
Zs2

W cos 2�

)
. (499)

Further details of supersymmetry phenomenology can be found in Refs. [54–57].

Appendix E. Renormalization of the d = 5 and 6 operators

In this appendix we discuss the renormalization effects for the d = 5 and 6 operators for proton decay. Typically
the d = 5 effective operators are obtained at the GUT scale, once we integrate out the colored triplets. Before we dress
those operators at the electroweak scale to obtain the d =6 effective operators, we have to run them from the GUT scale
to the electroweak scale. After the dressing, we have to compute their coefficients at the proton decay scale 1 GeV, and
then use the Chiral Lagrangian technique to compute the lifetime for the different decay channels.

The superpotential for the d = 5 operators is

W5 = 1

MT

C
ijkl
L εabcε
�ε��Q̂

a

k Q̂

b�
l Q̂i

c�L̂�
j + 1

MT

C
ijkl
R εabcÊ

C
k ÛC

laÛ
C
ibD̂

C
jc, (500)

where a, b, and c are the color indices. The coefficients CL and CR are functions of theYukawa couplings and fermionic
mixings at the GUT scale. Therefore in each model we have to find their expressions and values at the GUT scale and
carry out the RG evolution from the GUT scale down to the SUSY breaking scale [145].

(4�)2�
d

d�
C

ijkl
L =

(
−8g2

3 − 6g2
2 − 2

3
g2

1

)
C

ijkl
L + C

mjkl
L (YDY

†
D + YUY

†
U)im + Cimkl

L (Y
†
LYL)

j
m

+ C
ijml
L (YDY

†
D + YUY

†
U)km + C

ijkm
L (YDY

†
D + YUY

†
U)lm (501)

and

(4�)2�
d

d�
C

ijkl
R = (−8g2

3 − 4g2
1)C

ijkl
R + C

mjkl
R (2Y

†
UYU)im + Cimkl

R (2Y
†
DYD)

j
m + C

ijml
R (2YLY

†
L)km

+ C
ijkm
R (2Y

†
UYU)lm, (502)

where � is the renormalization scale, Yi , and gi are the Yukawa matrices and gauge couplings.
Once we know CL and CR at the electroweak scale, we can dress the d = 5 operators. In order to estimate the value

of the effective operators at the proton decay scale, we have to consider the long-range renormalization factor due to
the QCD interaction between the SUSY scale (mSUSY ≈ mZ) and the proton decay scale of 1 GeV. This factor is given
by [446]

AL =
(


s(�had)


s(mb)

)6/25

×
(


s(mb)


s(mZ)

)6/23

≈ 1.4. (503)
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Long range effects also receive important two loop QCD corrections which have been computed in [459]. The reader is
referred to this work for further details. In Section 3 we discussed the most generic predictions for nucleon decay from
the gauge d = 6 operators. In this case proton decay is mediated by superheavy gauge bosons with mass MV . Those
effective operators are obtained at the GUT scale once the gauge bosons are integrated out. Since we have to compute
the lifetime of the proton at 1 GeV, we have to carry out the RG evolution of these operators from the GUT scale to the
electroweak scale and from the MZ scale to 1 GeV. In this case the effective d = 6 operator will be multiply by a factor
AR =ASD

R AL, where the coefficient ASD
R is the short-distance renormalization factor which at one-loop (neglecting the

flavour dependence of those operators) is given by [446]

ASD
R =

(

3(mZ)


GUT

)4/3b3

×
(


2(mZ)


GUT

)3/2b2

, (504)

where b3 =9−2ng and b2 =5−2ng with ng is the number of families. ASD
R ≈ 2.0 if SUSY is the low energy effective

theory below the GUT scale.

Appendix F. Effective Lagrangian for nucleon decay

As discussed already in supersymmetric theories baryon and lepton number violating dimension five operators
must be dressed by gluino, chargino and neutralino exchanges to produce dimension six operators. These operators are
typically of two types: �S = 0 and 1. The baryon and lepton number violating �S = 0 operators are:

O
�i

RL = εabc(dRa)
CuRb(dLc)

C�iL,

O
�i

LL = εabc(dLa)
CuLb(dLc)

C�iL,

O
ei

RL = εabc(dRa)
CuRb(uLc)

CeiL,

O
ei

LR = εabc(dLa)
CuLb(uRc)

CeiR ,

O
ei

LL = εabc(dLa)
CuLb(uLc)

CeiL,

O
ei

RR = εabc(dRa)
CuRb(uRc)

CeiR . (505)

In the above a, b, c = 1, 2, 3 are the color indices, and i is the generation index. For the |�S| = 1 the baryon and lepton
number violating dimension six operators are:

Õ
�i

RL1 = εabc(sRa)
CuRb(dLc)

C�iL,

Õ
�i

LL1 = εabc(sLa)
CuLb(dLc)

C�iL,

Õ
ei

RL = εabc(sRa)
CuRb(uLc)

CeiL,

Õ
ei

LR = εabc(sLa)
CuLb(uRc)

CeiR ,

Õ
ei

LL = εabc(sLa)
CuLb(uLc)

CeiL,

Õ
ei

RR = εabc(sRa)
CuRb(uRc)

CeiR ,

Õ
�i

RL2 = εabc(dRa)
CuRb(sLc)

C�iL,

Õ
�i

LL2 = εabc(dLa)
CuLb(sLc)

C�iL. (506)

Eqs. (505) and (506) contain all the possible type of dimension six operators, i.e., of chirality types RRLL, LLLL,
LLRR, and RRRR.
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In obtaining the above set of operators one uses a Fierz reordering. This is best accomplished by defining a set of 16
matrices as follows (see, e.g., [460]):

�A = {1, �0, i�i , i�0�5, �
i�5, �5, i�

0i , �ij }: i, j = 1 − 3, (507)

which are normalized so that

tr(�A�B) = 4�AB . (508)

With the above definitions and normalizations, the Fierz rearrangement formula takes on the form

(ū1�
Au2)(ū3�

Bu4) =
∑
C,D

FAB
CD(ū1�

Cu4)(ū3�
Du2), (509)

where uj may be Dirac or Majorana spinors and

FAB
CD = −(+) 1

16 tr(�C�A�D�B). (510)

In the above the +ve (−ve) sign is for commuting (anticommuting) u spinors. A −ve sign should be chosen when
dealing with quantum Majorana and Dirac fields in the Lagrangian.

The general Lagrangian with baryon and lepton number violating dimension six operators will then have the form

LBL = C
�i

RLO
�i

RL + C
�i

LLO
�i

LL + C
ei

RLO
ei

RL + C
ei

LRO
ei

LR + C
ei

LLO
ei

LL + C
ei

RRO
ei

RR + C̃
�i

RL1Õ
�i

RL1

+ C̃
�i

LL1Õ
�i

LL1 + C̃
ei

RLÕ
ei

RL + C̃
ei

LRÕ
ei

LR + C̃
ei

LLÕ
ei

LL + C̃
ei

RRÕ
ei

RR + C̃
�i

RL2Õ
�i

RL2 + C̃
�i

LL2Õ
�i

LL2. (511)

We note that in Eq. (511) the neutrinos �i are in mass diagonal state and hence are not related by a simple SU(2)L
symmetry to the corresponding operators with eiL. If we assume that the �i are flavor diagonal, then some of the co-
efficients C′s and C̃′s can be related. Thus in this case C

�i

RL =−C
ei

RL, C�i

LL =−C
ei

LL, and C̃
�i

RL1 =−C̃
ei

RL, C̃�i

LL1 =−C̃
ei

LL.
These reduce the number of independent couplings from six to four for the �S = 0 case and from eight to six for the
|�S| = 1. The co-efficients Ci

k, C̃
i
k are determined by the details of the underlying GUT or string theory. In trying to

extract the physical implications of this interaction one uses the technique of effective or phenomenological Lagrangians
[461]. Specifically what one wishes to do is convert the above interaction which contains quarks and leptons into an
interactioninvolving mesons, baryons and leptonic fields. To this end it is useful to classify the operators according to
their transformation properties under SU(3)L × SU(3)R . While the analysis below follows closely the work of Refs.
[462–464] it is more general. First, we have not imposed any SU(2) symmetry on the operators in Eqs. (505) and (506)
since one is below the electro-weak symmetry breaking scale where the residual symmetry is only SU(3)C × U(1)em.
Secondly, in the analysis of Chadha and Daniel [463,464] only the chirality LLLL type operators were considered in
computing the decays. Specifically the LLRR and RRLL type operators were not fully included in the computation of
proton decay rates. This was subsequently corrected in Ref. [142]. In the following we will give a full analysis including
all four types of operators, i.e., LLLL, RRLL, LLRR and RRRR (For a recent update see Ref. [465]). We give now
the details of the effective Lagrangian approach. Noting that uLa, dLa transform like 3L, uRa, dRa transform like 3R ,
3L × 3L = 3∗

L + 6L, 3L × 3∗
L = 8L + 1L etc, one finds the transformations of the operators listed in Table 9.

Table 9
Properties of the dimension six operators under SU(3)L × SU(3)R

Dim 6 operator Chirality type Transformation

O
�i

RL, O
ei

RL, Õ
�i

RL1, Õ
ei

RL, Õ
�i

RL2 RRLL (3, 3∗)
O

ei

LR, Õ
ei

LR LLRR (3∗, 3)

O
�i

LL, O
ei

LL, Õ
�i

LL1, Õ
ei

LL, Õ
ei

LL2 LLLL (8, 1)

O
ei

RR, Õ
ei

RR RRRR (1, 8)
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To obtain the effective Lagrangian for the operators we want to simulate the transformations of Table 9 using the
baryon and meson fields. For the baryons we introduce the matrix

B =
8∑

a=1

�aBa =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�0

√
2

+ �√
6

�+ p

�− − �0

√
2

+ �√
6

n

�− �0 −
√

2

3
�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (512)

which transforms under SU(3)L × SU(3)R as follows:

B ′ = UBU† (513)

while the transformations of the pseudo-Goldstone bosons are described as follows:

�′ = L�U† = U�R†, � = eiM/f , (514)

where

M =
8∑

a=1

�a�a =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�0

√
2

+ �√
6

�+ K+

�− − �0

√
2

+ �√
6

K0

K− K̄0 −
√

2

3
�

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (515)

Then under SU(3)L × SU(3)R transformations we have

�B� → L�B�R†, �†B�† → R�†B�†L†,

�B�† → L�B�†L†, �†B� → R�†B�R†. (516)

The above transformations are of the type (3, 3∗), (3∗, 3), (8, 1), and (1, 8), respectively. However, we must use
projection operators to precisely get the operators of type in Eqs. (505) and (506). We can now write the O operators
as follows [462,463]:

O
�i

RL = 
(�iL)CTr(P ′�BL�),

O
�i

LL = �(�iL)CTr(P ′�BL�†),

O
ei

RL = 
(eiL)CTr(P�BL�),

O
ei

LR = 
(eiR)CTr(P�†BR�†),

O
ei

LL = �(eiL)CTr(P�BL�†),

O
ei

RR = �(eiR)CTr(P�†BR�), (517)

where

P =
⎛⎝0 0 0

0 0 0

1 0 0

⎞⎠ , P ′ =
⎛⎝0 0 0

0 0 0

0 1 0

⎞⎠ , (518)
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and where 
 and � are matrix elements of the three quark states between nucleon and the vacuum state (see, e.g.,
Ref. [465])

〈0|εabcε
�u

aRd

�
bRu

�
L|p〉 = 
u

�
L,

〈0|εabcε
�u

aLd

�
bLu

�
L|p〉 = �u

�
L, (519)


 and � are known to satisfy the constraint [466,467] |
| = |�|.
Recent lattice QCD calculation of the proton decay matrix element by the CP-PACS and the JLQCD Collaborations

gives [468]

|
| = 0.0090(09)

( +5

−19

)
GeV3,

|� = 0.0096(09)

( +6

−20

)
GeV3, (520)

where 
 and � have a relatively opposite sign. In the above the first error is statistical and the second error system-
atic. The lattice analysis uses the quenched QCD calculation in the continuum limit where the continuum operators
are defined in the naive dimensional regularization (NDR) with MS subtraction scheme. The evaluation of 
 and �
given above is at the scale Q = 2 GeV. The result of Eq. (520) is smaller the previous evaluation by the JLQCD
Collaboration which gave [465] |
| = 0.0151(1) GeV3, |� = 0.014(1)GeV3 where again the analysis is done us-
ing NDR and the evaluations are scale Q = 2.30(4) GeV. Further, one may compare the result of Eq. (520) with
the preliminary results of the RBC Collaboration at the scale Q = 1.23(5) GeV which gives |
| = 0.0061(1) GeV3,
|� = 0.007(1) GeV3 and are about 30% smaller than those of Eq. (520). The above difference cannot be accounted
for by the renormalization group effects in going from the scale Q = 1.23 GeV to the scale Q = 2 GeV which gives
about 3.5% effect [468]. It should be noted that the analysis of Eq. (520) is about a factor of 3 larger than the early
QCD calculations of these matrix [469]. Returning to the analysis of Ref. [468] the relative sign between 
 and �
is important as it can affect very significantly the proton decay rates. Similarly we can write the Õ operators as
follows:

Õ
�i

RL1 = 
(�iL)CTr(P̃ ′�BL�),

Õ
�i

LL1 = �(�iL)CTr(P̃ ′�BL�†),

Õ
ei

RL = 
(eiL)CTr(P̃�BL�),

Õ
ei

LR = 
(eiR)CTr(P̃�†BR�†),

Õ
ei

LL = �(eiL)CTr(P̃�BL�†),

Õ
ei

RR = �(eiR)CTr(P̃�†BR�),

Õ
�i

RL2 = 
(�iL)CTr(P̃ ′′�BL�),

Õ
�i

LL2 = �(�iL)CTr(P̃ ′′�BL�†), (521)

where

P̃ =
⎛⎝ 0 0 0

−1 0 0

0 0 0

⎞⎠ , P̃ ′ =
⎛⎝0 0 0

0 −1 0

0 0 0

⎞⎠ , P̃ ′′ =
⎛⎝0 0 0

0 0 0

0 0 1

⎞⎠ . (522)
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In extracting the baryon and lepton number violating parts from Eq. (511) we must compute both the quadratic and a
cubic term. The quadratic part is easily extracted. It is

L(2)

BL = (
C
�i

RL + �C
�i

LL)(�iL)CnL + (
C
ei

RL + �C
ei

LL)(eiL)CpL

+ (
C
ei

LR + �C
ei

RR)(eiR)CpR + (
C̃
�i

RL1 + �C̃
�i

LL1)(�iL)C

(
�0

L√
2

− �0
L√
6

)

− (
C̃
ei

RL + �C̃
ei

LL)(eiL)C�+
L

− (
C̃
ei

LR + �C̃
ei

RR)(eiR)C�+
R − (
C̃

�i

RL2 + �C̃
�i

LL2)

√
2

3
(�iL)C�0

L, (523)

while the baryon and lepton number violating cubic interaction is

L(3)

BL = i

f

{

C

�i

RL

(
(�iL)CpL�− − (�iL)CnL

(
�0

√
2

+ �√
6

))
+ �C

�i

LL

(
(�iL)CpL�− + (�iL)CnL

(
− �0

√
2

+ 3√
6
�

))
+ 
C

ei

RL

(
(eiL)CnL�+ + (eiL)CpL

(
�0

√
2

− 1√
6
�

))
− 
C

ei

LR

(
(eiR)CnR�+ + (eiR)CpR

(
�0

√
2

− 1√
6
�

))
+ �C

ei

LL

(
(eiL)CnL�+ + (eiL)CpL

(
�0

√
2

+ 3√
6
�

))
− �C

ei

RR

(
(eiR)CnR�+ + (eiR)CpR

(
�0

√
2

+ 3√
6
�

))
+ (−
C̃

�i

RL1 + �C̃
�i

LL1)(�iL)CnLK̄0 + (−
C̃
ei

RL

+ �C̃
ei

LL)(eiL)CpLK̄0 + (
C̃
ei

LR − �C̃
ei

RR)(eiR)CpRK̄0

+ (
C̃
�i

RL2 + �C̃
�i

LL2)((�iL)CnLK̄0 + (�iL)CpLK−)
}

+ h.c. (524)

In addition there are baryon number conserving interactions. The relevant terms are [463]:

LBC = 1

2i
(D − F)Tr[B̄���5B{����† − ���†�}] − 1

2i
(D + F)Tr[B̄���5{����† − �†���}B]

+ b1Tr[B̄�5(�
†m�† − �m�)B] + b2Tr[B̄�5B(�†m�† − �m�)], (525)

where m is quark mass matrix such that m = diag(mu, md, ms). In the above the terms with co-efficients (D ± F ) are
invariant under SU(3)L × SU(3)R while the terms with co-efficients b1, b2 transform like (3, 3∗) + (3∗, 3) and break
SU(3)L × SU(3)R down to SU(3)V . The matrix B̄ is defined so that

B̄ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

�̄0

√
2

+ �̄√
6

�̄− −�̄−

�̄+ − �̄0

√
2

+ �̄√
6

�̄0

p̄ n̄ −
√

2

3
�̄

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(526)
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The relevant part of LBC is

LBC =
(

D − F√
2f

�̄0���5p − D + 3F√
6f

�̄0���5p + D − F√
2f

�̄−���5n

)
��K−

+
(

D − F

f
�̄+���5p − D − F√

2f
�̄0���5n − D + 3F√

6f
�̄0���5n

)
��K̄0

+ i

f
(mu + ms)

(√
2

3
(2b1 − b2)�̄

0�5p − √
2b2�̄

0�5p + 2b2�̄
−�5n

)
K−

+ i

f
(md + ms)

(
−2b2�̄

+�5p +
√

2

3
(2b1 − b2)�̄

0�5n + √
2b2�̄

0�5n

)
K̄0 + h.c. (527)

The contribution of the mu, ms terms is typically small and as is conventional we neglect them from here on. For
simplicity we introduce the notation

C
′�i ,ei

RL = 
C
�i ,ei

RL , C
′�i ,ei

LL = �C
�i ,ei

LL , C
′ei

LR = 
C
ei

LR, C
′ei

RR = �C
ei

RR ,

C̃
′�i

RL1 = 
C
�i

RL1, C̃
′�i

LL1 = �C
�i

LL1, C̃
′ei

RL = 
C
ei

R , C̃
′ei

LR = 
C̃
ei

LR ,

C̃
′ei

LL = �C
ei

LL, C̃
′ei

RR = �C̃
ei

RR, C̃
′�i

RL2 = 
C
�i

RL2, C̃
′�i

LL2 = �C
�i

LL2. (528)

We discuss now the decay widths for the various decay modes.
(i) p → �̄iK

+ decay

�(p → �̄iK
+) = (32�f 2m3

N)−1(m2
N − m2

K)2|(C̃′�i

LL2 + C̃
′�i

RL2) + mN

2m�0
(C̃

′�i

LL1 + C̃
′�i

RL1)(D − F)

+ mN

6m�
{C̃′�i

LL1 + C̃
′�i

RL1 + 2(C̃
′�i

LL2 + C̃
′�i

RL2)}(D + 3F)|2. (529)

In the above and in the following the C′s and C̃′s are as defined in Eq. (528).
(ii) n → �̄iK

0 decay

�(n → �̄iK
0) = (32�f 2m3

N)−1(m2
N − m2

K)2
∣∣∣∣(−C̃

′�i

RL1 + C̃
′�i

LL1 + C̃
′�i

RL2 + C̃
′�i

LL2)

− 1

2

mN

m�0
(C̃

′�i

RL1 + C̃
′�i

LL1)(D − F) + mN

6m�
(C̃

′�i

RL1 + C̃
′�i

LL1

+ 2C̃
′�i

RL2 + 2C̃
′�i

LL2)(D + 3F)

∣∣∣∣2. (530)

(iii) p → l+i K0 decay

�(p → l+i K0) = (32�f 2m3
N)−1(m2

N − m2
K)2

{
1

2

[
− C̃

′ei

RL + C̃
′ei

LL + C̃
′ei

LR

− C̃
′ei

RR − mN

m�
(C̃

′ei

RL + C̃
′ei

LL − C̃
′ei

LR − C̃
′ei

RR)(D − F)

]2

+ 1

2

[
− C̃

′ei

RL + C̃
′ei

LL − C̃
′ei

LR + C̃
′ei

RR

− mN

m�
(C̃

′ei

RL + C̃
′ei

LL + C̃
′ei

LR + C̃
′ei

RR)(D − F)

]2
}

. (531)
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(iv) p → �̄i�+ decay

�(p → �̄i�
+) = (32�f 2m3

N)−1(m2
p − m2

�+)2|C′�i

RL + C
′�i

LL|2(1 + D + F)2. (532)

(v) n → �̄i�0 decay

�(n → �̄i�
0) = (32�f 2m3

N)−1(m2
n − m2

�0)
2 1

2 |C′�i

RL + C
′�i

LL|2(1 + D + F)2. (533)

Neglecting the mass differences of p and n and of �+ and �0 we get

�(n → �̄i�
0) � 0.5�(p → �̄i�

+). (534)

(vi) n → �̄i�0 decay

�(n → �̄i�
0) = (32�f 2m3

N)−1(m2
n − m2

�0)
2 3

2

∣∣∣∣C′�i

RL

(
−1

3
− D

3
+ F

)
+ C

′�i

LL

(
1 − D

3
+ F

)∣∣∣∣2. (535)

(vii) p → e+
i �0 decay

�(p → e+
i �0) = (32�f 2m3

N)−1(m2
n − m2

�0)
2 1

2 (|C′ei

RL + C
′ei

LL|2 + |C′ei

LR + C
′ei

RR|2)(1 + D + F)2. (536)

(viii) p → e+
i �0 decay

�(p → e+
i �0) = (32�f 2m3

N)−1(m2
n − m2

�0)
2 3

2

{[
C

′ei

LL

(
1 − D

3
+ F

)
+ C

′ei

RL

(
−1

3
− D

3
+ F

)]2

+
[
C

′ei

RR

(
1 − D

3
+ F

)
+ C

′ei

LR

(
−1

3
− D

3
+ F

)]2
}

. (537)

(ix) n → e+
i �− decay

�(n → e+
i �−) = (32�f 2m3

N)−1(m2
n − m2

�−)2 3
2 (|C′ei

RL + C
′ei

LL|2 + |C′ei

LR + C
′ei

RR|2)(1 + D + F)2. (538)

Currently the effective Lagrangian approach is the most reliable approach to the computation of proton decay amplitudes.
Numerically f =139 MeV, while F and D can be obtained from a recent analysis of hyperon decays which gives [470]

F + D = 1.2670 ± 0.0030, F − D = −0.341 ± 0.016. (539)

As we already discussed, in order to compute the lifetime of the proton we have to take into account the renormalization
effects from the GUT scale to 1 GeV. In the previous appendix we already discussed those effects for the d = 5 and 6
operators.

The chiral Lagrangian approach is currently the best available technique for the analysis of proton decay lifetime
starting with the fundamental Lagrangian in terms of quark fields. The approach [461] had considerable success in the
past but it has certain limitations. The technique works best in the so called soft pion approximation. In the present
context, the mesons in proton decay may have energies as large as 500 MeV so a certain extrapolation is necessary.
However, the technique still remains the state of the art in the computation of proton decay life times.

Appendix G. Details of the analysis on testing GUTs

In Section 5.4 we discussed the discussed the tests on SU(5) models with symmetric up Yukawa couplings. In this
appendix we expand on those tests to include other groups. These are discussed below.

(i) SO(10) models with symmetric Yukawa couplings
Next, we investigate the predictions in realistic grand unified theories based on the gauge group SO(10) [10] with

symmetric Yukawa couplings. This is the case of SO(10) theories with two Higgses 10H and 126H . In these theories
with symmetricYukawa couplings we get the following relations for the mixing matrices, UC =UKu, DC =DKd and
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EC = EKe, where Kd and Ke are diagonal matrices containing three phases. In those cases V1 = K∗
u , V2 = K∗

e V
†
DE,

V3 = K∗
dVDE and V4 = K∗

d . Using these relations the coefficients in Eqs. (20)–(23) are given by [47]

c(eC

 , d�)sym = (K∗

u)11(K∗
e )

[��i + V

1�
CKMK

��
2 (K∗

2 )ii(V
†
CKM)i1](V ∗

DE)i
, (540)

c(e
, d
C
� )sym = (K∗

u)11(K∗
d )��[k2

1��i + k2
2(K∗

2 )��(V
†
CKM)�1V 1i

CKMKii
2 ](V i


DE), (541)

c(�l , d
, d
C
� )sym = (K∗

u)11K11
1 [k2

1�
i��j + k2
2�
��ij (K∗

d )

Kii
d ](VCKMK2)

1i (K∗
dVDEVEN)jl , (542)

c(�C
l , d
, d

C
� )sym = (K∗

d )��(K∗
1 )11[(K∗

2 )��(V
†
CKM)�1�
i + �
�(K∗

2 )ii(V
†
CKM)i1](U†

ENK∗
e V

†
DE)li , (543)

with 
=� 
= 2. Notice all overall phases in the different coefficients. In order to compute the decay rate into antineutrinos
we need the following expression:

3∑
l=1

c(�l , d
, d�)∗symc(�l , d�, d�)sym = [k2
1�
i��j + k2

2�
��ijK


d (K∗

d )ii]

× [k2
1��i′��j + k2

2����i′j (K∗
d )��Ki′i′

d ](V ∗
CKMK∗

2 )1i (VCKMK2)
1i′ . (544)

Using the above expression we find that it is possible to determine the factor k1 = gGUT/
√

2M(X,Y ) so that [47]

k1 = Q
1/4
1

[|A1|2|V 11
CKM|2 + |A2|2|V 12

CKM|2]1/4 , (545)

where

Q1 = 8�m3
pf 2

� �(p → K+�̄)

(m2
p − m2

K)2A2
L|
|2 , (546)

A1 = 2mp

3mB

D, (547)

A2 = 1 + mp

3mB

(D + 3F). (548)

Here one finds that the amplitude for the decay p → K+�̄ is independent of all unknown mixing and phases, and only
depends on the factor k1. Thus it appears possible to test any grand unified theory with symmetric Yukawa matrices
through this decay mode. Once k1 is known k2 can be gotten by solving the following equation [47]:

k4
2 + 2k2

2k2
1 |V 11

CKM|2 + k4
1 |V 11

CKM|2 − 8�f 2
� �(p → �+�̄)

mpA2
L|
|2(1 + D + F)2 = 0, (549)

which gives

k2 = k1|V 11
CKM|{−1 +√

Q2}1/2, (550)

where

Q2 = 1 + 8�f 2
� �(p → �+�̄)

k4
1 |V 11

CKM|4mpA2
L|
|2(1 + D + F)2 − |V 11

CKM|−2. (551)

Using the condition Q2 > 1, we get the following relation:

�(p → K+�̄)

�(p → �+�̄)
>

m4
p|V 11

CKM|2(1 + D + F)2

(m2
p − m2

K)2[|A1|2|V 11
CKM|2 + |A2|2|V 12

CKM|2] . (552)
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The above is a clean prediction of a GUT model with symmetric Yukawa couplings. The relations among the nucleon
decays read as follows:

�(n → K0�̄)

�(p → K+�̄)
= m3

n(m
2
p − m2

K)2[|A1|2|V 11
CKM|2 + |A2|2|V 12

CKM|2]
m3

p(m2
n − m2

K)2[|A3|2|V 11
CKM|2 + |A2|2|V 12

CKM|2] , (553)

�(n → �0�̄)

�(p → �+�̄)
= 2mp

mn

, (554)

�(n → �0�̄)

�(p → �+�̄)
= 6mpm3

n(1 + D + F)2

(m2
n − m2

�)
2(1 − D − 3F)2 , (555)

with

A3 = 1 + mn

3mB

(D − 3F). (556)

Thus using the expressions for k1 and k2 (Eqs. (545) and (550)), and the relation among the different decay rates of
the neutron and the proton into an antineutrino (Eqs. (552)–(555)), it is possible to make a clear test of a grand unified
theory with symmetric Yukawa couplings.

Next, we look at the predictions for the proton decay into charged antileptons. To write the decay rate for these
modes we need the following expression:

2∑

=1

c(eC

 , d�)∗symc(eC


 , d�)sym = [��i + V
1�
CKMK

��
2 (K∗

2 )ii(V
†
CKM)i1][��j + V

1�
CKMK

��
2 (K∗

2 )jj (V
†
CKM)j1]

×
2∑

i=1

V i

DE(V

j

DE)∗. (557)

Thus the decay of the channels with charged antileptons always depend on the matrices K2 and VDE. In the theories
with the 10H and/or 126H Higgses there is a specific expression for the matrix VDE:

4V T
UDK∗

uY
diag
U VUD − (3 tan 
10 + tan 
126)K

∗
d Y

diag
D = V ∗

DEK∗
e Y

diag
E V

†
DE(tan 
10 − tan 
126), (558)

where tan 
10 = vU
10/v

D
10, and tan 
126 = vU

126/v
D
126. Here we see explicitly the relation among the different factors

entering in the proton decay predictions. Thus in this case it is very difficult to get clean predictions from those
channels. However, these relations are still very useful as they allow on to distinguish among different models for the
fermion masses.

(ii) Renormalizable flipped SU(5) models
As is well known the electric charge is a generator of conventional SU(5). However, it is possible to embed the electric

charge in such a manner that it is a linear combination of the generators operating in both SU(5) and an extra U(1),
and still reproduce the SM charge assignment. This is exactly what is done in flipped SU(5) [43–46]. The matter now
unifies in a different manner, which can be obtained from the SU(5) assignment by a flip: dC ↔ uC , eC ↔ �C , u ↔ d

and � ↔ e. In the case of flipped SU(5) the gauge bosons responsible for proton decay are: (X′, Y ′) = (3, 2, −1/3).
The electric charge of Y ′ is −2/3, while X′ has the same charge as Y. Since the gauge sector and the matter unification
differ from SU(5) case, the proton decay predictions are also different [44].

Flipped SU(5) is well motivated from string theory scenarios, since one does not need large representations to
achieve the GUT symmetry breaking [46]. Another nice feature of flipped SU(5) is that the dangerous d = 5 operators
are suppressed due to an extremely economical missing partner mechanism. In renormalizable flipped SU(5) one has
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YD = YT
D , so DC = DKd . In this case the coefficients entering the proton decay predictions are [471]:

3∑
l=1

c(�l , d
, d
C
� )∗SU(5)′c(�l , d�, d

C
� )SU(5)′ = k4

2K
��
d ��
(K∗

d )�����, (559)

|c(e
, d
C
� )|2 = k4

2 |V 1�
CKM|2|(V1VUDV

†
4 V3)

1
|2 = k4
2 |V 1�

CKM|2|(U†
CE)1
|2. (560)

Using these equations one gets the following relations [471]:

�(p → �+�̄) = k4
2C2, (561)

�(p → �0e+

 ) = 1

2
�(p → �+�̄)|V 11

CKM|2|(U†
CE)1
|2, (562)

�(p → K0e+

 )

�(p → �0e+

 )

= 2
C3

C2

|V 12
CKM|2

|V 11
CKM|2 , (563)

where

C3 = (m2
p − m2

K)2

8�f 2
� m3

p

A2
L|
|2

[
1 + mp

mB

(D − F)

]2

. (564)

We note that in this case, �(p → K+�̄) = 0, and �(n → K0�̄) = 0. In Eq. (563) we assume (U
†
CE)1
 
= 0. Thus the

renormalizable flipped SU(5) can be verified by looking at the channel p → �+�̄, and using the correlation stemming
from Eq. (563). This is a nontrivial result and can help us to test this scenario, if proton decay is found in the next
generation of experiments. If this channel is measured, we can make the predictions for decays into charged leptons
using Eq. (562) for a given model for fermion masses.

Thus it is possible to differentiate among different fermion mass models. We note the difference between Eqs. (174)
and (561); there appears a suppression factor for the channel p → �+� in the case of SU(5). Since the nucleon decays
into K mesons are absent in the case of flipped SU(5), this presents an independent way to distinguish this model from
SU(5), where these decay modes are always present. The discussion of this section demonstrates that an analysis of
proton decay modes and specifically of proton decay into antineutrinos allows one to differentiate among different
grand unification scenarios.

Appendix H. Detailed analysis of upper bounds

In this appendix we give details of the analysis presented in Section 5.6.As pointed out in that section the minimization
of the total decay rate represents a formidable task since there are in principle 42 unknown parameters in Eqs. (20)–(23).
One possibility is to look for solutions where the “SU(5) contributions” and the “flipped SU(5) contributions” are
suppressed (minimized) independently [221]. Since one expects that in general the associated gauge bosons and
couplings have different values this is also the most natural way to look for the minimal decay rate. Moreover, the
bounds obtained is such a manner will be independent of the underlying gauge symmetry. As discussed in the previous
sections the “flipped SU(5) contributions” are set to zero by the following two conditions:

V
�

4 = (D

†
CD)�
 = 0, 
 = 1 or � = 1, (Condition I), (U

†
CE)1
 = 0. (Condition II).

Therefore, in the presence of all gauge d = 6 contributions, in the Majorana neutrino case, there only remain the
contributions appearing in SU(5) models. But, those can be significantly suppressed. There are two major scenarios to
be considered that differ the way proton decays [221]:

(A) There are no decays into the meson-charged antilepton pairs
All contributions to the decay of the proton into charged antileptons and a meson can be set to zero. Namely, after

we implement Conditions I and II, we can set to zero Eq. (21) by choosing

V 11
1 = (U

†
CU)11 = 0 (Condition III) (565)
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(This condition cannot be implemented in the case of symmetric up-quark Yukawa couplings.) On the other hand, Eq.
(20) can be set to zero only if we impose

(V2V
†
UD)
1 = (E

†
CU)
1 = 0 (Condition IV). (566)

Thus with conditions I–IV there are only decays into antineutrinos and, in the Majorana neutrino case, the only non-zero
coefficients are:

c(�l , d
, d
C
� ) = k2

1 (V1VUD)1
(V3VEN)�l . (567)

So, indeed, there exists a large class of models for fermion masses where there are no decays into a meson and charged
antileptons. Up to this point all conditions we impose are consistent with the unitarity constraint and experimental data
on fermion mixing. (In the SU(5) case we have to impose Conditions III and IV only.) Let us see the decay channels
with antineutrinos. From Eq. (567) we see that it is not possible to set to zero all decays since the factor (V1VUD)1


can be set to zero for only one value of 
 in order to satisfy the unitarity constraint. Therefore we have to compare the
following two cases:

1. Case (a) (V1VUD)11 = 0 (Condition V).
In this case:

�a(p → �+�i ) = 0. (568)

Using chiral Langragian technique yields

�a(p → K+�̄) = C(p, K)

[
1 + mp

3mB

(D + 3F)

]2 s2
13

s2
12 + c2

12s
2
13

, (569)

where

C(a, b) = (m2
a − m2

b)
2

8�m3
af

2
�

A2
L|
|2k4

1. (570)

2. Case (b) (V1VUD)12 = 0 (Condition VI).
All the decay channels into antineutrinos are non-zero in this case. The associated decay rates are:

�b(p → �+�̄) = C(p, �)[1 + D + F ]2 s2
13

c2
12 + s2

12s
2
13

, (571)

�b(p → K+�̄) = C(p, K)

[
2mp

3mB

D

]2 s2
13

c2
12 + s2

12s
2
13

. (572)

We note that these results are independent of all phases including those of VCKM and Vl and any mixing angles beyond
the CKM ones (This is rather unexpected since there are in principle 42 different angles and phases that could a priori
enter the analysis.) Also, in the limit V 13

CMK → 0 all decay rates vanish as required in the case of three generations of
matter fields. Here they have used the so-called “standard” parametrization of VCKM that utilizes angles �12, �23, �13,
and a phase �13 (For example, in that parametrization V 13

CKM = e−i�13s13.), where cij = cos �ij and sij = sin �ij . Hence,
all one needs to know are angles �12 and �13. Clearly of the two cases studied, it is Case (b) that gives the lowest total
decay rate in the Majorana neutrino case.

(B) There are no decays into the meson-antineutrino pair in the Majorana neutrino case
We now show that it is also possible to set to zero all nucleon decay channels into a meson and antineutrinos. After

Conditions I and II, it is possible to impose (V1VUD)1
 = 0 (Condition VII) instead of V 11
1 = 0. (Again, these two

equalities are exclusive in the case V 13
CKM 
= 0.) Therefore, in the Majorana neutrino case, there are no decays into

antineutrinos (see Eq. (22)). In this case the property that the gauge contributions vanish as |V 13
CKM| → 0 is obvious

since |V 11
1 | = |V 13

CKM|. We have to further investigate all possible values of V
�

2 and V

�

3 . Now, it is possible to choose
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V
�

2 = 0 and V

�

3 = 0, except for the case 
 = � = 2 (Condition VIII). In that case there are only decays into a strange

mesons and muons. Let us call this Case (c). To understand which case gives us an upper bound on the total proton
decay lifetime in the Majorana neutrino case, we compare the predictions coming from the Case (b) and Case (c). The
ratio between the relevant decay rates is given by [221]:

�c(p → K0�+)

�b(p → �+�̄)
= 2(c2

12 + s2
12s

2
13)

(m2
p − m2

K)2

(m2
p − m2

�)2

[1 + (mp/mB)(D − F)]2

[1 + D + F ]2 = 0.33. (573)

Thus, the upper bound on the proton lifetime in the case of Majorana neutrinos indeed corresponds to the total
lifetime of Case (c). One finds [221]

�p �6.0+0.5
−0.3 × 1039 (MX/1016 GeV)4


2
GUT

(0.003 GeV3/
)2 years, (574)

where the gauge boson mass is given in units of 1016 GeV. It explicitly indicates the dependence of the results on the
nucleon decay matrix element. These bounds are applicable to any GUT regardless whether the scenario is supersym-
metric or not. If the theory is based on SU(5) the above bounds are obtained by imposing Conditions VII and VIII. If
the theory contains both SU(5) and flipped SU(5) contributions, in addition to these, one needs to impose Conditions I
and II [221]. Thus following two observations are in order: (i) All three cases (Cases (a)–(c)) yield comparable lifetimes
(within a factor of ten) even though they significantly defer in decay pattern predictions; (ii) Using the most stringent
experimental limit on partial proton lifetime as if it represents the limit on the total proton lifetime. Even though this
is not correct (see discussion in [27]) it certainly yields the most conservative bound on MX.

Appendix I. Relating 4D parameters to parameters of M-theory

The compactifications of an 11 dimensional theory to four dimensions allows one to relate 4 dimensional parameters
such as Newtons’ constant GN , the grand unification scale MG and the unified coupling constant 
G to parameters of
the higher dimensional theory. In the analysis here we give an abbreviated version of the work of Refs. [349,343]. We
begin with the gravity action in 11 dimensions which is

(2�2
11)

−1
∫
R4×X

d11x
√

gR. (575)

Reduction of this action to four dimensions gives

VX(2�2
11)

−1
∫
R4

d4x
√

gR, (576)

where VX is the volume of the compact space X. The 4D action of general relativity is

(16�GN)−1
∫
R4

d4x
√

gR. (577)

This leads to a determinations of GN in terms of the parameters of eleven dimensions and the volume of compactification

GN = �2
11(8�VX)−1. (578)

Next, we look at the Yang–Mills action on R4 × Q. For the case of Type IIA D6 branes, we can write the Yang–Mills
action in the form

(4(2�)2gs(

′)−3/2)−1

∫
d7x

√
gTr(F��F

��). (579)

Here gs is the string coupling and the trace is taken in the fundamental representation of U(n). We can write Eq. (579)
in the form

(8(2�)4gs(

′)3/2)−1

∫
d7x

√
g
∑



Fa
��F

��a). (580)
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where we have expanded F�� =∑aF
a
��Qa and used Tr(QaQb) = 1

2�ab. Comparing with the Yang–Mills action in 7D

which is (4g2
7)−1 ∫ d7x

√
g ×∑

aF
a
��F

��a one finds

g2
7 = 24/3(2�)4/3�2/3

11 . (581)

A further reduction of Eq. (580) to 4 dimensions on R4 × Q, and comparison of the action with the 4D Yang–Mills
gives


GVQ = (4�)1/3�2/3
11 , (582)

V
−1/3
Q has approximately the meaning of MG. To make this connection more precise one can consider the gauge coupling

evolution in the above theory. Now if gM is the unified gauge coupling as deduced in the M-theory, then SU(3), SU(2)

and U(1) gauge coupling constants are given by 1/g2
i = ki/g

2
M where (k1, k2, k3) = (5/3, 1, 1). On inclusion of loop

corrections including the Kaluza–Klein harmonics on the compact space, one finds the evolution [From the evolution
equations one notes that the prediction of sin �W is essentially unaffected by the tower of Kaluza–Klein states.].

16�2

g2
i (�)

=
(

16�2

g2
M

+ 10T	

)
ki + bi log

(
L2/3

�2V
2/3
Q

)
, (583)

where

LQ = exp(T	 − TO) (584)

and where T	, TO are the so called analytic torsions that are computable and the combination LQ is the so called
Ray–Singer torsion [373,374], and � is the renormalization group scale. One may compare this evolution with what
one expects in a GUT theory. Here one has

16�2

g2
i (�)

=
(

16�2

g2
G

)
ki + bi log

(
M2

G

�2

)
. (585)

A comparison of the M-theory and the GUT theory results give

g−2
G = g−2

M + 5

8�2 T	 (586)

and

MG = L
1/3
Q V

−1/3
Q . (587)

Here Eq. (586) gives the connection between the couplings of the M-theory and the grand unified theory while Eq.
(587) makes more precise the definition of the GUT scale for M-theory compactifications. Eliminating VQ in terms of
MG and LQ gives a determination of �11

�11 = 
3/2
G L

3/2
Q

(4�)1/2M
9/2
G

. (588)

Using the definition of the 11 dimensional Planck scale M11 [307]:

2�2
11 = (2�)8M−9

11 , (589)

one gets a relation between MG and M11,

MG = (2�)−1
1/3
G L

1/3
Q M11. (590)

From Eqs. (581), (588) and (590) one finds

g2
7M11 = 8�2
2/3

G L
2/3
Q M−2

G . (591)
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Interesting is the fact that MG is scaled down by a factor 
1/3
G from the eleven dimensional Planck scale. One can estimate

the size of M11 from above. Thus using MG = 2 × 1016 GeV, 
G = 0.04 and LQ = 8, one finds M11 = 1.8 × 1017 GeV.
Next, we consider Type IIA superstring. The action of the gauge fields on a D6 brane is given by [307]

(4g2
D6)

−1
∫

d7x
√

g7Tr FijF
ij , (592)

where gD6 is the gauge coupling constant and Fij are the Yang–Mills field strengths. Here Tr is the trace in the
fundamental representation of U(N). Next assume that the D6-brane worldvolume has the product R4 × Q, where Q
is a compact three-manifold of volume VQ. With this assumption the action in four dimensions is

VQ(8g2
D6)

−1
∫

d4x
∑
a

F a
ijF

ija . (593)

where as before we have expanded Fij =∑
aF

a
ijQa and used Tr(QaQb) = 1

2�ab. Comparing it to the conventional

action of GUT gauge fields (4g2
G)−1 ∫ d4x

∑
aF

a
ijF

ija where gG is the GUT coupling constant one finds the relation

g2
G = 2g2

D6

VQ

. (594)

Next, we use the following relation on the D6 brane gauge coupling constant [307]

g2
D6 = (2�)4gs


′3/2 (595)

and get

g2
GVQ = 2(2�)4gs


′3/2. (596)

Now it is argued [353] that the relation of Eq. (587) is valid also for Type IIA theory. Using Eq. (587) in Eq. (596) gives


′ = 
2/3
G L

2/3
Q

4�2g
2/3
s M2

G

. (597)

Appendix J. Gauge coupling unification in string models

As noted already aside from proton stability, gauge coupling unification is an important constraint on unified models
of particle interactions. For unification of gauge coupling constants it is not necessary that the gauge couplings arise
from a grand unification since the Standard Model gauge group can emerge directly at the string scale. Here one has
an additional constraint, i.e., not only the gauge couplings unify but also that the gauge couplings unify with gravity.
Thus one has [472]

g2
i ki = g2

string, (598)

where ki are the Kac–Moody levels of the subgroups, and 
′ is the Regge slope. Models of this type will in general
possess fractionally charged neutral states unless the SM gauge group arises from an unbroken SU(5) at the string
scale, or unless k > 1 [473]. In models with fractionally charged states one must either confine them to produce bound
states which carry integral charges or find a mechanism to make them massive.

The unification of the gauge couplings and of gravity is automatic in string models, but these constraints must be
checked with LEP data. The renormalization group evolution implies

16�2

g2
i (MZ)

= ki

16�2

g2
string

+ bi ln

(
M2

str

M2
Z

)
+ �i , (599)

where �i contains stringy and non-stringy effects. Now it is known that with the MSSM spectrum there is a unification
of gauge coupling constants at a scale of MG ∼ 2 × 1016 GeV with 
G ∼ 1/24 [474]. The scale MG is about two
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orders of magnitude below the scale where the unification of gauge couplings and of gravity can occur as can be seen
roughly by extrapolating GNE2 which acts like the fine structure constant for gravity. This discrepancy is a serious
problem for any string unified model [239]. Some of the possible avenues to resolve this conflict are as follows:

1. Extra matter at a high scale which can modify the RG evolution of gauge couplings to remove the discrepancy
[475–477].

2. Non-standard hypercharge normalizations within string models with higher level gauge symmetries [478].
3. An M-theory solution [227] to the gauge coupling/gravity unification, where the gravity propagates in a higher

dimensional bulk while gauge and matter fields reside on four dimensional wall. Below a certain scale, both matter,
gauge and gravity propagate in four dimensions while above this scale matter and gauge fields propagate in four
dimensions while gravity propagates in higher dimensions which allows 
gr to evolve much faster allowing for
unification at the conventional scale of MG.

It is also of interest to discuss the issue of gauge coupling unification in intersecting D brane models. Here typically
the gauge coupling unification is less transparent due to the product nature of the group structure at the string scale.
Thus it is instructive to explore the conditions under which the gauge coupling unification may occur. We recall that
the crucial constraint in unification of the three couplings is the condition 
2(MX) = 
3(MX) = 5

3
Y . In brane models
it is not at all a priori obvious how a relation of this type might emerge. For concreteness one may consider torroidal
orbifold compactifications of T 6/Z2 × Z2 with T 6 a product of two-tori. The moduli sector of this compactification
includes the Kahler moduli Ti (i = 1, 2, 3) which shall be the focus of our attention. In type IIB picture which is dual
to Type IIA, the D brane intersection angles are replaced by fluxes on the internal world volumes so that Fm

a =mm
a /nm

a ,
where a labels a stack of D branes and m stands for the components of the two torus m, and where mm

a and nm
a are

rational numbers. The satisfaction of N = 1 supersymmetry in type IIB can be written in the form∑
m=1,2,3

Fm
a

Re(Tm)
=
∏ Fm

a

Re(Tm)
. (600)

While the unification of gauge coupling constants on intersecting branes in not automatic such unification is not
excluded. Thus an interesting observation is that one may choose intersecting brane configurations for which the
following relation holds:

1


Y

= 2

3

1


3
+ 1


2
. (601)

If we work in the above class of models then the additional condition


2(MX) = 
3(MX) (602)

would automatically lead to the desired relation 
2(MX) = 
3(MX) = 5
3
Y . It is interesting then to investigate the

conditions under which the constraint of Eq. (602) arises. A closer scrutiny reveals [367] that there are three dis-
tinct classes of constraints which we label as A, B, and C that allow for the satisfaction of Eq. (600). The class
A constraints arise when none of the fluxes F i

a vanish. In this case the Re(Ti) are all uniquely determined and the
satisfaction of the relation 
2 = 
3 can only be accidental. That is to say for most models satisfying Eq. (600) the
satisfaction of the relation Eq. (602) and hence the unification of gauge coupling condition 
2(MX) = 
3(MX) = 5

3
Y

can only be accidental. The class B constraints arise when one of the fluxes F i
a vanishes (for each a) but one still

has a determination of the ratios Re(T1): Re(T2): Re(T3) but not a determination of the overall size. In this case
again one has the same problem in unifying the gauge couplings as in case A, i.e., the gauge coupling unifica-
tion will have to be accidental. Finally, in case C one of the fluxes F i

a vanishes (for each a) and this time one
has a determination of only one ratio. Thus, for example, one may determine Re(Tj ): Re(Tk) while Re(Ti) (i 
=
j 
= k) is unconstrained. In this case one has the possibility of unifying gauge coupling constants by utilizing the
free parameter Re(Ti).There are no known examples of models of class A. An example of class B model is that of
Ref. [479] where the ratio Re(T1): Re(T2): Re(T3) is determined and the gauge coupling unification does not occur
while an example of class C model is that of Ref. [366,480] where Re(T2) : Re(T3) is determined, Re(T1) is left
unconstrained and one may achieve gauge coupling unification by constraining Re(T1).
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B. Bajc, G. Senjanović, F. Vissani, b - tau unification and large atmospheric mixing: a case for non-canonical see-saw, Phys. Rev. Lett. 90
(2003) 051802 [arXiv:hep-ph/0210207];
B. Bajc, G. Senjanović, Radiative seesaw and degenerate neutrinos, Phys. Rev. Lett. 95 (2005) 261804 [arXiv:hep-ph/0507169];
C.H. Albright, S.M. Barr, Realization of the large mixing angle solar neutrino solution in an SO(10) supersymmetric grand unified model,
Phys. Rev. D 64 (2001) 073010 [arXiv:hep-ph/0104294];
M.C. Chen, K.T. Mahanthappa, Symmetric textures in SO(10) and LMA solution for solar neutrinos, Phys. Rev. D 68 (2003) 017301
[arXiv:hep-ph/0212375];
Q. Shafi, Z. Tavartkiladze, Neutrino democracy and other phenomenology from 5D SO(10), Nucl. Phys. B 665 (2003) 469 [arXiv:hep-
ph/0303150];
H.D. Kim, S. Raby, Neutrinos in 5D SO(10) unification, JHEP 0307 (2003) 014 [arXiv:hep-ph/0304104];
F. Buccella, D. Falcone, Bounds for the mass of the heaviest right-handed neutrino in SO(10) theories, Mod. Phys. Lett. A 18 (2003) 1819
[arXiv:hep-ph/0304143];
N. Oshimo, Model for neutrino mixing based on SO(10), Nucl. Phys. B 668 (2003) 258 [arXiv:hep-ph/0305166];
H.S. Goh, R.N. Mohapatra, S.P. Ng, Minimal SUSY SO(10) model and predictions for neutrino mixings and leptonic CP violation, Phys. Rev.
D 68 (2003) 115008 [arXiv:hep-ph/0308197];
C.H. Albright, Bounds on the neutrino mixing angles for an SO(10) model with lopsided mass matrices, Phys. Rev. D 72 (2005) 013001
[arXiv:hep-ph/0502161];
T. Fukuyama, N. Okada, Neutrino oscillation data versus minimal supersymmetric SO(10) model, JHEP 0211 (2002) 011 [arXiv:hep-
ph/0205066];
T. Fukuyama, A. Ilakovac, T. Kikuchi, K. Matsuda, Neutrino oscillations in a supersymmetric SO(10) model with type-III see-saw mechanism,
JHEP 0506 (2005) 016 [arXiv:hep-ph/0503114];
B.R. Desai, G. Rajasekaran, U. Sarkar, Large neutrino mixing angles for type-I see-saw mechanism in SO(10) GUT, arXiv:hep-ph/0504066;
K.S. Babu, C. Macesanu, Neutrino masses and mixings in a minimal SO(10) model, arXiv:hep-ph/0505200;
S. Bertolini, M. Malinsky, On CP violation in minimal renormalizable SUSY SO(10) and beyond, Phys. Rev. D 72 (2005) 055021 [arXiv:hep-
ph/0504241].

[420] R. Arnowitt, P. Nath, Lepton masses and neutrino oscillations in three generation Calabi–Yau string theory, Phys. Lett. B 244 (1990) 203;
P. Nath, R. Arnowitt, Neutrino masses in three generation Calabi–Yau models, Nucl. Phys. Proc. Suppl. 16 (1990) 638;
D. Suematsu, Proton stability and small neutrino mass in string inspired E6 models, Prog. Theor. Phys. 96 (1996) 611 [arXiv:hep-ph/9604257];
C. Coriano, A.E. Faraggi, String inspired neutrino mass textures in light of KamLAND and WMAP, Phys. Lett. B 581 (2004) 99 [arXiv:hep-
ph/0306186];
J.R. Ellis, G.K. Leontaris, S. Lola, D.V. Nanopoulos, Neutrino textures in the light of Super-Kamiokande data and a realistic string model,
Eur. Phys. J. C 9 (1999) 389 [arXiv:hep-ph/9808251];
S.F. King, M. Oliveira, Neutrino masses and mixing angles in a realistic string-inspired model, Phys. Rev. D 63 (2001) 095004 [arXiv:hep-
ph/0009287];
A.E. Faraggi, M. Thormeier, String inspired Z′ model with stable proton and light neutrino masses, Nucl. Phys. B 624 (2002) 163 [arXiv:hep-
ph/0109162];
J. Giedt, G.L. Kane, P. Langacker, B.D. Nelson, Massive neutrinos and (heterotic) string theory, Phys. Rev. D 71 (2005) 115013 [arXiv:hep-
th/0502032].

[421] K.S. Babu, J.C. Pati, F. Wilczek, Suggested new modes in supersymmetric proton decay, Phys. Lett. B 423 (1998) 337 [arXiv:hep-ph/9712307].

[422] H. Goldberg, Constraint on the photino mass from Cosmology, Phys. Rev. Lett. 50 (1983) 1419.

[423] J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, K.A. Olive, M. Srednicki, Supersymmetric relics from the big bang, Nucl. Phys. B 238 (1984) 453.

[424] R. Arnowitt, P. Nath, SUSY mass spectrum in SU(5) supergravity grand unification, Phys. Rev. Lett. 69 (1992) 725.

[425] C.L. Bennett, et al., First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results, Astrophys.
J. Suppl. 148 (2003) 1 [arXiv:astro-ph/0302207].



316 P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317

[426] D.N. Spergel, et al., [WMAP Collaboration], First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of
cosmological parameters, Astrophys. J. Suppl. 148 (2003) 175 [arXiv:astro-ph/0302209].

[427] For a review, see, A.B. Lahanas, N.E. Mavromatos, D.V. Nanopoulos, WMAPing the Universe: supersymmetry, dark matter, dark energy,
proton decay and collider physics, Int. J. Mod. Phys. D 12 (2003) 1529 [arXiv:hep-ph/0308251].

[428] R. Arnowitt, P. Nath, Limits on SUSY particle spectra from proton stability and dark matter constraints, Phys. Lett. B 437 (1998) 344
[arXiv:hep-ph/9801246].

[429] R.N. Mohapatra, A. Perez-Lorenzana, Neutrino mass, proton decay and dark matter in TeV scale universal extra dimension models, Phys.
Rev. D 67 (2003) 075015 [arXiv:hep-ph/0212254].

[430] I. Goldman, S. Nussinov, Atmospheric neutrino and proton decay data exclude some new dark matter scenarios, arXiv:hep-ph/0406259.
[431] K.S. Babu, I. Gogoladze, K. Wang, Gauged baryon parity and nucleon stability, Phys. Lett. B 570 (2003) 32 [arXiv:hep-ph/0306003].
[432] S. Kovalenko, I. Schmidt, Proton stability in leptoquark models, Phys. Lett. B 562 (2003) 104 [arXiv:hep-ph/0210187].
[433] W.J. Marciano, Tau physics: a theoretical perspective, Nucl. Phys. Proc. Suppl. 40 (1995) 3.
[434] W.S. Hou, M. Nagashima, A. Soddu, Baryon number violation involving higher generations, arXiv:hep-ph/0509006.
[435] R. Godang, et al., [CLEO Collaboration], Search for baryon and lepton number violating decays of the tau lepton, Phys. Rev. D 59 (1999)

091303 [arXiv:hep-ex/9902005].
[436] P.A.M. Dirac, Quantised singularities in the electromagnetic field, Proc. Roy. Soc. Lond. A 133 (1931) 60;

P.A.M. Dirac, The theory of magnetic poles, Phys. Rev. 74 (1948) 817.
[437] G. ’t Hooft, Magnetic monopoles in unified gauge theories, Nucl. Phys. B 79 (1974) 276;

A.M. Polyakov, Particle spectrum in quantum field theory, JETP Lett. 20 (1974) 194 [Pisma Zh. Eksp. Teor. Fiz. 20 (1974) 430].
[438] V.A. Rubakov, Superheavy magnetic monopoles and proton decay, JETP Lett. 33 (1981) 644 [Pisma Zh. Eksp. Teor. Fiz. 33 (1981) 658];

V. A. Rubakov, Monopole Induced Baryon Number Nonconservation, IYAI-P-0211.
[439] C.G. Callan, Dyon—fermion dynamics, Phys. Rev. D 26 (1982) 2058;

C.G. Callan, Monopole catalysis of baryon decay, Nucl. Phys. B 212 (1983) 391.
[440] For a review, see V.A. Rubakov, Monopole catalysis of proton decay, Rep. Prog. Phys. 51 (1988) 189.
[441] M. Goldhaber, W.J. Marciano, Grand unification, proton decay, and magnetic monopoles, Comments Nucl. Part. Phys. 16 (1986) 23.
[442] A recent analysis is given inY. Brihaye, D.Y. Grigoriev, V.A. Rubakov, D.H. Tchrakian, An extended model for monopole catalysis of nucleon

decay, Phys. Rev. D 67 (2003) 034004 [arXiv:hep-th/0211215].
[443] J. Preskill, Cosmological production of superheavy magnetic monopoles, Phys. Rev. Lett. 43 (1979) 1365.
[444] A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347.
[445] M. Ambrosio, et al., [MACRO Collaboration], Search for nucleon decays induced by GUT magnetic monopoles with the MACRO experiment,

Eur. Phys. J. C 26 (2002) 163 [arXiv:hep-ex/0207024].
[446] J. Hisano, Proton decay in the supersymmetric grand unified models, arXiv:hep-ph/0004266.
[447] D.G. Lee, R.N. Mohapatra, M.K. Parida, M. Rani, Predictions for proton lifetime in minimal nonsupersymmetric SO(10) models: An update,

Phys. Rev. D 51 (1995) 229 [arXiv:hep-ph/9404238].
[448] I. Dorsner, P. Fileviez Pérez, Unification versus proton decay in SU(5), Phys. Lett. B 642 (2006) 248 [arXiv:hep-ph/0606062].
[449] R.N. Mohapatra, B. Sakita, SO(2n) grand unification in an SU(N) basis, Phys. Rev. D 21 (1980) 1062.
[450] F. Wilczek, A. Zee, Families from spinors, Phys. Rev. D 25 (1982) 553.
[451] P. Nath, R.M. Syed, Complete cubic and quartic couplings of 16 and 16-bar in SO(10) unification, Nucl. Phys. B 618 (2001) 138 [arXiv:hep-

th/0109116];
P. Nath, R.M. Syed, Coupling the supersymmetric 210 vector multiplet to matter in SO(10), Nucl. Phys. B 676 (2004) 64 [arXiv:hep-
th/0310178].

[452] R.M. Syed, Couplings in SO(10) grand unification, arXiv:hep-ph/0508153.
[453] R.M. Syed, Analysis of SO(2N) couplings of spinor and tensor representations in SU(N) × U(1) invariant forms, in: G. Alverson, M.T.

Vaughn (Eds.), Themes in Unification, World Scientific, Singapore, arXiv:hep-ph/0411054.
[454] P. Nath, R.M. Syed, Couplings of vector-spinor representation for SO(10) model building, JHEP 0602 (2006) 022 [arXiv:hep-ph/0511172].
[455] C.S. Aulakh, A. Girdhar, SO(10) a la Pati-Salam, Int. J. Mod. Phys. A 20 (2005) 865 [arXiv:hep-ph/0204097].
[456] T. Fukuyama, A. Ilakovac, T. Kikuchi, S. Meljanac, N. Okada, SO(10) group theory for the unified model building, J. Math. Phys. 46 (2005)

033505 [arXiv:hep-ph/0405300].
[457] C.S. Aulakh, A. Girdhar, SO(10) MSGUT: spectra, couplings and threshold effects, Nucl. Phys. B 711 (2005) 275;

C.S. Aulakh, Consistency of the minimal supersymmetric GUT spectra, Phys. Rev. D 72 (2005) 051702.
[458] M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization,

Nucl. Phys. B 222 (1983) 83;
M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2.Yukawa couplings, Nucl. Phys.
B 236 (1984) 221;
M.E. Machacek, M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl.
Phys. B 249 (1985) 70.

[459] T. Nihei, J. Arafune, The two loop long range effect on the proton decay effective lagrangian, Prog. Theor. Phys. 93 (1995) 665 [arXiv:hep-
ph/9412325].

[460] U. Chattopadhyay, T. Ibrahim, P. Nath, Effects of CP violation on event rates in the direct detection of dark matter, Phys. Rev. D 60 (1999)
063505 [arXiv:hep-ph/9811362].

[461] J.S. Schwinger, Chiral dynamics, Phys. Lett. B 24 (1967) 473;
R. Arnowitt, M.H. Friedman, P. Nath, Current algebra and vertex functions, Phys. Rev. Lett. 19 (1967) 1085;



P. Nath, P. Fileviez Pérez / Physics Reports 441 (2007) 191–317 317

S. Weinberg, Nonlinear realizations of chiral symmetry, Phys. Rev. 166 (1968) 1568;
R. Arnowitt, M.H. Friedman, P. Nath, R. Suitor, Hard-pion current-algebra calculation of meson processes - N-point functions, Phys. Rev. 175
(1968) 1802;
S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological Lagrangians. 1, Phys. Rev. 177 (1969) 2239;
C.G. Callan, S.R. Coleman, J. Wess, B. Zumino, Structure of phenomenological Lagrangians. 2, Phys. Rev. 177 (1969) 2247.

[462] M. Claudson, M.B. Wise, L.J. Hall, ‘Chiral Lagrangian for deep mine physics, Nucl. Phys. B 195 (1982) 297.
[463] S. Chadha, M. Daniel, Chiral Lagrangian calculation of nucleon decay modes induced by D = 5 supersymmetric operators, Nucl. Phys. B 229

(1983) 105.
[464] S. Chadha, M. Daniel, Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model, Phys. Lett. B 137

(1984) 374.
[465] S. Aoki, et al., [JLQCD Collaboration], Nucleon decay matrix elements from lattice QCD, Phys. Rev. D 62 (2000) 014506 [arXiv:hep-

lat/9911026].
[466] S.J. Brodsky, J.R. Ellis, J.S. Hagelin, C.T. Sachrajda, Baryon wave functions and nucleon decay, Nucl. Phys. B 238 (1984) 561.
[467] M.B. Gavela, S.F. King, C.T. Sachrajda, G. Martinelli, M.L. Paciello, B. Taglienti, A lattice computation of proton decay amplitudes, Nucl.

Phys. B 312 (1989) 269.
[468] N. Tsutsui, et al., [CP-PACS Collaboration], Lattice QCD calculation of the proton decay matrix element in the continuum limit, Phys. Rev.

D 70 (2004) 111501 [arXiv:hep-lat/0402026].
[469] J.F. Donoghue, E. Golowich, Proton decay via three quark fusion, Phys. Rev. D 26 (1982) 3092.
[470] N. Cabibbo, E.C. Swallow, R. Winston, Semileptonic hyperon decays, Ann. Rev. Nucl. Part. Sci. 53 (2003) 39 [arXiv:hep-ph/0307298].
[471] I. Dorsner, P. Fileviez Pérez, Distinguishing between SU(5) and flipped SU(5), Phys. Lett. B 605 (2005) 391 [arXiv:hep-ph/0409095].
[472] P. Ginsparg, Gauge and gravitational couplings in four-dimensional string theories, Phys. Lett. B 197 (1987) 139.
[473] A. Schellekens, Phys. Lett. 237 (1990) 363.
[474] C. Giunti, C.W. Kim, U.W. Lee, Running coupling constants and grand unification models, Mod. Phys. Lett. A 6 (1991) 1745.
[475] K.R. Dienes, A.E. Faraggi, Making ends meet: string unification and low-energy data, Phys. Rev. Lett. 75 (1995) 2646 [arXiv:hep-th/9505018].
[476] K.R. Dienes, A.E. Faraggi, Gauge coupling unification in realistic free fermionic string models, Nucl. Phys. B 457 (1995) 409 [arXiv:hep-

th/9505046].
[477] V. Barger, J. Jiang, P. Langacker, T. Li, Non-canonical gauge coupling unification in high-scale supersymmetry breaking, Nucl. Phys. B 726

(2005) 149 [arXiv:hep-ph/0504093].
[478] K.R. Dienes, A.E. Faraggi, J. March-Russell, String unification, higher level gauge symmetries, and exotic hypercharge normalizations, Nucl.

Phys. B 467 (1996) 44 [arXiv:hep-th/9510223].
[479] M. Cvetic, P. Langacker, J. Wang, Dynamical supersymmetry breaking in standard-like models with intersecting D6-branes, Phys. Rev. D 68

(2003) 046002 [hep-th/0303208].
[480] R. Blumenhagen, String unification of gauge couplings with intersecting D-branes, hep-th/0309146.


	Proton stability in grand unified theories, in strings and in branes
	Introduction
	Experimental bounds and future searches
	Nucleon decay in non-supersymmetric scenarios
	Baryon number violation in the Standard Model
	Grand unification and gauge contributions to the decay of the proton
	Proton decay induced by scalar leptoquarks

	Nucleon decay in SUSY and SUGRA unified theories
	R-parity violation and the decay of the proton
	Supersymmetry breaking and SUGRA unification
	Effect of CP violating phases on proton lifetime
	Doublet--triplet splitting problem
	Proton decay in =SU(5) supersymmetric grand unification
	Nucleon decay in =SO(10) theories
	Proton decay in models with unified symmetry breaking

	Testing grand unification
	Textures, Planck scale effects and proton decay
	Gravitational smearing effects
	Constraints from gauge coupling unification
	Testing GUTs through proton decay
	Proton decay in flipped =SU(5)
	Upper bound on the proton lifetime in GUTs

	Unification in extra dimensions and proton decay
	Proton decay in models with 5D
	=SO(10) models in 5D
	5D Trinification
	6D models
	Gauge--Higgs unification
	Proton decay in universal extra dimension (UED) models
	Proton decay in warped geometry
	Proton stability in kink backgrounds

	Proton decay in string models
	Proton stability in Calabi--Yau models
	Kac--Moody level k=2pt>1 string models and proton decay
	A new class of heterotic string models
	Proton decay in M theory compactifications
	Proton decay in intersecting D brane models
	Nucleon stability in string landscape models
	Proton decay from black hole and wormhole effects
	U(1) string symmetries and proton stability
	Discrete symmetries and proton stability

	Other aspects
	Neutrino masses and proton decay
	Proton stability and dark matter
	Exotic B and L violation
	"026A30C DDDDB"026A30C =2pt>1 violation and other non-standard B and L violation
	B and L violation involving higher generations
	Monopole catalyzed proton decay

	Proton decay and the ultimate fate of the universe

	Summary and outlook
	Summary table of p decay predictions
	Acknowledgments
	Appendix A. Mathematical aspects of =SU(5) and =SO(10) unification
	Appendix B. d=2pt=5 contributions to the decay of the proton
	Appendix C. Dressing of the d=2pt=5 operators
	Appendix D. Sparticle spectrum and renormalization
	Appendix E. Renormalization of the d=2pt=5 and 6 operators
	Appendix F. Effective Lagrangian for nucleon decay
	Appendix G. Details of the analysis on testing GUTs
	Appendix H. Detailed analysis of upper bounds
	Appendix I. Relating 4D parameters to parameters of M-theory
	Appendix J. Gauge coupling unification in string models
	References


