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(Received 20 July 2006; revised manuscript received 28 February 2007; published 13 April 2007)

The fermion propagator is studied in the whole Minkowski space with the help of the Schwinger-Dyson
equations. Various integral representations are employed to get solutions for the dynamical breaking of
chiral symmetry in different regimes of the coupling constant. In particular, in the case of massive boson,
we extend the singularity structure of the fermion propagator to the two real pole Ansätze.
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In this brief report we investigate a possible scenario of
dynamical mass generation and estimate the timelike struc-
ture of the fermion propagator. This phenomenon, dubbed
also as dynamical chiral symmetry breaking, requires in-
trinsically nonperturbative tools since the particle masses
can be fully generated via loop contributions. In the frame-
work of Schwinger-Dyson equations (SDEs) we explore
the fermion mass function and the fermion propagator in
Minkowski space. We develop a novel integral technique to
solve with reasonable precision a SDE which has only been
addressed at one-loop order [1] (for the Yukawa model).
Here, we consider a gauge theory and resort to a simple
quenched approximation with the massive gauge boson
transverse mode. The effective coupling is then regulated
by a Pauli-Villars cutoff �.

The main result of this paper is to show that for the
scaling M=�� 1 (walking technicolor) the analytical
structure of the exact propagator is given the Lehmann
representation with one real pole in this propagator.
Increasing the ratio M=�, we explicitly show that two
pole Ansätze plus the corresponding generalized integral
representation for the exact propagator are fully adequate
for the description of dynamical chiral symmetry breaking
in this phase. The novel integral representation which goes
beyond the Lehmann representation is introduced for this
purpose. Within the presented framework we achieve a
larger value of the scaling M=� ’ 0:1.

In a parity conserving theory the general form of the
fermion propagator reads

 S�p� �
F�p2�

6p�M�p2�
: (1)

For simplicity we assume F�p2� � 1, which is reasonable
approximation for gauge theories in the Landau gauge. The
SDE for the mass function M is modeled in the following
manner
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0 �p� � S
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where l � p� q, the constant g2 implicitly absorbs a
possible group prefactor, and S0�p� represents the free
fermion propagator. In such an approximation the effective
coupling does not run logarithmically, but it is constant up
to a scale � where it rapidly vanishes (i.e. it runs with
power behavior). Notice that in what concerns QCD, low-
ering the cutoff to the scale of �QCD ’ 250 MeV and
keeping the coupling large enough such that constituent
(infrared) quark mass M ’ � can be regarded as an ap-
proximation of QCD, while when M� �, the limit of
walking technicolors is modeled [2,3]; for a recent treat-
ment within the SDEs framework see [4].

A little is known about the full Minkowski solution of
SDEs in strong coupling field theories, hence we can refer
here the paper of Fukuda and Kugo [5]. Furthermore, the
timelike structure of Greens function as it is read from the
Euclidean counterparts is not reliably known [6]. The main
aim of this report is to present the direct solutions in
Minkowski space, assuming a spectral and a generalized
integral representation of the propagator for this purpose.

In order to carefully compare our Minkowski solutions
with the spacelike part obtained independently in
Euclidean space, we also perform the Wick rotation iq0 !
q4 and solve SDE in Euclidean space After the angular
integration the Euclidean SDE reads [7],
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dq2
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E;�q
2
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2�
q

; (2)

where q2
E � �q

2 (and similarly for p), � � g2=�4��, and
the symbol � stands for the triangle Källen function,
��x; y; z� � �x� y� z�2 � 4yz.

The solution of Eq. (2) is well known: for the coupling
below certain critical value �c there exists only a trivial
solution M�p2

E� � 0, while for �> �c we get a nontrivial
mass function. The value of the critical coupling �c de-
pends on the details of the kernel, especially on the finite
ratio R � mB=�, noting that for mB � � the critical
coupling constant �c ’ �=3 coincides with the one ob-
tained in the ladder approximation for the electron propa-
gator in the strong coupling QED, where the well-known
exponential Miransky scaling is exhibited:
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 M�0� ’ const 
�e�����=�c�1��1=2	: (3)

In the first part of our SDE Minkowski study we assume
spectral representation with a single real pole in the propa-
gator and derive the unitary equations in their full non-
linearized form. The solutions of Schwinger-Dyson
equations obtained by the spectral method has been already
calculated for several models [8,9]. Stressed that in any
case, the resulting spacelike parts of Greens functions
under consideration [8,9] were in a good agreement with
the solutions based on the Euclidean formalism.

Assumed Lehmann spectral representation reads

 S�p� �
Z
R�
dx
6p�v�x� � �s�x�

p2 � x� i�
; (4)

where S has a pole at p2 � m2, i.e., �s�x� � rm��x�
m2� � �cs�x�, where r represents the residuum. The func-
tion �cs�x� is a continuous part of the spectral function
starting to be nonzero from the first branch point.
Substituting the integral representation (4) into our gap
equation written in Minkowski space,

 M�p2� � i3g2
Z
dx
Z d4q

�2��4
G�p� q�

�s�x�

q2 � x� i�
; (5)

one arrives to the following dispersion relation for the mass
function M,
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The imaginary part of the propagator and the imaginary
part of the dynamical mass function are simply related, this
relation closes the system of Eqs. (6) employed. In our

approximation Z � 1 and it is sufficient to consider the Ss
part of the propagator,
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I

; (7)

where we use a shorthand notation, �R � ReM�p2�; �I �
ImM�p2� � ��	�p2�. Comparing the imaginary part of
(7) with the imaginary part of the propagator ImSs�p2� �
���cs�p2�, we immediately get

 �cs�p2� � 	s�p2�
p2 � �2

R ��2
I

�p2 � �2
R ��2

I �
2 � 4�2

R�2
I

; (8)

which is nonzero for timelike momenta above the thresh-
old. The derivation of more general ‘‘unitary equations,’’
which takes into account the wave function renormaliza-
tion, is straightforward (see for instance [8]).

The dispersive (real) part of the mass functions is given
by the principal value integral

 �R�p2� � P 

Z
d!

	s�!�

p2 �!
: (9)

The principal value can be avoided by using 	 as given in
(6), which yields an ordinary regular integral over the new
kernel,
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4�

Z
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(10)

where J results from the principal value integration of the
dispersion relation for M,
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where we have shortly written �p;�0� � ��p2�0�; x; z�.
The residuum r and the pole mass function m are ob-

tained evaluating the dispersion relation and its derivative.
The coupled set of the integral equations above has been
solved numerically by iterations.

The unitary equations provide solutions for timelike
momenta above the branch point p2 > �mB �m�

2, below
which the propagator is real. The results on the negative
axis of p2 are easily obtained by a regular integration either
from (6) or from the dispersion relation for M (4). The
resulting timelike solution is presented in Fig. 1). The
results presented here are calculated with �=mB � 30.

We use the mass mB as a scale for all dimensionful
quantities. The comparison of spectral Minkowski and
Euclidean solutions is shown in Fig. 2. Thus, solving the
Unitary Equations and comparing the Minkowski solution
to the Euclidean one, we find rather nice agreement near
the critical coupling. However, when the coupling becomes
larger (say when � exceeds �c, about � 10%) a discrep-
ancy appears, since the employed spectral representation
for the propagator, with just one pole, is no longer valid.
Retrospectively, the previous one-loop analytical calcula-
tions [1] already found evidence for a more complex
structure in the propagator. Apparently new singularities
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appear in the propagator for �> �T . The coupling �T was
determined to be �T � 1:73� 0:02 in our case.

In what follows we continue with our study of the SDE
in Minkowski space relaxing our assumption on the spec-
tral representation of the fermion propagator.

The reason for the fail of one pole Ansatz is easy to
understand: the dynamical mass is an increasing function
in the regime from p2 � 0 to the branch point p2

B � �m�

mB�
2. When the coupling is large enough, then the large

enhancement below the branch point maintains and the
dynamical mass function necessarily crosses the line������
p2

p
. Thus, for a certain set of parameters the propagator

develops two real poles which should be taken into account
in the integral Ansatz. The second real pole first appears at
the branch point p2

B � �m�mB�
2 and moves down to-

wards the first one as the coupling increases. To get a better
view we draw this scenario in Fig. 3. The lines displayed
represent our numerical findings.

The new integral Ansatz, which is consistent with the
solution of SDE in the regime where the two poles are
present, reads

 Ss�p2� �
m�

p2 �m2
� � i0

�
m�

p2 �m2
� � i0

�
1

p2 �m2
� � i0

Z
d!

��s �!�

p2 �!� i0
: (11)

The alternative equivalent representation can be obtained
by replacements m� ! �m�, ��s ! ��s .

This Ansatz immediately implies the dispersive relation
for the dynamical mass function. Taking F � 1 approxi-
mation again and substituting the formula (11) into the
SDE it leads after the integration over the momenta to the
following result for the function 	s�p2�
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��	 �
Z
dx

��s �x�

m2
� � x

�X0�!;m2
B; x� � X0�!; �2; x�	;

(12)

where the first line in (12) follows from the first two terms in (11) and the second line follows from the third term in (11).
The derivation of (12) is straightforward and follows the same lines as in the case of the standard Lehmann representation.
The integration over the momentum is finite and it remains finite even when � is sent to infinity, which is a consequence of
the momentum behavior of our Ansatz (11).
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FIG. 1 (color online). Absolute value of the mass function at
timelike momenta with a single pole in the propagator.
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FIG. 2. Dynamical mass function for spacelike momenta for
various coupling � � 1:64; 1.7, 2.0. Solid (dashed) lines stand
for Euclidean (Minkowski) solutions.
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FIG. 3 (color online). Propagator singularities below threshold
shown for two different coupling constants. The dashed (solid)
line stands for the case when the propagator function Ss exhibits
two (one) real poles below the branch points.

BRIEF REPORTS PHYSICAL REVIEW D 75, 087701 (2007)

087701-3



The unitary equations are modified since the integral
representation has changed. To derive them let us compare
the imaginary and the real parts of the propagator above the
branch point �mB �m��2 (by definition, m� >m�).

On one side we get from the imaginary part of (11)

 Im Ss�p2� � �
���s �p

2�

p2 �m2
�

(13)

and the imaginary part of this function, computed with the
SDE, is still given by Eq. (7). This implies that Ss is real up
to the p2 � �m� �mB�

2.
Thus we get for the timelike momenta, such that p2 >

�m� �mB�
2, the following equation,

 ��s �p
2� � 	�p2�

�p2 �m2
���p2 ��2

R � �2
I �

�p2 � �2
R � �2

I �
2 � 4�2

R�2
I

: (14)

This means that the momentum space Schwinger-Dyson
equation turns into two coupled regular equations (12) and
(14) relating the absorptive and dispersive parts of the
propagator and its inverse.

The pole masses are necessarily expected below the
threshold and they are determined by the zeroes of the
inverse of the propagator i.e., m� � M�m2

��. The real part

of the mass �R entering Eq. (14) is given by the principal
value integration over 	 in Eq. (12). This leads to the
following compact regular integral equation for �R,

 

��R�p
2�
�4��2

g2 � m��J�p
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�; m
2
B� � J�p

2; m2
�;�

2� � J�p2; m2
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2; m2
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Z
dx

��s �x�
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� � x
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�; m

2
B� � J�p

2; m2
�;�

2� � J�p2; x;m2
B� � J�p

2; x;�2�	: (15)

The second pole appears for couplings stronger than
�T ’ 1:73. In the interval of the couplings 1:73<�<
2:0 the two-pole representation of the propagator leads to
solutions which, for spacelike momenta, agree rather well
with the Euclidean ones. Our solution for the coupling � �
2 is added in Fig. 2 for spacelike momenta and it is
displayed in the Fig. 4 for timelike momenta. Our
Minkowski solution becomes unstable for �> 2 and starts
to disagree with the spacelike Euclidean results for �> 2.
To dive more deep into the chiral breaking phase and thus
achieve enhancement of the infrared mass would require a

new reanalysis of up to now unknown, possibly complex,
propagator singularities.

To conclude, the one-pole case is adequate to solve
dynamical chiral symmetry breaking near to the critical
coupling, while the two-pole fit is adequate to work with
moderate couplings, well into the phase transition region
where the standard spectral representation deviates from
the correct solution. For the later case, a suitable integral
representation of the propagator has been proposed.
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FIG. 4 (color online). Absolute value of the mass function at
timelike regime of the momenta in log-log plot. The upper two
lines represent the real and imaginary parts of the mass function
M for � � 2, and the two lines below coincide with the data
plotted in Fig. 2.
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