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Abstract

We apply the Bogoliubov-de Gennes equations to the confinement of a monopole–antimonopole
pair in a superconductor. This is related to the problem of a quark–antiquark pair bound by a con-
fining string, consisting of a colour-electric flux tube, dual to the magnetic vortex of type-II super-
conductors. We study the confinement of the field lines due to the superconducting state and
calculate the effective potential between the two monopoles. The monopoles can be simulated in a
real experiment inserting two long and thin magnetic rods. At short distances the potential is Cou-
lombic and at large distances the potential is linear, as previously determined solving the Ginzburg–
Landau equations. The magnetic field lines and the string tension are also studied as a function of the
temperature T. Because we take into account the explicit fermionic degrees of freedom, this work
may open new perspectives to the breaking of chiral symmetry or to colour superconductivity.
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1. Introduction

Right after QCD was proposed as the theory of strong interactions [1,2], different ideas
for QCD confinement were inspired in the magnetic confinement in superconductors. Here
we study a condensed matter problem, the confinement in a superconductor of electro-
magnetic field lines produced by a monopole–antimonopole pair. Although this is not a
QCD problem, we address it with a perspective similar to QCD studies of the confinement
of the color fields produced by a quark–anriquark pair.

The confinement of magnetic field lines in superconductors occurs through an Ander-
son–Higgs mechanism such that the photons of the electromagnetic field acquire a mass
and are therefore exponentially damped in the superconductor. This constitutes the Mei-
ssner effect discovered experimentally in 1933. Indeed, at the boundary between the exte-
rior and the superconductor, the parallel component of the external magnetic field is
damped inside the superconductor on a scale k, the penetration length. In this work we
consider that the magnetic field lines in the superconductor emerge (converge) from (to)
a monopole (antimonopole) inserted in the bulk of the superconductor. A possible way
to achieve this is through the insertion of two thin and long magnetic rods of opposite
magnetizations. When the distance d between the monopole and the antimonopole is smal-
ler than k, the Coulomb interaction is dominant. When d� k, the linear interaction, char-
acterized by the string tension r, is preponderant. This is schematically shown in Fig. 1.
Another relevant scale in a superconductor is the coherence length, defined as the distance
over which the superconducting order parameter (pair density) acquires its bulk value. The
ratio of these two lengths determines the magnetic properties of the superconductor: for
k ¼ k=n < 1=

ffiffiffi
2
p

the superconductor is of type-I, a complete Meissner effect is observed
and the magnetic field is completely expelled from the superconductor (perfect diamagnet)
over a distance defined by the penetration length. If k ¼ k=n > 1=

ffiffiffi
2
p

the superconductor is
of type-II and the magnetic field penetrates in the material through quantized vortices,
whose density increases until their cores (with size given by the coherence length) overlap
and the system becomes normal.
d << λλλλ
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Fig. 1. The magnetic field when the distance d between the open ends of the two half strings is respectively much
smaller and much larger than k.
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The confining string is an important candidate to solve the confinement problem of
quantum chromodynamics (QCD). Nielsen and Olesen [3] suggested that the magnetic flux
tube vortex of type-II superconductors could be applied, after a dual transformation, to
colour-electric flux tube strings [4] in QCD. Soon afterwards Nambu [5], ’t Hooft [6],
and Mandelstam [7] developed the thesis that the open colour-electric string was able to
confine quark–anriquark systems, where the quark–anriquark pair is dual to a Dirac [8]
monopole–antimonopole pair. This idea was further developed by Baker, Ball and Zacha-
riasen [9,10] and co-authors, who developed dual QCD, and also studied systems similar
to a monopole–antimonopole pair in a superconductor in the Ginzburg–Landau frame-
work. At the onset of QCD, lattice QCD was also developed by Wilson [11], who showed
analytically that the strong coupling limit of QCD is equivalent to a string theory. The
study of strings at the realistic transition between the strong and weak coupling of Lattice
QCD was further explored by several authors. Bali [12,13] and Polikarkov [14,15] and co-
authors studied in detail the string formation between static quark–anriquark sources in
Lattice QCD. Importantly, colour superconductivity was also proposed to exist at finite
baryon density by Alford, Rajagopal and Wilczek [16].

One should mention that QCD differs from type-II superconductors in many details.
Baker, Ball and Zachariasen found that dual QCD is at the frontier between type-I and
type-II superconductivity. The spin dependence of the quark–anriquark interaction, with
no correspondance in the monopole–antimonopole interaction, was also addressed by De
Rujula, Georgi and Glashow, and [17] Henriques, Kellett and Moorhouse [18] identified
the role of the confining string in the spin dependent interactions. Moreover Takahashi,
Suganuma and co-authors [19,20] also studied the three-legged string formation between
three static quark sources, proposed to exist in Baryons. It is clear that this needs a SU(3)
symmetry, unlike in type-I or type-II superconductors. Okiharu, Suganuma and Takah-
ashi [21,22], further studied the tetraquark and pentaquark potentials. The idea of bag
model, separating the interior of the flux tube from the remaining of the universe, was
developed by Chodos, Jaffe, Johnson, Thorn and Weisskopf [23], and this lead Jaffe and
Johnson to propose the existence of exotic hadrons, including glueballs, needing also a
SU(3) symmetry, [24]. Moreover, many problems in QCD confinement with strings remain
to be solved. For instance in the limit of infinitely thin relativistic strings [25], the world
sheet swept out by a string in space time can only be quantized in 26 dimensions. For
example light quarks, which condense the vacuum with chiral symmetry spontaneously
breaking 3P0 scalar quark–anriquark pairs described by Bicudo and Ribeiro [26], are
not yet fully compatible with string confinement. These problems, and other open prob-
lems of QCD confinement, motivate very interesting and active investigations.

Nevertheless the main condensed matter inspiration of QCD confinement, the pair of a
monopole and a antimonopole in a superconductor, remains to be fully explored. Many
years ago, Ball and Caticha [27], already studied the monopole–antimonopole pair in
Ginzburg–Landau type-I and type-II superconductors. The Ginzburg–Landau supercon-
ductivity can be compared to pure gauge QCD, where fermions are absent. However, the
new data on heavy-ion collisions and on dense quark stars motivates the interest both in
finite temperature and in finite fermion density QCD. While in the full QCD case the ferm-
ions may already need to be considered due to chiral symmetry breaking and to the cou-
pling of quarks to gluons, it is clear that in dense quark stars, where colour
superconductivity may occur, the fermions cannot be ignored. In this paper we apply
the Bogoliubov-de Gennes (BdG) equations, enabling a microscopic understanding of
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the role of electronic states in the confinement of magnetic and electric fields in supercon-
ductors. Moreover we address the effect of finite temperature in the magnetic confinement.
We hope that this model may also be inspirational to QCD.

We are interested in the geometric configuration where two solenoids or magnetic rods,
with opposite poles, and with one quantum of inner magnetic flux, are inserted in a super-
conductor. We assume that the other end of each solenoid or magnetic rod is very distant
and plays no role here. In the limit of very thin solenoids, each solenoid is equivalent to a
magnetic monopole (or antimonopole) plus its associated Dirac string introduced to sat-
isfy Maxwell’s equation $ Æ B = 0. The produced external magnetic field of this is identical
through a gauge transformation to the one of the Ball and Caticha geometric choice,
where a single string directly links the monopole and the anti-monopole. We choose
our configuration, depicted in Fig. 1 because it is in principle amenable to an experimental
setup, where the magnetic confining force may eventually be measured. The plausible
experiment consists in a superconductor, where an extremely thin hole has been drilled,
allowing the also extremely thin solenoids or magnetic rods to move inside the supercon-
ductor. The confining force should then be measurable at the other ends of the extremely
thin solenoids or magnetic rods, when the respective magnetization is maintained during
the experiment. Nanorods with diameters of the order of 1–10 nm may be achieved [28] in
a way similar to metallic rods that have been inserted in a polymer or silicon matrix [29].
These diameters are small compared to both the coherence length and especially the pen-
etration length in type-II superconductors, which typically vary between 1–100 and 60–
1000 nm, respectively.

The problem of the quasi-particle states due to the presence of a vortex in a s-wave
superconductor was solved long ago both analytically [30] and numerically [31]. There
are bound states localized in the vicinity of the vortex location and a continuum of delo-
calized states. Classifying the states in terms of the angular momentum around the vortex
line, allowed to determine that there is a branch of boundstates, one for each angular
momentum value [31]. The results were obtained looking for an order parameter of the
form D = D0e�inu where u is the polar angle and n fixes the vorticity, chosen originally
as n = 1. The core states are coherent superpositions of particle and hole states and inter-
preted as being the result of constructive interference of multiple Andreev scattering from
the spatial variation of the order parameter [32]. The case of zero vorticity, n = 0, corre-
sponds to the absence of a vortex.

The vortex lines in general appear due to the application of an external magnetic field
typically homogeneous. However, we can as well consider the presence of magnetic field
lines that are due to a solenoid or a magnetic rod inserted in the superconductor. Actually,
the magnetic field lines do not need to penetrate the superconductor itself, since what really
matters is the vector potential. It is the vector potential that appears in the Hamiltonian of
the system in the presence of a magnetic field [33], as is well known. This has been empha-
sized [34] considering a superconductor in the form of a cylindrical shell of internal radius R

and width a in the center of which is inserted either a solenoid or a magnetic rod of radius r

smaller than R. In these systems, considering the length of the cylinders very large com-
pared to the radius, the field lines will close far from the supercondutor and therefore no
field lines penetrate the cylinder. However, the vector potential due to the flux contained
in the transverse section is non-zero and the field has the same effect on the supercurrents.

Recently it was stressed that the important characteristic that determines the bound-
states is the winding of the phase [35]. The detailed form of the order parameter in the
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vicinity of the vortex core is not so relevant. Performing a non-self-consistent study of the
spectrum it was found that the suppression of the gap function has a minor role. The
supercurrent acts in non-symmetrical way on the particle and hole parts of the quasipar-
ticles. It tends to decrease the angular momentum of the particle part and to increase the
angular momentum of the hole part.

A fully self-consistent solution of the influence of a very long solenoid on the properties
of a superconductor was addressed in Ref. [36]. The internal field originated in the super-
currents must adjust itself to the solution chosen according to the external field exerted by
the solenoid. The total magnetic flux was fully determined by the choice of the angular
momentum of the gap function and the value of n determines the vorticity of the vortex
solution. Depending on the relation of the value of n and the value of the external field,
the internal currents create fields that compensate, undercompensate or overcompensate
the external field. The various situations lead to different spectral structures depending
on the width of the solenoid. These in turn originate different structures for the internal
field and supercurrents generated. The limit of a very thin solenoid, similar in nature to
a Dirac string, is qualitatively different. It was shown that when the vorticity chosen equals
the unit of external flux the currents generated vanish and no bound states appear. Other-
wise the currents may be positive, and branches of boundstates with positive energies
appear, or the currents are negative, and branches of negative energies appear. These
results confirmed the link between the boundstates and the internal currents in a self-con-
sistent way. In the case of a finite width solenoid the number of boundstates equals the
vorticity of the gap function and is insensitive to the external field. The results can also
describe a magnetic dot superimposed on the superconductor if in addition to the mag-
netic field due to the dot one applies an external homogeneous field. In this case the exter-
nal field compensates the returning field lines due to the dot [37] that would appear away
from the dot position, eliminating anti-vortices in the superconductor. The more complex
and realistic case of a magnetic rod inserted in the superconductor was also considered but
we will limit ourselves in this work to the very thin limit, to establish a closer link to the
confinement of the monopole–antimonopole flux tube.

Here we study monopole–antimonopole confinement in a superconductor with finite
fermion density and finite temperatures. The BdG framework, applied to the mono-
pole–antimonopole pair is detailed in Section 2. In Section 3 we show the results at
T = 0, and compare them with the Ball-Caticha paper. In Section 4 we show the results
at T „ 0. In Section 5 we conclude.
2. Bogoliubov de Gennes equations and the monopole–antimonopole field

2.1. Fermion pairing

Consider a fermionic system with an effective attractive interaction between the parti-
cles defined by an Hamiltonian

H ¼
Z

dr
X

r

cyðr; rÞ
p� e

c A
� �2

2m
cðr; rÞ

� 1

2
g
Z

dr
X
r;r0

cyðr; rÞcyðr;r0Þcðr; r0Þcðr; rÞ ð1Þ
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where c�(r,r) creates a fermion at site r with spin r. A is the vector potential. In BCS the-
ory, this leads to fermion–fermion and antifermion–antifermion pairing. Defining the field
of a pair as D(r), and considering a conventional s-wave superconductor, the Hamiltonian
is decoupled like

H BCS ¼
Z

dr
X

r

cyðr; rÞ
p� e

c A
� �2

2m
� EF

" #
cðr; rÞ

þ
Z

dr½DðrÞcyðr; "Þcyðr; #Þ þ D�ðrÞcðr; #Þcðr; "Þ� ð2Þ

Here EF is the Fermi energy. The Hamiltonian is diagonalized through a canonical trans-
formation

cðr; "Þ ¼
X

i

ðuiðrÞci;" � v�i ðrÞc
y
i;#Þ

cðr; #Þ ¼
X

i

ðuiðrÞci;# þ v�i ðrÞc
y
i;"Þ

ð3Þ

Here the fermionic operators ci,r annihilate a quasiparticle in the level i and with spin r.
Defining the diagonalized Hamiltonian as

H ¼ Eg þ
X

i;r

Eic
y
i;rci;r ð4Þ

where Eg is the groundstate energy, the physical meaning of the new operators is that they
create the excitations of the system, and therefore we must restrict ourselves to the positive
energies. Using the commutation relations of the operators with the Hamiltonian leads to
the Bogoliubov-de Gennes equations (BdG) [33] for the amplitudes u(r) and v(r):

1

2m
p� e

c
A

� �2

� EF

� �
uiðrÞ þ DðrÞviðrÞ ¼ EiuiðrÞ ð5Þ

� 1

2m
pþ e

c
A

� �2

� EF

� �
viðrÞ þ D�ðrÞuiðrÞ ¼ EiviðrÞ ð6Þ

A(r) is the vector potential, D(r) is the pairing function given by

DðrÞ ¼ g
X

0<Ei6�hxD

uiðrÞv�i ðrÞð1� 2f ðEiÞÞ: ð7Þ

Here f(Ei) is the Fermi–Dirac distribution given by

f ðEiÞ ¼
1

e
Ei

kBT þ 1
ð8Þ

where T is the temperature, assumed smaller than the critical temperature Tc, below which
superconductivity arises. The pairing between the electrons occurs on an energy scale �hxD,
called the Debye energy. In conventional superconductors this is the cutoff energy pro-
vided by the phonon exchange between electrons. An example of electronic wavefunctions
u and v obtained in this paper is depicted in Fig. 2.

Let us take the order parameter in the form

DðrÞ ¼ Dðq; zÞe�inu ð9Þ
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Fig. 2. The q dependence, in the equatorial plane (z = 0), of the lowest electronic wavefunction. Notice that this
is a localized wavefunction. We show in (a) the wavefunction u, and in (b) the wavefunction v. In this paper we use
dimensionless atomic units.
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This form describes a magnetic flux equal to n flux quanta ðU ¼ n/0 ¼ n hc
2eÞ. The wave

functions ui and vi are expanded in a way similar to Ref. [31]

uiðrÞ ¼
X
l;j;k

cl;j;k/j;l�n=2;keiðl�n=2Þu ð10Þ

viðrÞ ¼
X
l;j;k

dl;j;k/j;lþn=2;keiðlþn=2Þu ð11Þ

where

/jmk ¼
ffiffiffi
2
p

RJ mþ1ðajmÞ
J m ajm

r
R

� � ei2pkz
hffiffiffi
h
p ð12Þ

Here l is an half-odd integer if n is odd and an integer if n is even. Jm is a Bessel function.
The system is placed in a cylinder of radius R and height h. Given the azimuthal symmetry
of the system A does not depend on u; therefore the Hamiltonian of the BdG equations
may be simultaneously diagonalized for each value of l. It is therefore enough to diago-
nalize the matrix

T� D

DT Tþ

� �
ci

di

� �
¼ Ei

ci

di

� �
ð13Þ

where

T�jj0kk0 ¼ �
�h2

2m
a2

jl�n=2 þ
k2p2

h2

� �
djj0dkk0 � ðl� n=2Þ e

�hc
I1 �

e2

�h2c2
I2 � EF ð14Þ

with

I1 ¼
Z h

0

dz
Z R

0

qdq/j;l�n=2;kðq; zÞ
Auðq; zÞ

q
/j0 ;l�n=2;k0 ðq; zÞ ð15Þ

I2 ¼
Z h

0

dz
Z R

0

qdq/j;l�n=2;kðq; zÞAuðq; zÞ2/j0;l�n=2;k0 ðq; zÞ ð16Þ

We also obtain that

Djj0kk0 ¼
Z h

0

dz
Z R

0

qdq/j;l�n=2;kðq; zÞDðq; zÞ/j0;lþn=2;k0 ðq; zÞ ð17Þ
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Notice that the main technical dificulty of the BdG aproach to the monopole–antimono-
pole confinement is the need to determine the full Fermi sphere of fermion wave-functions.
In particular the deepest fermionic state for n = 1 is the one localized by the flux tube, de-
picted in Fig. 2. Because this state provides a finite contribution to the pairing function
D(r), we cannot work with just a few states in the neighbourhood of the Fermi energy.

2.2. Monopole–antimonopole gauge field

In what concerns the vector gauge field A, both in the BdG and in the Ginzburg–
Landau approach, it is given by Maxwell’s equations

r� B ¼ r�r� A ¼ 4p
c

J; ð18Þ

which, in the Coulomb gauge ($.A = 0), is given by Poisson’s equation,

r2A ¼ � 4p
c

J: ð19Þ

Thus, in superconductivity, the standard approximation is to solve classical equations for
the gauge fields and only the fermions are quantized.

The vector potential has two contributions one due to the magnetic monopole–anti-
monopole, Aext and the other due to the currents that are formed in the superconductor,
Asup. Due to the linearity of the Maxwell equations we have that

A ¼ Aext þ Asup; ð20Þ

and we use a similar decomposition for the currents and magnetic fields.
The current density originated in the supercurrents is obtained self-consistently by

JsupðrÞ ¼ e�h
im

X
i

f ðEiÞu�i ðrÞ r �
ie
�hc

AðrÞ
� �

uiðrÞ

þ ð1� f ðEiÞÞviðrÞ r �
ie
�hc

AðrÞ
� �

v�i ðrÞ � c � c: ð21Þ

To compute the contribution of the superconductor to the vector potential, we solve Pois-
son’s equation,

r2Asup ¼ � 4p
c

Jsup: ð22Þ

In what concerns the external monopole–antimonopole fields, the equation of Poisson
does not need to be solved because the vector potential originated by a Dirac monopole,
including a Dirac string, is well known. For instance the gauge field of a monopole located
at the origin, with a vertical string at positive z is,

A1 ¼ �
gM

4p
q

rðr � zÞ eu ð23Þ

This form has a singularity on the line (0,0,z) when z P 0, and it’s curl reproduces the
monopole and string magnetic field. This can be aplied to our choice for the geometric po-
sition of the monopole, antimonopole and respective Dirac Strings, discussed in detail in
Section 1 and in Fig. 1. In this case we are interested in a situation where the currents of
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the two solenoids or magnetic whiskers inserted in the superconductor originate flux lines
that penetrate the superconductor from the monopole and are recovered in the antimono-
pole. We consider one magnetic monopole located �r0 = (0, 0,�z0), and one magnetic
antimonopole located at r0 = (0,0,z0). The flux conservation is ensured by a vertical
semi-infinite Dirac string linking (0, 0,�1) to the monopole, and a second vertical
semi-infinite string linking the antimonopole to (0,0,1), as in Fig. 1. Therefore we have
singularities at z > z0 and z < �z0. The magnetic monopole and antimonopole produce the
magnetic field

Bext ¼ B1 þ B2; ð24Þ

B1 ¼
þgM

4pjrþ r0j2
drþ r0 þ gMdðxÞdðyÞhð�z� z0ÞðêzÞ;

B2 ¼
�gM

4pjr� r0j2
dr� r0 � gMdðxÞdðyÞhðz� z0Þð�êzÞ;

where the string guarantees the conservation of magnetic flux $ Æ B = 0. The magnetic
charge is equal to a quantum of magnetic flux,

gM ¼ U0 ¼ p
�hc
jej : ð25Þ

The gauge field created by the present monopole–antimonopole system has the form,

Aext ¼ gM

4p
q

jrþ r0j½jrþ r0j þ ðzþ z0Þ�
þ q
jr� r0j½jr� r0j � ðz� z0Þ�

	 

eu: ð26Þ

With Eqs. (22) and (26) we may now compute the vector potential. Moreover we can verify
that outside the Dirac strings, the fields do not depend on our choice of the Dirac string
position [8]. Close to each Dirac string and far from the monopoles the external vector
potential is approximately given by the infinite string vector potential

Aext
u ¼ next

�hc
2jejq ; ð27Þ

where, with our configuration, next = 1. Then it can be shown [36] that the BdG equations
can be recast in a form such that they only depend on the difference,

na ¼ n� next ð28Þ

between the vorticity of the gap function (n) and the vorticity of the external line (next). In
the BdG equations we just have to replace n fi na and the effect of the external infinitely
thin solenoid is taken into account exactly if next is an integer. In our geometric configu-
ration for the Dirac strings, depicted if Fig. 1, it is easy to see that the effect of the strings is
such that, in an approximate way, in the region z < �z0 close to the string and far from the
monopole, the BdG equations are approximately described by the equations where the ef-
fect of the external vector potential is equivalent to na = 0, since we choose n = 1 and the
singular contribution from the string is described by next = 1. A similar analysis for z > z0

leads to the same conclusion. Between the monopoles a finite width flux tube forms. As
shown in Ref. [36] these field lines are not singular and the vorticity of the equations is
not affected: there is no string in this region. Therefore na = n � next = 1 � 0 = 1. We
can as well consider that the Dirac string has a finite extension and goes from the north
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monopole to the south monopole, as in the Ball and Caticha geometric configuration. In
this case it is easy to see that the total flux is zero. It seems therefore natural to look for
solutions where in our case n = 1 and in the Ball and Caticha case n = 0, reflecting the dif-
ferent total magnetic fluxes. The Ball and Caticha string configuration with n = 0 leads to
a situation where for z < �z0 and z > z0 we have an effective na = 0 and between the mono-
poles we have na = 1. In this case there is a string between the monopoles (with next = �1).
Therefore the two configurations are equivalent as expected [8].
2.3. Numerical method

The BdG approach requires the full Fermi sphere of fermionic states. The wavefunc-
tions are products of the different eigenvectors of the angular momenta Lz, the radial exci-
tations expanded in a basis of cylindrical Bessel functions with a zero at the boundary, and
the z axis functions expanded in trigonometric functions. We should note that we have to
consider large systems and consequently a large basis of functions has to be used to prop-
erly obtain the exponential decay of the various physical quantities. Otherwise, the expo-
nential regime is not reached. With, say 500 of each quantum number, we arrive at a set of
the order of 108 different electronic wavefunctions in the smallest acceptable Fermi sphere.
For instance the computation of the pairing function D and of the current J requires 3-
dimensional integrals of the large 108 number of wavefunctions in the Fermi sphere. This
also implies that solving the full 3d problem requires very large matrices to be
diagonalized.

While solving the BdG equations in 2 dimensions is standard, see Ref. [36] for a recent
example, in 3 dimensions an educated approximation is welcome, because we face the for-
midable task of diagonalizing 500 matrices of the order of 105 · 105, after the angular
momentum is block diagonalized. Notice that the effective singularity of the topology
and of the gauge fields is summarized in the number na = n � next [36]. Therefore we just
add and subtract to the external vector potential the limiting singular expressions due to
the strings. The remaining part of the vector potential is regular. It has been shown by sev-
eral authors that in this case the contribution of the terms involving the regular part of the
vector potential in the BdG equations is negligible or at least very small. We may therefore
divide the system into two regions, using the inversion symmetry around z = 0. For
jzj < jz0j we solve the BdG equations taking a basis with na = 1 (equivalent to the problem
of a singly quantized vortex line with no external vector potential) and for jzj > jz0j we use
a basis with na = 0. This allows us, in the following to neglect I1 and I2. We have to resort
to this approximation for the z dependence.

In this approximation the eigenfunctions of the BdG Hamiltonian in each region are
plane waves along z. Therefore the potential D does not depend on z and the BdG Ham-
iltonian is independent of z. It may be block diagonalized in terms of the momentum along
the z direction (indexed by k). In this way the components of the Hamiltonian are reduced
to

T�jj0 ¼ �
�h2

2m

a2
jl�na=2

R2
þ 4k2p2

h2

 !
djj0 	 EF ð29Þ

Djj0 ¼
Z R

0

/j;l�na=2
ðqÞDðqÞ/j0 ;lþna=2

ðqÞqdq ð30Þ
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It is important to note that the symmetry of the BdG equations uiðrÞ ! v�i ðrÞ,
viðrÞ ! �u�i ðrÞ and Ei fi �Ei allows to reduce the solution to the positive values of l.
We obtain the eigenvectors and eigenvalues for negative values of l using the above sym-
metry.

We may find the internal vector potential solving Poisson’s equation,

r2Asup ¼ � 4p
c

Jsup: ð31Þ

Defining its only component Asup
u ¼ F ðqÞ=q, Poisson’s equation reduces in cylindrical

coordinates to

o2F
oq2
� 1

q
oF
oq
þ o2F

oz2
¼ � 4p

c
Juq ð32Þ

Decomposing the current as

� 4p
c

Juq ¼ Kðq; zÞ þ bðq; zÞF ðq; zÞ ð33Þ

with

Kðq; zÞ ¼ � 4p
c

X
i

f ðEiÞjuij2ðl� na=2Þ � ð1� f ðEiÞÞjvij2ðlþ na=2Þ

þ bðqÞðAext � AsupÞq; ð34Þ

bðqÞ ¼ � 4p
c
jej
�hc

X
i

f ðEiÞjuij2 þ ð1� f ðEiÞÞjvij2; ð35Þ

we get

o
2F

oq2
� 1

q
oF
oq
þ o

2F
oz2
¼ Kðq; zÞ þ bðqÞF ðqÞ: ð36Þ

These equations may be solved as described in Ref. [36].

3. Results for T = 0

The parameters used are �F = 0.5, xD = 0.25, g/p = 1 in atomic units. We should note
that the relevant parameter is the ratio to the critical temperature. For these parameters
the critical temperature is of the order of 0.06. We consider the two monopoles in a system
with height 960 and radius 480. The distance between the monopoles, d, is varied. Let us
consider that the strings carry a quantum of flux.

In Fig. 3 we compare the absolute value of the total magnetic field for the cases of no
superconductor, and in the superconducting phase considering a n = 1 solution and com-
paring to the case of n = 0. The case of no-superconductor is the usual magnetic dipole.
Notice that the n = 1 and the n = 0 cases also correspond to two different configurations
of confinement. The magnetic vortex provides a linear confining potential. In the n = 1
configuration the monopole is attracted by the antimonopole, this is the standard picture
of confinement, say in a mesonic quark–anriquark system in QCD. In the n = 0 configu-
ration the monopole is attracted by the boundary of the superconductor, not by the anti-
monopole. The n = 0 case simulates a situation where the magnetic solenoids are being



Fig. 3. Density plot for the total magnetic field jB = Bext + Bsupj when the monopole and the antimonopole are
separated by a distance d = 2z0 = 480. The panels correspond from left to right to: no superconductor,
superconductor with topological charge n = 1 and superconductor with topological charge n = 0, respectively.
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inserted from the border of the material. When the solenoids are far enough, it is favour-
able for the flux lines to emerge from the material. As the monopoles get close together it is
more favourable to establish a n = 1 flux tube between the monopoles.

Taking the solution of n = 1 we look for a solution where the flux is quantized and
equal to a quantum of flux. Far from either monopole and close to the strings the magnetic
field is small. In the case of n = 0 there is no flux through the system and the flux lines leave
the superconductor from the monopoles to the border of the system. In Fig. 4 we show the
total and internal magnetic fields for both n = 1 and n = 0. This figure provides comple-
mentary information with respect to Fig. 3. In the case of n = 1 the presence of the flux
tube between the monopoles is evident. In the case of n = 0 the field lines avoid the central
region except along the borders, as expected. The diamagnetic behaviour of the internal
field, obtained subtracting the external field from the total field is clearly displayed in
the right panels of Fig. 4. In the case of n = 1 the internal field close to the monopoles
is not strong enough to compensate the external field. Note however that along the flux
tube the internal field has the same orientation as the total field. Interestingly the internal
field in the vicinity of the z = 0 region and far from the axis winds clockwise and counter-
clockwise. In the case of n = 0 once again along the flux tubes the internal field has the
same orientation as the total field. Between the monopoles the internal field opposes the
total field, as expected.

Clearly it is interesting, in the analogy of the Anderson–Higgs mechanism to the con-
finement of quarks, to determine the confinement potential between the two monopoles.
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Taking the analogy of the monopoles with the quarks in QCD the fact that these are lin-
early confined at large distances should translate in the superconductor to a linear poten-
tial energy when the monopoles are moved apart. Indeed in Fig. 5 we show the magnetic
energy of the system,

U ¼
Z jBj2

8p
dV ; ð37Þ

as a function of the distance d = 2 z0 between the monopoles. The behaviour is similar to
the one proposed for the confinement problem in QCD. In Fig. 5 we show the difference in
energy between the normal system and the superconductor as a function of d. Interest-
ingly, the solenoid–antisolenoid magnetic energy includes a subtle point. We do not in-
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clude, for the computation of the magnetic energy, the magnetic field inside the Dirac
strings. In the present case, the magnetization of both solenoids has to be maintained
constant. We assume that this is an external task of the experimental apparatus. In the
superconductor we obtain a linear potential at larger distances, as expected. The
solenoid-antisolenoid magnetic force is attractive in the vacuum, the energy is simply a
Coulomb term.

Indeed in Figs. 5a and b, we depict the magnetic energy of the solenoid-antisolenoid
system both in the superconducting phase and in the normal phase (no superconductor).
Although our solenoids are thinner than both the coherence length and the penetration
length, they have a finite width, and we are able to account for the interior (string-like)
magnetic field created by the solenoids. Notice that the 1

r component of the magnetic
energy is decreasing. To isolate the linear potential we also shown in Fig. 5c the difference
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between the magnetic energy in the two phases. To get the monopole–antimonopole inter-
action, independently of the string internal energy, we also add to the linear interaction of
Fig. 5a the monopole–antimonopole Coulomb interaction. This produces the potential
depicted in 5a, similar to the linear + Coulomb potential of QCD.
4. Results for T „ 0

In Figs. 6 and 7 we study the influence of temperature on the total field. As the temper-
ature increases the flux tube between the two monopoles narrows in the intermediate
region and close to the critical temperature, where the superconducting order vanishes,
it approaches the normal phase regime where close to the monopoles the field intensity
extends away from the axis. As the temperature increases the flux tubes narrow consider-
ably until it breaks down when the superconductor becomes unstable and the system
becomes normal. This happens both for n = 1 and n = 0. Again, the n = 0 case simulates
a situation where the magnetic solenoids are being inserted from the border of the material
such that it is favourable for the flux lines to emerge from the material. As the monopoles
get closer it is more favourable to establish a flux tube between the monopoles.

We may consider different planes perpendicular to the string axis. The flux contained in
any plane perpendicular to the strings axis is constant. In the regions far from the mono-
poles the flux is almost entirely contained in the strings. This is shown in Fig. 8. The flux
profile is shown along a plane that intercepts the string and it is clear that the flux reaches
its asymptotic value very close to the string. In the region between the monopoles the flux
lines emerge and converge in the opposite charge monopole. In Fig. 8 it is clear that the
flux grows smoothly from the origin, since in this case there is a considerable value of
Fig. 6. Effect of temperature on the magnitude of the total magnetic field for n = 1. The temperatures are, from
left to right, T = 10�4, 0.02, 0.03, 0.04, respectively. For the density scale see Fig. 3.



Fig. 7. Effect of temperature on the magnitude of the total magnetic field for n = 0. The temperatures are, from
left to right, T = 10�4, 0.02, 0.03, 0.04, respectively. For the density scale see Fig. 3.
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the magnetic field far from the axis. Also, we present results for Bz and Ju also as a func-
tion of temperature.

In the central equatorial region (z = 0) the magnetic field is maximum on the axis and
then decreases rapidly, on the scale of the penetration length. The field is compensated by
the supercurrents that also decay rapidly as we move away from the axis.
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In a plane such that we are already on the strings, the field is finite and negative at the
axis but increases to zero far from the string. There is a cancellation between the field of
the string and the field of the monopoles, as explained above. The supercurrents vanish on
the string, then go through a maximum at a finite distance from the axis and then decrease
far away. Note that the flux is already saturated on the axis, then decreases and the asymp-
totic value is recovered far from the axis.

As the temperature increases the penetration length increases. As a consequence both
the increase and decrease of the field with distance sets on a larger scale as the temperature
increases. This is clearly shown on the various quantities plotted in Fig. 8.

Finally, we consider in Fig. 9 the temperature dependence of the string tension. Also,
we show the temperature dependence of the bulk value of the pairing function. We see that
as the temperature increases both the pairing function and the string tension decrease, par-
ticularly as the critical temperature is approached. This critical temperature is defined as
the temperature when the pairing function vanishes. Note that Fig. 9 shows that the string
tension is already quite small when the pairing function is still finite, even though decreas-
ing since the system is getting close to the critical temperature.
5. Conclusion

Motivated by the superconductor model for the confinement in QCD, we extended the
Ball and Caticha work to include both the microscopic fermionic degrees of freedom of the
superconductor and finite temperature. Our framework are the Bogoliubov-de Gennes
equations solved in the external field lines of a monopole–antimonopole pair, including
the associated semi-infinite magnetic strings. We address two confining configurations.
In the common n = 1 configuration the monopole is attracted by the antimonopole. In
the n = 0 configuration, equivalent to a case where one quark would try to eject itself from
a quark–gluon plasma bubble into the confining vacuum, the monopole is attracted by the
boundary of the superconductor, and thus is repelled to the outside of the superconductor.

Notice that this is not yet QCD, here we solve a condensed matter system. The advan-
tage of studying a solenoid–antisolenoid pair in a superconductor is the more detailed nat-
ure of our results. For instance, we identify the well known localized fermionic states
(unattainable via the Ginzburg–Landau approach [38]) important in the region where
the supercurrents provide a topological charge. As expected in the Bogoliubov-de Gennes
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framework, we obtain one fermionic localized state per angular momentum [38]. Also, we
analyze the dependence on the temperature of the string tension r, of the fermion pairing
order parameter D and of the magnetic topological flux U.

Nevertheless, this study is useful for the understanding of confinement and of temper-
ature and density effects in QCD [39–50] or in Abelian QED [51,52]. These effects are usu-
ally explored with Lattice QCD or with Schwinger–Dyson equations. We note that the
present framework can also be extended to model QCD. Importantly, this extension
would be relevant to colour superconductivity, where the quark density is large, and to
the quark-gluon plasma, where the temperature is finite.

We find that the magnetic field in the vortex, say in the equatorial plane for n = 1,
decreases with increasing temperature. In what concerns the penetration length and the
topological magnetic flux, it is seen from the results that the penetration length increases
with temperature (as is well known), while the topological magnetic flux decreases for a
specified distance. This decreases the string tension of the long distance monopole–
antimonopole linear attraction. Notice that the string tension is already quite small when
the pairing function is still finite, before it vanishes at the critical temperature. The quark–
anriquark linear confining potential may suffer a similar decrease, before the temperature
reaches the deconfinement temperature.
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[31] F. Gygi, M. Schlüter, Phys. Rev. B 43 (1991) 7609.
[32] D. Rainer, J.A. Sauls, D. Waxman, Phys. Rev. B 54 (1996) 10094.
[33] P.G. de Gennes, Superconductivity of Metals and Alloys, Addison-Wesley, Reading, MA, 1989.
[34] I.F. Lyuksyutov, V. Pokrovsky, Mod. Phys. Lett. 14 (2000) 409.
[35] C. Berthod, Phys. Rev. B 71 (2005) 134513.
[36] M. Cardoso, P. Bicudo, P.D. Sacramento, J. Phys. Cond. Matt. 18 (2006) 8623.
[37] I.F. Lyuksyutov, V. Pokrovsky, Adv. Phys. 54 (2005) 67.
[38] S.M.M. Virtanen, M.M. Salomaa, Phys. Rev. B 60 (1999) 14581.
[39] T.A. DeGrand, C.E. DeTar, Nucl. Phys. B 225 (1983) 590.
[40] M. Teper, Phys. Lett. B 171 (1986) 81.
[41] C. DeTar, J.B. Kogut, Phys. Rev. Lett. 59 (1987) 399.
[42] S.A. Gottlieb, W. Liu, D. Toussaint, R.L. Renken, R.L. Sugar, Phys. Rev. Lett. 59 (1987) 2247.
[43] K.M. Bitar et al., Phys. Rev. D 43 (1991) 2396.
[44] A. Irback, P. LaCock, D. Miller, B. Petersson, T. Reisz, Nucl. Phys. B 363 (1991) 34.
[45] V. Koch, Phys. Rev. D 49 (1994) 6063.
[46] S. Ejiri, S.i. Kitahara, Y. Matsubara, T. Suzuki, Phys. Lett. B 343 (1995) 304.
[47] C. DeTar, Nucl. Phys. Proc. Suppl. 42 (1995) 73.
[48] H. Ichie, H. Suganuma, H. Toki, Phys. Rev. D 52 (1995) 2944.
[49] C.W. Bernard et al., Phys. Rev. Lett. 78 (1997) 598.
[50] C.W. Bernard et al., Phys. Rev. D 64 (2001) 074509.
[51] M.N. Chernodub, E.M. Ilgenfritz, A. Schiller, Phys. Rev. D 64 (2001) 054507.
[52] M.N. Chernodub, E.M. Ilgenfritz, A. Schiller, Phys. Rev. D 67 (2003) 034502.


	Confinement of monopole field lines in a superconductor at T ne 0
	Introduction
	Bogoliubov de Gennes equations and the monopole-antimonopole field
	Fermion pairing
	Monopole-antimonopole gauge field
	Numerical method

	Results for T=0
	Results for T ne 0
	Conclusion
	Acknowledgements
	References


