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Pure S-wave covariant model for the nucleon
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Using the manifestly covariant spectator theory and modeling the nucleon as a system of three constituent
quarks with their own electromagnetic structure, we show that all four nucleon electromagnetic form factors can
be very well described by a manifestly covariant nucleon wave function with zero orbital angular momentum.
Since the concept of wave function depends on the formalism, the conclusions of light-cone theory requiring
nonzero angular momentum components are not inconsistent with our results. We also show that our model
gives a qualitatively correct description of deep inelastic scattering, unifying the phenomenology at high and low
momentum transfer. Finally, we review two different definitions of nuclear shape and show that the nucleon is
spherical in this model, regardless of how shape is defined.
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I. INTRODUCTION

The elastic electron-proton polarization transfer experi-
ments undertaken at the Thomas Jefferson National Accel-
erator Facility (JLab) [1–3] disclosed that the ratio of the
electric GEp to magnetic GMp form factors of the proton is not
constant as Q2, the square of the momentum transfer, varies
(referred to as a lack of scaling). These were followed up by the
super Rosenbluth measurements at JLab [4] confirming older
Stanford Linear Accelerator Center (SLAC) measurements
(reanalyzed by Arrington [5]) which originally showed that
GEp and GMp do scale.

It now seems clear that the discrepancy between the
JLab polarization transfer results and other measurements
using Rosenbluth separation are essentially due to two-photon
processes [6–9]. There are still some uncertainties about the
effective sizes of two-photon exchange effects, but there is
no doubt that the form factors extracted from the Rosenbluth
method require significant corrections, while those extracted
from the polarization transfer method require only small cor-
rections. As a consequence, the polarization transfer method is
a more accurate way to determine the form factors, removing
the possibility that the lack of scaling is an experimental
artifact.

The lack of scaling was a surprise. While it had been
predicted as long ago as 1973 [10], these predictions had
been largely forgotten. The absence of scaling was seen by
some as proof that the quark wave function of the proton
must have orbital angular momentum components L > 0; this
observation was further supported by arguments, based on
light-cone wave functions, that the Pauli form factor F2 must
be zero, unless L > 0 components exist [11]. In this paper,
we will discuss how these results depend on the light-cone
formalism and show, using the covariant spectator formalism,
that (i) it is possible to construct a pure S-wave covariant wave
function for the nucleon and (ii) L > 0 components, while they
may be a part of any realistic wave function, are not required
to explain the data. We cannot conclude that either formalism

is wrong, only that the the concept of the “wave function” is
different. All of this is discussed in Sec. IV D.

The JLab data have also stimulated discussion about the
shape of the nucleon. Is the nucleon spherical or deformed?
If distorted, is this a relativistic effect? The answers to these
questions depend in part on how we define “shape” and will
be discussed in some detail in Sec. VII B.

Finally, to fully examine the implications of our covariant
approach, we use it to calculate the quark distribution functions
in deep inelastic scattering (DIS). We obtain reasonable,
qualitatively correct results.

To set the stage for the physical approximations used in this
calculation, consider Fig. 1. In the Nc → ∞ limit (where Nc is
the number of quark colors), crossed diagrams are suppressed,
and the gluon exchanges between the qq̄ pair interacting with
the photon can be included either as part of a constituent
quark electromagnetic form factor (usually described by vector
dominance) or as contributions from higher Fock components
of the nuclear wave function. (Since Nc = 3, corrections to this
simple picture are expected to be of the order of only about
10%, and are probably small enough to be included when the
parameters of our phenomenological model are adjusted to fit
the data.) At low energies and momenta, the description of
Fig. 1(a) has the advantage that unknown short-range physics
can be included in a few constituent quark parameters (such as
the anomalous moment). In this paper, we will adopt the view
represented by Fig. 1(a); our constituent quark form factors
include the physics that comes from higher Fock components,
expected to be important at modest Q2, vanishing only in the
DIS limit.

The remainder of this paper is divided into five sections.
In the next section, we define the nucleon wave function in
some detail. In Sec. III, we derive the nucleon form factors
using this wave function. The principal results are Eqs. (28)
and (29). Readers uninterested in the details may skip directly
to Sec. IV, where the first qualitative results that can be derived
from these equations are discussed. Then, before studying the
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FRANZ GROSS, G. RAMALHO, AND M. T. PEÑA PHYSICAL REVIEW C 77, 015202 (2008)

FIG. 1. (Color online) Two views of the
nucleon form factor. (a) The form factor is built
from a constituent quark form factor and nuclear
wave functions. (b) The quark is pointlike, with
its “structure” described by higher Fock states of
the nuclear wave function; in this case, the Fock
state with three quarks and one gluon.

form factors quantitatively, we use this model to derive, in
Sec. V, formulas for the quark distribution amplitudes mea-
sured in deep inelastic scattering. In Sec. VI, we parametrize
both the nucleon wave function and the quark form factors and
determine the parameters by fitting the nucleon form factors
and the moments of the quark distribution amplitudes. Finally,
in Sec. VII, we review the work and draw conclusions. The
appendixes provide a few details considered too technical to
be included in the text.

II. RELATIVISTIC NUCLEON WAVE FUNCTION

The relativistic nucleon wave function presented here is
similar to the one developed by Gross and Agbakpe [12],
referred to here as Ref. I. Two observations motivated us to
develop this new S-wave model. First, the overall motion of
the composite nucleon described in Ref. I does not satisfy the
Dirac equation for a spin-1/2 particle (we are not sure that this
is an essential requirement, but it is certainly an advantage).
Attempts to find a wave function that does satisfy the Dirac
equation lead us directly to this model. Second, as emphasized
by Kvinikhidze and Miller [13], the model of Ref. I depends on
the direction of the relative three-momentum k between a pair
of noninteracting quarks (referred to as a diquark, although
this term is usually applied to an interacting pair) and the third
quark, and hence includes angular momentum components.
The S-wave model presented here is independent of the
direction of this momentum, and exactly reproduces the pure
S-wave structure of the simplest nonrelativistic SU(2) × SU(2)
wave function when the nucleon is at rest. Since one of the
goals of this paper is to study the implications of the absence
of L > 0 components in the wave function, it is essential that
our model wave function have no such components.

Following Ref. I [12], we consider the nucleon described
by a wave function built in the spirit of the covariant spectator
formalism [14,15], which has already been solved and shown
to work successfully for the three-nucleon system [15–17].
The nucleon with four-momentum P and mass M is described
by a wave function for an off-shell quark and an on-mass-shell
diquarklike cluster, that is,

�(P, k) = (mq− �p1)−1〈k|�|P 〉, (1)

where � is the vertex function describing the coupling of an
incoming on-shell nucleon with mass M to an outgoing off-
shell quark and an on-shell quark pair (the “diquark”). The
continuous mass of the diquark pair is fixed at some mean
value, which scales out of the final results. The quark has
dressed mass mq and four-momentum p1. The diquark four-

momentum k = P − p1 is constrained by its on-mass-shell
condition k2 = m2

s , where ms is the mass of the diquark.
As discussed in Ref. I, the wave function will be

parametrized by a smooth function with no singularity at the
quark pole p2

1 = m2
q . If the mass of the quark and diquark were

greater than the mass M of the nucleon, there would be no
pole in any case; but if mq + ms < M, the propagator would
normally contribute a pole associated with the possibility of
free scattering of the quark and diquark. Since the quarks
are confined, this scattering cannot take place, and detailed
calculations [18] show that the vertex function � automatically
develops a zero that cancels the quark pole and gives a smooth
behavior for the wave function. Our assumption that � is
smooth regardless of the value of the quark mass is a simple
way of including confinement without investigating the details
of this cancellation.

The quark-diquark interaction described by the wave
function is parametrized through simple scalar wave functions.
The diquark can have either spin-0 (isospin-0) and spin-1
(isospin-1) components. The isospin states of the quark-
diquark system can be written as

φ0
I = ξ 0∗χI , (2)

φ1
I = − 1√

3
τ · ξ 1∗χI

= 1√
6

[
τ−ξ 1

+ − τ+ξ 1
− −

√
2 τ3ξ

1
0

]
χI , (3)

where τ± = τx ± iτy are the isospin raising and lowering
operators, I = ±1/2 is the isospin of the quark (or nucleon)

χ+ 1
2 =

(
1
0

)
= u (or p) χ− 1

2 =
(

0
1

)
= d(or n), (4)

and

ξ 0 = 1√
2

(ud − du),

ξ 1
0 = 1√

2
(ud + du) = ξz,

(5)
ξ 1
+ = uu = − 1√

2
(ξx + iξy),

ξ 1
− = dd = 1√

2
(ξx − iξy).

The operator τ · ξ 1∗ in Eq. (3) is to be interpreted as
transforming the initial two-component nucleon spinor into
a two-component quark spinor. Explicitly, for the proton state,
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this operation gives

φ1
1
2

=
√

2

3

(
0
1

)
ξ 1
+ −

√
1

3

(
1
0

)
ξ 1

0

→
√

1

6
[2d(uu) − u(ud + du)] , (6)

and automatically yields the correct quark content of the
isospin-1 diquark part of the proton wave function.

In the nucleon rest frame, we choose spin states that are
analogs of Eqs. (2) and (3). This means that the spins of both
the quark and diquark are aligned along the (arbitrarily chosen)
z axis. (In Ref. I, the spin of the diquark was chosen to be
parallel to the diquark momentum k, introducing an angular
dependence into the wave function from the start. Here we
construct a wave function with no angular dependence by
defining the spin with respect to a fixed axis.) For a nucleon
moving in an arbitrary direction, the spins will be aligned
along the direction of the nucleon momentum. This means
that the spin states must be constructed in a two-step process:
(i) the nucleon is transformed to momentum |P| = P along
the ẑ direction, and then (ii) the state is transformed back to
the final direction P. This construction bears some resemblance
to the construction of helicity amplitudes. A more complete
discussion of how these states are constructed can be found in
Refs. [19,20].

In this paper, we will need explicit results for nucleons
moving in the ±ẑ direction only. The scalar diquark state can
be written as

φ0
s = u(0, s) → u(P, s), (7)

where φ0
±1/2 is the spin-0 diquark state, u is the Dirac spinor,

and the arrow indicates the relativistic generalization. Note
that in this case, the spin of the (isolated) quark is specified by
the spin of the nucleon.

To construct the spin-1 diquark component of the wave
function, φ1

s , we begin by considering the nucleon at rest,
where the lower two components of its Dirac spinor are zero.
If we choose

φ1
s = − 1√

3
γ5 �ε ∗u(0, s) (8)

with the four components ε = {εt , εx, εy, εz} of the three
diquark polarization states defined as in Eq. (5), that is,

ε± = ∓
√

1

2
{0, 1,±i, 0} ,

(9)
ε0 = {0, 0, 0, 1} ,

then the upper two components of Eq. (8) will look just like
Eq. (3), and the lower two components will be zero. The state
in the moving frame is then obtained from Eq. (8) by a boost
and becomes

φ1
s → − 1√

3
γ5 �ε ∗

P u(P, s), (10)

where, for boosts in the ẑ direction, the ε± polarization vectors
are unchanged, but the longitudinal one becomes

ε0P = 1

M
{P, 0, 0, EP } , (11)

where EP = √
M2 + P2. Note that all the polarization vectors

satisfy

ε∗
λ · ελ′ = −δλλ′ P · ελ = 0 (12)

(where we use the metric g00 = 1 and gij = −δij ). The latter
condition is the usual constraint ensuring the polarization
vectors have only three independent states. Finally, note that
we chose to write Eq. (10) in terms of ε∗ instead of ε to allow us
to interpret Eq. (10) as the amplitude for an incoming nucleon
and an outgoing diquark in the final state.

Putting this all together, the manifestly covariant nucleon
wave function is the four-component Dirac spinor

�N (P, k) = 1√
2
ψ0(P, k)φ0

I u(P, s)

− 1√
6
ψ1(P, k) φ1

I γ5 �ε ∗
P u(P, s), (13)

which is the sum of contributions from a spin-isospin (0,0)
diquark and a spin-isospin (1,1) diquark, and ψ0,1 are scalar
functions that specify the relative shape of the two components.
If ψ0 = ψ1 = ψ, Eq. (13) reduces to

�N = 1√
2

(
φ0

I φ
0
s + φ1

I φ
1
s

)
ψ, (14)

in precise agreement with the symmetric nonrelativistic
SU(2) × SU(2) wave function of the nucleon. We emphasize
that the combination (φ0

I φ
0
s + φ1

I φ
1
s ) is exactly symmetric

under interchange of any two quarks. Note that because �P
commutes with γ5�ε ∗, �N satisfies the Dirac equation

(M− �P )�N = 1√
2

(
ψ0φ

0
I − 1√

3
ψ1φ

1
I γ5�ε ∗

)
× (M− �P ) u(P, s) = 0. (15)

The wave functions ψ are Lorentz scalars that, by the
Hall-Wightman theorem, can only depend on scalar products
of their arguments, and since k2 = m2

s and P 2 = M2 are
fixed, they can therefore only be a function of (P − k)2. We
chose to express this (P − k)2 dependence in terms of the
dimensionless variable

χ = (M − ms)2 − (P − k)2

Mms

, (16)

and take a functional form for ψ that reduces to the Hulthen
form (difference of two Yukawa functions) in the nonrelativis-
tic limit, and has an asymptotic 1/Q2 dependence for large Q2,
as expected from pQCD calculations of the electromagnetic
form factors [21,22]. This form is

ψ(P, k) = N0

ms(β1 + χ )(β2 + χ )
, (17)

where β1, β2 are range parameters (we assume β2 > β1) and
N0 is a normalization constant.

We emphasize that, in the nucleon rest frame, the wave
function of Eq. (13) contains absolutely no angular dependence
of any kind. In Ref. I, the diquark polarization vectors, which
were denoted by η, depended on the diquark momentum k

with the property η · k = 0.
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III. NUCLEON ELECTROMAGNETIC FORM FACTORS

The calculation of the form factors, based on Fig. 1(a),
parallels the discussion of Ref. I. The relativistic impulse
approximation (RIA) to the nucleon current in the covariant
spectator theory is [14–17,23–25]

J
µ

I = 3
∑

ε

∫
k

�̄N (P+, k) j
µ

I �N (P−, k)

= ū(P+)

[
F1(Q2)γ µ + F2(Q2)

iσµνqν

2M

]
u(P−), (18)

where the spectator formalism places the diquark on its mass
shell. Our “diquark” is actually two noninteracting quarks with
a continuous mass distribution from 2mq to ∞, so what we are
doing here is averaging the integral over this mass distribution
by fixing the mass at a mean value equal to ms , which becomes
a parameter of the model. (We can do this because none
of the physics depends strongly on the details of this mass
distribution.) With this restriction, the four-dimensional loop
integral reduces to an integration over the three-momentum of
the on-shell spectator diquark, i.e.,∫

k

=
∫

d3k

(2π )32Es

, (19)

with Es = √
m2

s + k2 the energy of the on-shell diquark, and
the sum is over the polarizations ε of the spin-1 diquarks
(see below). (The scalar diquark term has no sum.) The RIA
neglects any exchange current contributions that might be
present. As a consequence of our definitions in Eqs. (16) and
(17), the momentum k may be scaled by the diquark mass ms ,
giving final results independent of ms . The factor of 3 sums
up the contributions from the three quarks. The expression
is covariant and may be written in any frame but is most
conveniently evaluated in the Breit frame with the initial (P−)
and final (P+) four-momentum of the nucleons chosen to be

P+ = (E, 0, 0,Q/2),

P− = (E, 0, 0,−Q/2),

q = (0, 0, 0,Q),

with Q =
√

−q2 the transferred four-momentum and E =√
M2 + Q2/4. The spin indices of the nucleons have been

suppressed.
The electromagnetic coupling of a spin-1/2 quark with a

photon is written as

j
µ

I = j1

(
γ µ − �q qµ

q2

)
+ j2

iσµνqν

2M
, (20)

where the subtraction term proportional to �q qµ is zero for the
elastic form factors but ensures that the current is automatically
conserved in the deep inelastic limit. The use of this term for
DIS was justified in Ref. [26] and will be discussed in more
detail in future work. The functions j1 and j2 are operators in
the quark isospin space. For i = 1, 2,

ji = 1
6fi+(Q2) + 1

2fi−(Q2)τ3, (21)

where fi± are the isoscalar and isovector combinations related
to the u and d quark form factors by

2
3fiu = 1

6fi+ + 1
2fi−,

(22)− 1
3fid = 1

6fi+ − 1
2fi−.

The form factors are normalized (with a = {u, d}) to

f1a(0) = 1, f2a(0) = κa,
(23)

f1±(0) = 1, f2±(0) = κ±,

where κu and κd are the u and d quark anomalous magnetic
moments (scaled by the quark charges) and

κ+ = 2κu − κd,
(24)

κ− = 2
3κu + 1

3κd.

Note that κ+ = κ− implies that κu = κd . In all models
presented here, we construct f1± and f2± to satisfy the
conditions

lim
Q2→∞

f1±(Q2) → λ > 1,

(25)
lim

Q2→∞
f2±(Q2) → 0.

The role of λ will be discussed later. The quark form factors in
Eq. (22) parametrize the charge and magnetic structure of the u

and d constituent quarks (CQs). The integral (18) is evaluated
by substituting the nucleon states in Eq. (13) and summing
over diquark polarizations. Since the diquark is a free particle,
its polarization state cannot be changed by the interaction with
the quark, so there is no coupling between the scalar and vector
diquarks, giving an expression of the form

J
µ

I = ū(P+)
3

2

∫
k

{[
j1γ

µ + j2
iσµνqν

2M

]
ψ+

0 ψ−
0

− 1

3
γνγ5

[
j3γ

µ + j4
iσµαqα

2M

]

× γ5γν ′Dνν ′
ψ+

1 ψ−
1

}
u(P−), (26)

where ψ±
0,1 = ψ0,1(P±, k) (and we allow for the possibility

that ψ0 �= ψ1 for the time being) and the isospin sum has
been done, giving j(i+2) ≡ 1

3τj jiτj = 1
6fi+ − 1

6τ3fi−, for i =
1, 2. The operator Dνν ′

results from the sum of the vector
polarizations of the diquarks.

The derivation of the operator Dνν ′
requires careful discus-

sion. In the first version of this paper [27], our derivation of
this polarization sum was carried out in the Breit frame, and
Kvinikhidze and Miller [28] claimed it was not covariant. A
new, more complete and careful derivation of Dµν is given
in Refs. [19,20], where we show in detail that Dµν is both
covariant and uniquely defined. The derivation involves the
introduction of new diquark (and quark) polarization states
which can be described as “covariant fixed axis polarization
states.” Discussion of these states requires the kind of care
used in the original derivation of helicity states given by Jacob
and Wick [29]. A general discussion of the use of covariant
fixed axis polarization states is planned for future work.
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Using these states, the covariant polarization sum Dµν is

Dµν ≡
∑

λ

ε
µ

λP+εν∗
λP−

= −gµν − P
µ
+P ν

−
M2

+ 2
(P+ + P−)µ(P+ + P−)ν

4M2 + Q2
. (27)

Note that this function Dµν has no angular dependence, and
the nuclear current is pure S wave when Q2 = 0. At nonzero
Q2, an angular dependence emerges from the wave functions
ψ±, but this is due to the distortion under the boost and is not
associated with the intrinsic structure of the state.

The two form factors F1 and F2 can be separated from
the expression in Eq. (26) using Eq. (27). We now impose
the condition ψ0 = ψ1 = ψ as required by the symmetry
of the state [this simple condition replaces Eq. (10) needed
in Ref. I]. Instead of reporting F1 and F2, we give the charge
and magnetic combinations

GE(Q2) = F1(Q2) − τF2(Q2)

= 1
2B(Q2){(f1+ + τ3f1−) − τ (f2+ + τ3f2−)},

(28)

GM (Q2) = F1(Q2) + F2(Q2)

= 1
6B(Q2){(f1+ + 5τ3f1−) + (f2+ + 5τ3f2−)},

(29)

where τ ≡ Q2/(4M2) is not to be confused with τ3. In these
expressions, the Q2 dependence of the quark form factors has
been suppressed, and we have introduced the covariant nucleon
body form factor

B(Q2) =
∫

k

ψ+ψ−. (30)

The simple factorization into a product of a body form factor
times combinations of quark form factors is possible because
only the scalar wave functions depend on the integration
variable; the rest of the integrand (the ji functions and their
coefficients) are functions of Q2 only. We emphasize that this
calculation of the form factors is manifestly covariant at every
step.

At Q2 = 0 the charge form factor reduces to

GE(0) = 1
2 [1 + τ3] B(0) = 1

2 [1 + τ3] , (31)

if we impose the normalization condition

B(0) =
∫

k

ψ2 = 1. (32)

This equality fixes N0. Our theory is not complete enough to
automatically fix the normalization (as in Refs. [23,24]), but
we do not regard N0 as an additional parameter. Note that the
conditions in Eq. (25) ensure that both GE and GM have the
correct asymptotic behavior (∼1/Q4 times logarithm correc-
tions), provided B(Q2) ∼ 1/Q4 (times logarithm corrections),
and this is easily achieved through a judicious choice of the
high momentum dependence of the scalar wave function ψ .

IV. FIRST PREDICTIONS FOR THE FORM FACTORS

Some of the predictions of this model are easily obtained
from formulas (28) and (29) without fitting or detailed analysis.

A. Magnetic moments

The magnetic moments are given by

µp = 1 + 1
6 (κ+ + 5κ−),

(33)
µn = − 2

3 + 1
6 (κ+ − 5κ−).

The simplest assumption that κ+ = κ− = κ gives immediately
the well-known quark model relation

µp

µn

= −3

2
, (34)

but the proton moment (for example) will not be even
approximately correct unless κ ∼ 2,

µp = 1 + κ � 3. (35)

This implies that the u and d anomalous moments are also
equal to 2. A physical argument for this result will be given in
Sec. IV D below.

In this work, we choose to reproduce the nucleon magnetic
moments exactly, giving

κ+ = 3(µp + µn) − 1 = 1.639,
(36)

κ− = 3
5 (µp − µn) − 1 = 1.823,

or

κu = 1.778, κd = 1.915. (37)

B. Neutron form factor

Equation (28) shows that GEn is identically zero if f1+ =
f1− and f2+ = f2− (a consequence of vector dominance if
they could be approximated by a single pole at either the ρ or
ω mass). Since κ+ �= κ−,GEn is not identically zero but very
small.

There are three possible ways to increase GEn. One
possibility is to add angular momentum components to the
nucleon. This will be discussed in a subsequent paper. Two
remaining possibilities are (i) to break the f1+ = f1− equality
or (ii) to add a pion cloud term. These will be discussed in
Sec. VI.

C. No scaling for G Ep and GM p

The ratio of GEp and GMp predicted by Eqs. (28) and (29)
is a simple result independent of the body form factor and
dependent only on the quark form factors, that is,

R = GEp

GMp

= 3
(f1+ + f1−) − τ (f2+ + f2−)

(f1+ + 5f1−) + (f2+ + 5f2−)
. (38)

This will not give scaling unless the f2’s are much smaller that
the f1’s, but the relations (36) and (37) ensure that this cannot
be true near Q2 = 0. In fact, Eq. (38) shows that a strong
violation of scaling is the most “natural” result. In the naive
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case where f1+ = f1− = f1 and f2+ = f2− = f2 = κf1, R

simplifies to

R = GEp

GMp

= f1 − τf2

f1 + f2
= 1 − τκ

1 + κ
, (39)

predicting that R will be zero at Q2 � 2 (GeV)2 if κ � 2.
However, the correct asymptotic behavior for GE and GM

cannot be reproduced unless the f2’s go to zero faster at high
Q2 than the f1’s, so the ratio R must flatten out at high Q2. Still,
it is not hard to understand why this simple model predicts the
violation of scaling.

D. Angular momentum theorem

In this section, we will use the term angular momentum
theorem (AMT) to refer to the light-cone result predicting that
the Pauli form factor F2 = 0 if there are no angular momentum
components in the wave function (L = 0).

The derivation of the AMT is based on the view of the
nucleon illustrated in Fig. 1(b). In this view, the contribution
shown in the figure is the matrix element of the bare quark
current between the Fock component with three quarks and n

gluons (only n = 1 is shown in the figure), which we represent
by

jµ
n (q) = 〈P+|3q + ng〉 〈q|γ µ|q〉 〈3q + ng|P−〉 . (40)

Alternatively, the contributions to the nucleon form factor
can be organized as shown in Fig. 1(a), where this diagram
is part of the matrix element of the dressed quark current
(the CQ current) between the valence component of the wave
function. The equivalence of these two ideas is represented by
the identity

J
µ

I (q) =




∞∑
n=0

jµ
n (q) light-front,

〈P+|3q〉jµ

I 〈3q|P−〉 spectator,

(41)

with j
µ

I the dressed quark current introduced in Eq. (20). In
what follows we simplify the discussion by focusing on the
anomalous moment of the quarks, related to the value of the
Pauli form factors of j

µ

I at Q2 = 0.
If the anomalous moments of the quarks are zero, Eq. (38)

predicts that R = 1, implying that F2 = 0. The nonzero value
of F2 in the S-state model comes directly from the nonzero
anomalous moment of the quark, and since the light-cone
formalism allows for no quark anomalous moment, there
seems to be a contradiction.

This contradiction is easily removed by considering
Fig. 1 as one of the many terms contributing to Eq. (41).
In light-front language, this term is one contribution to the
Fock matrix element j

µ

1 (q) involving the bare quark current
and the Fock state with one gluon. In the spectator language,
this term contributes to the matrix element of the lowest
order anomalous magnetic moment, illustrated in Fig. 2.
From the spectator viewpoint, this term contributes to the
electromagnetic structure of the constituent quark and has
nothing to do with the structure of the nucleon itself.

FIG. 2. (Color online) Feynman diagram for the lowest order
contribution to the CQ anomalous moment.

How exactly does the anomalous moment arise from
Fig. 2? Since the anomalous moment is the coefficient in the
σµνqν term, which is linear in q, it cannot be computed by
evaluating the diagram at q = 0. Furthermore, a term linear in
q can emerge only from the numerator of the diagram. Part of
this numerator includes the factors

N µ =
∫

d4k(mq+ �p+− �k)γ µ(mq+ �p−− �k), (42)

where p± = p ± 1
2q. As it turns out, the term linear in q comes

from the momentum-dependent cross terms involving the
operators �p±− �k, and hence require the angular-dependent
terms included in a quark propagator. If this contribution
is regarded as part of the wave function of the nucleon,
then L > 0 components are indeed required to generate a
nonzero F2, and the AMT is proved. However, in the spectator
formalism where the structure of the quark current is factored
out of the wave function, L > 0 components are not required.

How large is the anomalous moment predicted by the
diagram in Fig. 2? A precise calculation would require
summation of all the QCD diagrams taking into account the
fact that the incoming and outgoing quarks are off-shell. To
get a rough estimate, use the well-known result from QED,
assume that the average 〈p2

±〉 = m2
q , and multiply by a factor

of 3 to include color. This gives (remembering that we have
defined κ in nuclear magnetons)

κ = 3
αs

2π

M

mq

. (43)

If we assume αs � 1 and M/mq � 3, we obtain the estimate
κ � 1.5. This estimate is admittedly crude but perhaps
sufficient to show that our phenomenological results for κ

are not unreasonable.
What does it matter if anomalous moment contributions

are considered part of the wave function (as they are in the
light-cone theory) or part of a CQ form factor (as they are in
the spectator theory)? As long as one recognizes where various
effects are included in a calculation, it may not. Unfortunately,
our intuition is often shaped by hidden assumptions (which
are usually based on our understanding of nonrelativistic
quantum mechanics), so perfectly ordinary results stated in
one formalism may seem surprising when looked at from
another. Angular momentum components are one of these;
successful nonrelativistic (or semirelativistic) models based
on pure S-state wave functions have existed for a long time,
and it is important to realize that these are not “wrong”
because they contain no angular momentum components in
the wave function. One of the objectives of this paper is to
show that these nonrelativistic models can be generalized to a
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manifestly covariant form without losing the intuition gained
from nonrelativistic physics.

E. Where are the lower components of the wave function?

An essential feature of this model is that the nucleon wave
function, which is the product of the quark propagator and
the nucleon vertex function, Eq. (1), is modeled by the sum of
two simple, largely spin-independent scalar wave functions, as
written in Eq. (13). As mentioned already in Sec. II, removing
the quark pole from consideration is a simple way to build
quark confinement into the model, but removing the spin-
dependent positive energy quark projection operator from the
nucleon wave function has the effect of removing the lower
components of the quark spinor and replacing them by the
lower components of the nucleon spinor. Since these lower
components are exactly zero when the nucleon is at rest, the
bound quark must also have no lower components, and it is
natural to ask what kind of interaction could produce such a
result.

To answer this question, consider the covariant spectator
equation that might describe the nucleon as a bound state of
an off-shell quark and an on-shell “diquark,” that is,

S−1
q (P − p)�(p, P ) =

∫
k

V (p, k; P )�(k, P ), (44)

where
∫
k

was defined in Eq. (19), � is the wave function
defined in Eq. (1), and S−1

q is the inverse of the quark
propagator

S−1
q (p1) = mq− �p1. (45)

A kernel V can be constructed that will give linear confinement
in coordinate space [18,30], and the details of its construction
need not be discussed here. In the nonrelativistic limit (defined
by ms → ∞), Eq. (44) has the nice feature that it reduces to
the Dirac equation

(i �∂ − mq − V (r))�(r) = 0, (46)

where �(r) and V (r) are three-dimensional Fourier transforms
of their momentum space counterparts.

To obtain a wave function without lower components (in
the rest frame), it is sufficient to replace the kernel by

V(p, k; P ) = O(p, P )V (p, k; P )O(k, P ), (47)

where O(p, P ) = S−1
q (p1)[M+ �P ], p1 = P − p, and for any

Dirac operator A = γ 0A†γ 0. The construction preserves the
Hermiticity property of the kernel, V = V . With this substitu-
tion, the wave function satisfies a new spectator equation

�(p, P ) = [M+ �P ]
∫

k

V(p, k; P )O(k, P )�(k, P ), (48)

showing immediately that � satisfies the Dirac equation (15),
which is sufficient to ensure that its lower components are zero
in the nucleon rest frame.

This demonstration shows precisely how the features of
the spectator theory can be exploited to build in this phe-
nomenology: since the quark (in this case) is off-mass-shell,
and since the kernel V (p, k; P ) always depends on the total

FIG. 3. (Color online) Feynman diagram for DIS. All the inter-
mediate quarks are on-shell.

four-momentum, the substitution of Eq. (47) does not violate
any of the constraints that must be satisfied in constructing a
phenomenological kernel.

V. DEEP INELASTIC SCATTERING

Before studying the details of the predictions for the form
factors, we will show how this model is able to describe deep
inelastic scattering (DIS).

A. Quark distribution function

The DIS cross section can be calculated from the imaginary
part of the forward handbag diagram shown in Fig. 3. The cross
section depends on the hadronic tensor

Wµν(q, P )

= 3

2S + 1

∑
s,s1,s2

∫ ∫
d3p′ d3k

(2π )64eqEs

(2π )4

× δ4(p′ + k − q − P )J †
ν Jµ

≡ −4πM

{(
gµν − qµqν

q2

)
W1 −

(
Pµ − P · q qµ

q2

)

×
(

Pν − P · q qν

q2

)
W2

M2

}
, (49)

where eq =
√

m2
q + p′2 is the energy of the on-shell quark in

the final state, Es is the diquark energy encountered before, W1

and W2 are the DIS structure functions, and Jµ is the hadronic
current

Jµ = −ū(p′, s1)jµ(p′, p)�N (P, k), (50)

with jµ(p′, p) the quark current defined in Eq. (20) and �N

the nucleon wave function defined in Eq. (13). Here the isospin
I and the polarizations of the diquark and nucleon, s2 and s,
have been suppressed.

Detailed evaluation of the hadronic tensor is sketched in
Appendix A. After the spin sums have been carried out, the
structure functions become

W1 = λ2 e2
I

2πM

∫ ∫
p′k

(P · p′) ψ2(P, k),

(51)

W2 = λ2 e2
I

2πM

∫ ∫
p′k

2M2A ψ2(P, k),
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where λ was defined in Eq. (25), the isospin-dependent charge
operator is

e2
I = 5

6
+ 1

6
τ3 =




2e2
u + e2

d proton,

e2
u + 2e2

d neutron,

(52)

the integral is∫ ∫
p′k

≡
∫ ∫

d3p′d3k

(2π )2 4eqEs

δ4(p′ + k − P − q)

=
∫

d4k

(2π )2
δ+

(
m2

q − p′2)δ+
(
m2

s − k2
)
, (53)

and

A = (p′ · P )Q2 + (P · q)(p′ · q)

M2Q2 + (P · q)2
. (54)

The expressions for W1 and W2 are covariant, but it is
convenient to evaluate them in the laboratory system using
light-cone coordinates. In our notation, an arbitrary four-vector
v is written

v = {v+, v−, v⊥}, v± = v0 ± v3, (55)

so that the scalar product is

vu = vµuµ = 1
2 (v+u− + v−u+) − v⊥ · u⊥. (56)

The four vectors in the laboratory frame are

P = {M, 0, 0, 0, }
(57)

q =
{

Q2

2Mx
, 0, 0,

√
Q2 + Q4

4M2x2

}
,

where x is the usual Bjorken scaling variable. In the DIS limit,
in light-cone form, these momenta become

P = {M,M, 0},
(58)

q =
{

Q2

Mx
,−Mx, 0

}
.

Using this notation, we find that the structure functions W1

and W2 scale and satisfy the Callen-Gross relation

νW2 = 2MxW1 ≡ e2
I xfq(x), (59)

with a quark distribution function fq(x) given by

fq(x) = λ2

4π

∫
d2k⊥

(2π )2(1 − x)
ψ2(χDIS), (60)

where χDIS is the value of χ , Eq. (16), in the DIS limit. If

r = ms

M
(61)

and k2
⊥ = Mmsy, then

χDIS = −2 + r + y

1 − x
+ (1 − x)

r
. (62)

The values of k± were fixed by the δ function restraints
in Eq. (53), leaving an integral only over the perpendicular

components of k. Using the wave function of Eq. (17), the k⊥
integral is easily evaluated, giving

fq(x) = λ2 N2
0

16π2r(β1 − β2)2
H, (63)

where

H = 1

R1
+ 1

R2
− 2

β2 − β1
log

R2

R1
,

Ri = βi − 2 + r

1 − x
+ 1 − x

r
(64)

= x

Mms

[
m2

βi

x
+ m2

s

1 − x
− M2

]
,

and m2
βi = Mmsβi + (M − ms)2.

Before we examine the implication of Eq. (63), we will
study the normalization of fq(x).

B. Normalization of the quark distribution function

The normalization condition of Eq. (32) for the nucleon
wave function can be expressed as a normalization condition
for the quark distribution function. Writing the normalization
integral in terms of light-cone variables,

1 =
∫

dk+dk−d2k⊥
2(2π )3

δ+
(
m2

s − k2
)
ψ2(P, k)

=
∫ ∞

0

dk−
k−

∫
d2k⊥

2(2π )3
ψ2

(
k+ = m2

s + k2
⊥

k−

)
. (65)

Multiplying both sides of Eq. (65) by λ2, defining k− = M(1 −
x), and using Eq. (63) gives the relation

λ2 =
∫ 1

−∞
dxfq(x) (spectator theory). (66)

The contributions to this normalization integral from the
region x < 0 are a feature of the spectator theory and
arise because, by design, the spectator theory includes only
contributions from the singularities of the spectator [31]. If
additional singularities in the wave function are also taken
into account, the contribution to the norm of Eq. (65) from
the region of x between −∞ and 0 will be canceled. In
Appendix B we show that including the singularities of the
wave function limits the k− integral to the region [0,M], giving

λ2 =
∫ 1

0
dxfq(x) (light-front). (67)

Hence both theories (spectator and light-front) give the
same quark distribution amplitude; the only difference is the
normalization condition in Eqs. (66) or (67). To compare with
experiment, we use the valence distributions obtained from a
recent global fit [32]. Results will be compared with the proton
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average

xfq(x)|expt = 4
9xuV + 1

9xdV , (68)

where xuV and xdV are Eqs. (1) and (2) of Ref. [32], and this
is normalized to∫ 1

0
dxfq(x)|expt = 1.006 � 1.00,

(69)∫ 1

0
dxxfq (x)|expt = 0.171.

For the light-front, consistency therefore requires choosing
λ = 1; while for the spectator, we must have λ > 1 so the
integral over the physical range 0 � x � 1 will be exactly unity.

We now turn to a discussion of the fits to the form factors
and the quark distribution functions.

VI. RESULTS

A. Vector dominance model for the quark form factors

Motivated by the vector dominance model (VDM), the
quark form factors are written in the following form

f1±(Q2) = λ + (1 − λ)

1 + Q2
0

/
m2

v

+ c± Q2
0

/
M2

h(
1 + Q2

0

/
M2

h

)2 ,

(70)

f2±(Q2) = κ±

{
d±

1 + Q2
0

/
m2

v

+ (1 − d±)

1 + Q2
0

/
M2

h

}
,

where mv is the ρ (ω) mass for the isovector (isoscalar)
form factors, and Mh = 2 is a fixed heavy mass intended to
approximate the contributions from all heavy vector mesons
in each channel (this could depend on the isospin, but this
possible dependence is ignored in these fits). All masses and
momenta are in units of the nucleon mass M , so that, for
example, Q2

0 = Q2/M2.
It may be helpful to give a brief justification for the quark

form factor models in Eq. (70). From a microscopic point of
view, the VDM for the form factors emerges from a sum similar
to that shown in Fig. 4. Here, the quark-quark interaction is
approximated by a contact term, giving

f1 = λe + gB(s)λe + [gB(s)]2λe + · · ·
= λe + gλeB(s)

1 − gB(s)
. (71)

Choosing a suitable B(s) that goes like Q−2 as Q2 → ∞ then
gives Eq. (70) for the form factors f1±. The construction of f2

is similar, with the first term missing because there is no bare
anomalous moment at infinite Q2.

B. Fitting procedure

During each step in the fit, we first normalized the wave
function using Eq. (32), determined the anomalous moments of
the quarks by fixing the proton and neutron magnetic moments,
and then determined the asymptotic charge parameter λ and
diquark mass ms by satisfying the following two constraints:

〈f 〉 ≡
∫ 1

0
dxfq(x) = 1,

(72)

〈xf 〉 ≡
∫ 1

0
dxxfq (x) = 0.171,

where the quark distribution amplitude fq(x) was defined in
Eq. (60). Even though the form factors are independent of ms

(recall that it was scaled out of the results), the deep inelastic
quantities are not. Since fq includes λ in its definition, ms was
first determined from the ratio 〈xf 〉/〈f 〉, and then λ was fixed
by the normalization requirement 〈f 〉 = 1. This procedure
was quite stable and led quickly to a good determination of
the other parameters.

In this paper, we chose to define the charge of the u quark
(for example) to be 2/3 at Q2 = 0 and to normalize the wave
function to unity. QCD suggests that it might be preferable
to define the u quark charge to be 2/3 at Q2 = ∞. This
can be done by dividing the quark form factors by λ which
changes the charge at Q2 = 0 to 2/(3λ). If the wave function
is then normalized to λ (instead of unity, as is now the case),
all of the formula for the form factors will be unchanged.
However, the numerical results will change slightly because
the normalization requirement of Eq. (72) will change to
〈f 〉 = λ (keeping the definition of fq unchanged). This will
give the same value of ms , but a slightly different value
of λ, leading to a different minimum with slightly different
numerical results. We save discussion of this subtlety for future
work.

C. Fits without a two-pion cut

Since the VDM for the form factors includes a ρ pole and
the ρ couples to the 2π channel, the quark form factor includes
two-pion terms. It is therefore next to impossible to separate
out a pion cloud term from the quark form factor contributions.
However, the two-pion channel contributes a cut starting at
q2 = −Q2 > 4m2

π , and it has been known for many years
that the singularity associated with the onset of this cut, which
goes like (q2 − 4m2

π )3/2, has a strong effect on the form factors
near Q2 = 0. The same cannot be said for the isoscalar form
factors. The isoscalar singularity is produced by the onset of a
three-pion continuum, with a three-body phase space starting
smoothly at 9m2

π . It is much weaker, more distant, and less
important.

FIG. 4. (Color online) First few terms of the bubble sum for the quark form factors. The first term is the bare charge, missing from the f2

form factors.
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The VDM model described in Eq. (70) does not have
the two-pion singularity. In the next section, we will discuss
how this singularity can be added, but here we look at the
consequences of ignoring this singularity.

We present four models with different features that repre-
sent different aspects of the physics. The parameters for each
model are shown in Table I. In this section, we discuss the first
two of these models, I and II. These models do not contain
the pion-cut singularity. Model I is the simplest model with
the fewest parameters (four). It assumes approximate isospin
symmetry by constraining f1+ � f1− and f2+ � f2− (they
are not equal because mρ �= mω and κ+ �= κ−). As already
discussed in Sec. IV B, approximate isospin symmetry for a
pure S-wave model of the nucleon gives a very small neutron
electric form factor, and this is shown in Figs. 5 and 6 and
Table II (showing that the charge radius of the neutron is off

by almost two orders of magnitude). We do not believe that
model I gives a credible description of the form factors, even
though its predictions are very close to many other simple
quark model calculations. We present it to show what can be
achieved from very few assumptions.

As discussed above, one of the ways to obtain a reasonable
neutron charge form factor is to break the isospin symmetry.
Model II allows the isospin to be maximally broken by the
f1 form factors, but it preserves the approximate isospin
symmetry of the f2 form factors. This adds only one more
parameter but does an excellent job of fitting the data, and
incidentally, gives almost perfect results for the two charge
radii. This model is perhaps the best compromise between
the need to obtain a good description of the form factors
and the phenomenological requirement that the description
be economical, using only a few parameters.

FIG. 5. (Color online) Data for the nucleon form factors compared with the four models discussed in the text: models I (dotted line),
II (short dashed line), III (long dashed line), and IV (solid line). The GMp data are from Arrington [33], and the GMn data include those used
by Bosted (solid circles) in his global fits to the form factors [34] and the unpublished data from JLab Hall B (open circles) [35]. The GEp data
are from JLab Hall A, Jones et al. and Punjabi et al. [1,3] (squares) and Gayou et al. [2] (triangles). The GEn data are single Q2 points from
MAMI [36,37], NIKHEF [38], and MIT-Bates [39] (solid circles), from JLab Hall C by Zhu et al. [40] (triangle), Warren et al. [41] (squares),
and Madey et al. [42] (diamonds), and from MAMI by Glazier [43] (open circles). Only GEn data obtained from deuteron targets are included.
For a list of the data, see the nucleon form factor data base [44].
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TABLE I. Two lines for every model give the values of the eight
possible (nine for model IV) adjustable parameters and the four
constants fixed by the constraints. The fixed constants are λ, the
asymptotic value of f1 given in Eq. (25), the diquark mass ratio
r , Eq. (61), the normalization parameter N2

0 , and the χ 2 per data
point. In each case, κ+ = 1.639 and κ− = 1.823. Parameters labeled
with ∗ were constrained during the fit to equal the one above it. For
model IV the heavy mass defined in Eq. (70) was also adjusted,
giving a best value of Mh = 2.556.

Model β1, β2 c+, c− d+, d− bE, bM λ, r N 2
0 , χ 2

I(4) 0.057 2.06 −0.444 – 1.22 10.87
0.654 2.06∗ −0.444∗ – 0.88 9.26

II(5) 0.049 4.16 −0.686 – 1.21 11.27
0.717 1.16 −0.686∗ – 0.87 1.36

III(6) 0.078 1.91 −0.319 0.163 1.27 12.36
0.598 1.91∗ −0.319∗ 0.311 0.89 1.85

IV(9) 0.086 4.48 −0.134 0.079 1.25 8.46
0.443 2.45 −0.513 0.259 0.89 1.03

Now we discuss the effect of adding a term that explicitly
includes the two-pion threshold singularity.

TABLE II. Values of the charge radii and the χ 2
radii for each model.

I II III IV Expt

r2
p 0.764 0.791 0.851 0.703 0.780(25)

r2
n −0.005 −0.104 −0.241 −0.102 −0.113(7)

χ 2
radii 118 0.89 170 6.11

D. Including a pion cloud (two-pion cut)

The imaginary part of the isovector form factors has been
calculated in chiral perturbation theory (ChPT) [46,47] and
also extracted from data [48]. We model this behavior by
adding extra terms to GE− and GM− of the form

�Gi−(Q2) = b2
i

bi

(
1 + Q2

m2
1

) (
1 + Q2

m2
2

)
+ ai

�(Q2)
Q2

, (73)

where the width function is

�(Q2) = µ2(4 + Q2/µ2)3/2(
1 + Q2

2µ2

) . (74)

FIG. 6. (Color online) Log plot of the same curves and data shown in Fig. 4. These curves show the low Q2 structure discussed in Ref. [45].

015202-11



FRANZ GROSS, G. RAMALHO, AND M. T. PEÑA PHYSICAL REVIEW C 77, 015202 (2008)

FIG. 7. (Color online) Im GE−/t2 compared with the experi-
mental fit of Ref. [48] (upper solid curve) and the one loop ChPT
calculation of Ref. [46] (lower dotted curve ending at t = 20).
The units are pion masses, µ = mπ . The dashed lines, in order of
decreasing size, are the models with values of bE = 0.55, 0.45, 0.30,
and 0.20. The two dot-dashed lines correspond to models III (upper)
and IV (lower).

The choice of this function is discussed in some detail in
Appendix C. The parameters ai,m1, and m2 were chosen
to reproduce the threshold behavior of the imaginary parts
of the isovector GE and GM form factors, calculated in
chiral perturbation theory, and, for GE , also obtained from
experiment. The imaginary part near threshold is insensitive to
the value of the additional parameter bi adjusted during the fit.
The behavior of the imaginary parts is shown in Figs. 7 and 8.

Models III and IV both include the pion cloud term Eq. (73).
Model III shows that adding this term significantly improves
the description even when the approximate isospin symmetry

FIG. 8. (Color online) Im GM−/t2 compared with one loop ChPT
calculation of Ref. [46] (lower dotted curve ending at t = 20). The
dashed lines, in order of decreasing size, are the models with values
of bM = 1.50, 1.00, and 0.55. The two dot-dashed lines correspond
to models III (upper) and IV (lower).

used in model I is still maintained. We conclude that we may
significantly improve the fit to the data by either breaking the
symmetry of f1 or by adding a pion cloud term. However,
these two alternatives are not completely equivalent. Breaking
the symmetry of f1 (model II) produces a better fit (lower χ2),
much better radii, and a GEn with a better shape. The shape
of GEn seems to be particularly sensitive to how the isospin
symmetry is broken.

Finally, model IV shows that a combination of the two
effects studied separately in models II and III can give a
precision fit to the data. (To obtain this, the heavy mass Mh

was also varied, adding one more parameter.) The expected
χ2 for a statistically perfect fit should lie in the range χ2/n =
1 ± √

2/n, where n is the number of data. Here the number
of data is 117, leading to an expected χ2/n = 1 ± 0.13 [49],
nicely consistent with our result of 1.03, or 1.12 if the radii
are included in the fit. One of the reasons a high quality fit
is possible is that we used data for GMp recently reanalyzed
by Arrington [33]; these data are more consistent with the
new GEp data, and this consistency is required for a good fit.
The new JLab high precision GMn data are not yet final [35]
and were therefore not included in our fit; if the final data
set remains close to the preliminary one, a refit of the model
may be necessary, and we have not investigated the effect it
will have. The model predicts that GEp vanishes for Q2 ∼
7.5 GeV2.

E. Quark distribution functions

The results for the quark distribution function obtained from
the four models are shown in Fig. 9. Note that all the models
give very similar results; the distributions are all too narrow
and approach zero as x → 1 too fast, but at least they give a

FIG. 9. (Color online) Valence quark distribution xfq (x) as a
function of x. Each curve is normalized to 0.171, the experimental
momentum fraction carried by valence quarks in the proton. The
thick short dashed line is the empirical fit from Ref. [32] (evolved
to Q2 = 1 GeV2), and the other lines (with the same line style used
in Fig. 5 and nearly indistinguishable from one another) are the four
models discussed in the text.
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FIG. 10. (Color online) Distribution ρ(k) = m3
s |ψ0(P̃ , k)|2/

(2Es) as a function of the momentum k for each of the four models
discussed in the text (drawn with the same line style used in Fig. 4).
This distribution is normalized to 4π

∫ ∞
0 k2 dk ρ(k)/(2πms)3 = 1.

qualitatively reasonable description. Better agreement would
have been obtained if we had compared the models with a
quark distribution function evolved to a higher Q2 (4 GeV2,
for example), which would be somewhat more peaked than
the one shown in the figure (evolved to Q2 = 1 GeV2). We
have made no attempt here to improve the agreement between
our result and experimentally determined distributions; this is
a subject for future work.

Finally, Fig. 10 shows the normalized momentum distribu-
tion for the nucleon in its rest frame (where it is spherical).
The larger size of the wave functions for models I and II
are compensated by a slightly smaller size at larger k; the
difference is exaggerated in the figure because the factor k2,
included in the normalization integral, is excluded from the
distribution.

VII. SUMMARY AND CONCLUSIONS

A. Overview and comparison with previous work

This work presents a simple covariant model for the
nucleon based on the following assumptions: (i) the nucleon
is composed of three valence constituent quarks (CQ, massive
extended particles dressed by the quark-antiquark interaction,
the pion cloud, and gluon sea, all parametrized by quark form
factors), (ii) the three-quark system is described by an internal
wave function consistent with the properly symmetrized
covariant spectator formalism [14], and the overall center-
of-mass motion of the total system is described by a free
Dirac equation for a particle of mass M (the nucleon mass),
(iii) the internal wave function has a structure built entirely
from S-wave components with exactly the same spin-isospin
content as the simplest nonrelativistic SU(2) × SU(2) model,
(iv) the CQ form factors are normalized to the quark charges
in the confinement limit (Q2 = 0) and reproduce the behavior
of pointlike quarks in the large Q2 regime giving form factors
that behave (up to logarithms) like pQCD at very large Q2, and
(v) the wave function has the appropriate nonrelativistic limit.
A nice feature of this model is that the two components of
the wave function, corresponding to spin-0 and spin-1 diquark
states, are described by one scalar wave function, as required
by symmetry under quark interchange.

Aspects of this model have been included in previous
work. The use of CQ form factors is certainly not new,
dating back to the early valon model [50], and has been
pursued in many more recent papers [51,52]. Others have
used a vector dominance model to describe the form factors,
with an additional phenomenological factor added to simulate
the body form factor [53–55]. The two-pion cut is also
included in this work [53]. Following different lines, pQCD
inspired calculations have appeared [56,57], as well as other
calculations based on generalized parton distributions [58],
QCD sum rules [59], and lattice QCD [60]. A comprehensive
review can be found in Refs. [3,7,8,61].

The fits presented in this paper were obtained by first
adjusting the quark anomalous moments so that the magnetic
moments of both the neutron and proton are reproduced
exactly, and then adjusting the “diquark” mass and the
asymptotic quark charge to give the correct experimental result
for the number and total momentum fraction carried by valence
quarks in DIS. With aspects of both the low and high energy
behavior fixed, it is then possible to study the sensitivity of the
form factors to various physical assumptions.

The physics is illustrated using four models of increasing
complexity. Model I examines the consequences of the
simplest assumption: the quark form factors are approximately
independent of isospin (some breaking is built in because
mρ �= mω and κ+ �= κ−). With only four parameters (two in
the wave function and one each for f1 and f2), the dotted lines
shown in Figs. 5 and 6 are obtained, giving a good description
of all the form factors except for the neutron charge form
factor GEn. Similar results were obtained in recent work by
Juliá-Dı́az, Riska, and Coester [62]. Note that the nonscaling
behavior of the proton charge form factor is easily described.
Ironically, GEn is far more important to our understanding than
the more popular GEp measurements.

To describe the neutron charge form factor in a pure S-wave
model, it is necessary to break the isospin invariance. There
are two ways to do this: split at least one of the quark form
factors (f1+ �= f1− or f2+ �= f2−) or add a term describing the
two-pion cut (starting at t = q2 = −Q2 > 4 m2

π ). These two
methods are, to some extent, merely different ways to model
the same physics: the two-pion cut coming from the ρ contri-
bution (isospin = 1) is much stronger and has more structure at
low t than the corresponding three-pion cut associated with the
ω contribution (isospin = 0). This mechanism automatically
breaks isospin symmetry. This feature has been included in the
recent vector dominance models of Bijker et al. [53].

We found that breaking the f1 symmetry was far more
efficient than breaking the f2 symmetry, and model II shows
the dramatic effect of allowing c+ and c− [defined in Eq. (70)]
to vary independently.

Model III achieves a similar result, but its charge radii are
quite poor, and the GEn given by this model has the wrong
shape.

Finally, model IV shows that we can obtain a precision fit
if both the symmetry of f1 and f2 is broken and the pion-cut
term is added.

Comparing models II, III, and IV, we conclude that we can
fit the data by including an explicit pion cloud and/or adjusting
the vector dominance contribution (coefficients c±). This result
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is consistent with Ref. [63], which states that “an unambiguous
extraction of the pion cloud contributions is not possible.”
Furthermore, the pion cloud descriptions of Refs. [46,47] do
not determine the real parts of the form factors, except possibly
in the limited region Q2 < 0.1 GeV2 (as noted in Ref. [64]).
In any case, our model for the pion cloud contribution for the
nucleon form factor in the spacelike region gives a contribution
that differs only slightly from the charge (or magnetic moment)
in the small Q2 region and decreases quickly with increasing
Q2. We conclude that we can describe the nucleon form factor
data using vector dominance only.

In all the models, we have very different values for the
parameters β1 and β2 (one order of magnitude). This is
evidence of an almost perfect separation, in dynamics, between
the low momentum (β1) and the high momentum (β2) regimes.

The overall success of this family of models, each of
which is consistent with the expected pQCD asymptotic
behavior (up to logarithms) and describes the physics of
DIS scattering qualitatively, shows that the form factor data
do not necessarily demand that the nucleon wave function
include L > 0 nonspherical angular momentum components
(although they are certainly not ruled out).

In forthcoming work, including Ref. [20], the structure
of the nucleon wave function will be used to describe the
transitions to other baryons and to excited states of the nucleon.
For that purpose, a modified version of the diquark propagator
Dµν will be used. These studies will give more definitive
information about angular momentum components in both the
nucleon and other baryons.

B. Shape of the nucleon

We now turn to the interesting discussion of the shape
of the nucleon. Shapes of nuclei have been discussed for
over 50 years and are still an active area of research. The
Contemporary Physics Education Project (CPEP) [65] may
be illustrative of the discussion found in the recent popular
literature. In the discussion of their nuclear science wall chart,
they refer to nuclear shape without giving a definition. In
an early paper, Rainwater [66] relates nuclear shape to the
presence of a nuclear quadrupole moment, and this definition
seems to be universal. A very nice discussion of nuclear shapes
and quadrupole moments can be found in the Nobel lectures
by Rainwater [67], Bohr [68], and Mottelson [69].

The quadrupole moment is determined by the charge
density. For example, consider a charged spin-1/2 quark
moving about a fixed spin-1 particle (the diquark). Since the
diquark is merely a representation of the two quarks not being
probed by the photon (we assume that there are no two-body
charge operators), we can ignore its charge. For definiteness,
suppose the quark has angular momentum � = 1 and the total
angular momentum of the state is 1/2. In nonrelativistic terms,
the charge density of the spin-up state is then

ρe(r) = e ψ2(r)

= e

[√
2

3

〈
−1

2

∣∣∣∣Y ∗
11 −

√
1

3

〈
−1

2

∣∣∣∣ Y ∗
10

]

×
[√

2

3

∣∣∣∣−1

2

〉
Y11 −

√
1

3

∣∣∣∣1

2

〉
Y10

]

= e

4π
[sin2 θ + cos2 θ ]. (75)

This is a spherical result, even though the individual compo-
nents that make up the wave function are not spherical.

In our model, the momentum space charge operator at Q2 =
0 (both nucleons must be at rest to avoid Lorenz contraction
effects) can be extracted from Eq. (28), i.e.,

ρe(k) = 3�̄N (P, k)j1γ0�N (P, k)

= 1
2 (1 + τ3)|ψ(P, k)|2, (76)

where j1, defined in Eq. (20), is the quark charge operator. Note
that ρe(k) is proportional to the nucleon charge operator and
to the square of the scalar wave function ψ (a function of k2

only) as expected. The electric charge density of the nucleon
is spherically symmetric. The radial momentum distribution
|ψ(P, k)|2, multiplied by the kinematic integration factor
m3

s /(2Es), is shown in Fig. 10 for the two models considered
in this work.

The charge distribution derived in Ref. I is also spherically
symmetric, even though the wave functions are not. This is
because the angular dependence in the wave functions of Ref. I
(due to the angular dependence of the polarization vectors η)
is canceled in much the same way as in Eq. (75).

We can also use the matter distribution to analyze the
nucleon shape. In this case, the operator j1 is absent, and

ρm(k) = 3�̄N (P, k)γ0�N (P, k),

= 3|ψ(P, k)|2. (77)

This is also spherical.
If the shape is defined by the charge density, we conclude

that the nucleon is spherical, unless it can be shown to exhibit
some collective motion that would allow us to interpret it as
a deformed state precessing about an axis different from its
symmetry axis [66–70]. This would imply the existence of
a rotational band and superlarge quadrupole radiation, which
have not been observed.

Recently Miller [71] and Kvinikhidze and Miller [13]
introduced a spin direction dependent (SDD) density operator
as a means of describing the shape of the nucleon. Nonrela-
tivistically, the charge SDD operator is

ρSDD
e (r, n) = ρe(r) 1

2 [1 + σ · n], (78)

where n is the direction of the spin quantization. Choosing n
to be in the +z direction, the spin-up matrix elements of this
operator for the nonrelativistic case studied in Eq. (75) are

ρSDD
e (r, n) = e

[√
2

3

〈
−1

2

∣∣∣∣Y ∗
11 −

√
1

3

〈
−1

2

∣∣∣∣ Y ∗
10

]
1

2
(1 + σ3)

×
[√

2

3

∣∣∣∣−1

2

〉
Y11 −

√
1

3

∣∣∣∣1

2

〉
Y10

]

= e

4π
cos2 θ, (79)

because, in this case, the spin projection operator has projected
out the spin-up state of the quark, unveiling the angular
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momentum contained in Y 2
10. Using this definition,

Kvinikhidze and Miller [13] analyzed the relativistic nu-
cleon model of Ref. I, demonstrating that the SDD ma-
trix elements generate angle-dependent terms in the nu-
cleon SDD charge and matter densities. Relativistically,
the SDD density operator includes the factor of (γ0 +
n · γ γ5)/2, where n is a unit vector that specifies the
quark spin direction. With this definition, the SDD elec-
tric charge distribution for a nucleon with polarization
ŝ becomes

ρSDD
e (k, n, s) = 3

2
�̄N (P, k)j1(γ0 + n · γ γ5)�N (P, k)

= 1

2

[
1 + τ3

2
+ 1 + 5τ3

6
n · ŝ

]
|ψ(P, k)|2, (80)

and for the matter distribution,

ρSDD
m (k, n, s) = 3

2 �̄N (P, k)(γ0 + n · γ γ5)�N (P, k)

= 1
2 (3 + n · ŝ)|ψ(P, k)|2, (81)

where, as before, ψ(P, k) is independent of angles in the
nucleon rest frame. For the model presented in this paper,
these distributions are also spherically symmetric, reflecting
the fact that the model contains only S-wave components.

What are the larger implications of these observations? The
SSD operators are potentially quite interesting. If they can
be measured directly, they will reveal the angular momentum
content of a state. But using these operators to define the shape
of a state is contrary to what is usually understood as the shape
(i.e., the charge or mass quadrupole moment density).
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APPENDIX A: EVALUATION OF THE
HADRONIC TENSOR IN THE DIS LIMIT

Starting from the general formula (49), the hadronic tensor
requires evaluation of the following integral and trace

Wµν(q, P ) = 3

2

∑
s,s1,s2

∫ ∫
p′k

J ν†Jµ = 3

4

∫ ∫
p′k

ψ2(P, k)

×
{
j 2

1 Tr0 − 1

3

(
τij

2
1 τi

)
Tr1

}
, (A1)

where the DIS current was defined in Eq. (50), the quark
current j1 in Eq. (21), and the traces for contributions from the
isospin 0 and 1 diquarks are (here we use the normalization
ūu = 2M)

Tr0 = Tr

{
(M+ �P )

(
γ µ − �qqµ

q2

)
�p′

(
γ ν − �qqν

q2

) }
,

Tr1 = 1

3
Tr

{
(M+ �P )γ αγ 5

(
γ µ − �qqµ

q2

)
�p′ (A2)

×
(

γ ν − �qqν

q2

)
γ 5γ β

}
Dαβ,

and the phase-space integral was defined in Eq. (53). The quark
mass has been dropped from the traces since its contribution is
negligible in the DIS limit. This tensor is covariant and may be
calculated in any frame, and at this point we will not specify a
frame.

The quark currents are

j 2
1 = λ2

(
1
6 + 1

2τ3
)2 = λ2

(
5

18 + 1
6τ3

)
,

(A3)
1
3τi

(
5
18 + 1

6τ3
)
τi = 5

18 − 1
18τ3.

The diquark polarization sum, defined for the case when P+ =
P− + q in Eq. (27), is now simply −gαβ + PαPβ/M2, from
which we obtain immediately

Tr0 = −Tr1 = 4P̃ νp̃′µ + 4p̃′νP̃ µ − 4(P · p′)
(

gµν − qνqµ

q2

)
,

(A4)

where, for any four-momentum,

P̃ µ ≡
(

P µ − (P · q)qµ

q2

)
. (A5)

Hence the quark currents Eq. (A3) must be added, giving the
current factor reported in Eq. (52).

To extract the structure functions W1 and W2, we go to a
collinear frame (where P and q are in the ẑ direction). Then,
since the wave function depends only on (P − k)2 = (p′ −
q)2, and since the numerator is linear in p′, the transverse
components of p′ integrate to zero, and we can write

p′ = AP + Bq, (A6)

with A given in Eq. (54) and

B = (p′ · P )(P · q) − M2(p′ · q)

(p · q)2 + M2Q2
. (A7)

Since q̃ = 0, the trace terms give

Tr0 = −Tr1 = 8AP̃ νP̃ µ − 4(P · p′)
(

gµν − qνqµ

q2

)
, (A8)

giving the expressions Eq. (51) for the structure functions.
If the integrals over k± are evaluated in the nucleon rest

frame, as discussed in Sec. V A, the phase-space integral can
be written as∫ ∫

p′k
= x

(1 − x)Q2

∫
d2k⊥

2(2π )2

∫
dk+dk−

× δ

(
k+ − m2

s + k2
⊥

M(1 − x)

)
δ(k− − M(1 − x)), (A9)
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giving the limits

P · p′ → Q2

2x
A → x. (A10)

These lead directly to the expression (60) for the quark
distribution amplitude.

APPENDIX B: WAVE FUNCTION NORMALIZATION IN
SPECTATOR AND LIGHT-FRONT THEORIES

To simplify the formulas in this section, we work with a
wave function with only one pole:

ψ(P, k) → N0

ms(β + χ − iε)
. (B1)

All results are also true if the wave function has two poles, as
can be easily seen after the arguments have been developed.

Begin by examining a four-dimensional integral related to
the normalization integral. At Q2 = 0, the integral is

I4 ≡ −i

∫
d4k

(2π )4

ψ2(P0, k)

D1
= −i

∫
d4k

(2π )4

M2N2
0

D1D
2
2

, (B2)

where the spectator four-momentum k is unconstrained (so
that the spectator is no longer on-shell) and the denominators
therefore contribute two poles and two double poles in the
complex k0 plane:

D1 = m2
s − k2 − iε = (Es − k0 − iε)(Es + k0 − iε),

D2 = Mmsβ + |k|2 + (M − ms)
2 − (M − k0)2 − iε (B3)

= (
√

ξ + |k|2 + M − k0 − iε)(
√

ξ + |k|2 − M + k0 − iε),

where ξ = Mmsβ + (M − ms)2. The single poles are at k0 =
±Es , and the double poles are at k0 = M ±

√
ξ + |k|2.

The spectator theory organizes the infinite series of
Feynman diagrams that describe (in this case) the quark-
diquark interaction so that the spectator (diquark) is always
on-shell; contributions from terms in which the spectator is
off-shell are included in higher order terms in the kernel. In
the present example, this means that the only contribution
from the integral in Eq. (B2) that we may include comes
from the positive energy spectator pole; other contributions
to the four-dimensional integral would be included as part
of the higher order terms in the kernel and hence are part of
the wave function ψ that we are modeling. Separating out the
positive energy spectator pole from Eq. (B2) gives the spectator
normalization integral

Is =
∫

d3k

(2π )32Es

ψ2(P0, k̂), (B4)

where k̂2 = m2
s .

In light-cone theory, the wave function is the solution of
a generalized Hamiltonian dynamics with H+ = H + Pz the
generalized Hamiltonian. The + component of momentum is
not conserved. However, some of the features of the light-
cone approach (and, in particular, the normalization issues
discussed here) can be understood by evaluating the integral
(B2) using light-cone coordinates. In these coordinates, the

four-dimensional integral becomes

I4 = −i

∫
dk+ dk− d2k⊥ M2N2

0

2(2π )4D′
1(D′

2)2
, (B5)

where now

D′
1 = m2

s + k2
⊥ − k−k+ − iε,

(B6)
D′

2 = ξ + k2
⊥ − (M − k+)(M − k−) − iε.

This integral has only one pole and one double pole in the
complex k+ plane. If 0 < k− < M , the single pole is in the
lower half plane and the double pole is in the upper half
plane, but outside of this region either the single or the double
pole migrates so that all are in the same half plane, and the
integral is zero [31,72]. Hence the exact answer is given by
the spectator pole, with 0 < k− < M . Introducing 1 − x =
k−/M , the momentum fraction carried by the diquark, the
integral becomes

I4 =
∫ 1

0

dx

1 − x

∫
d2k⊥

2(2π )3

M2N2
0

x2d2
, (B7)

with

d = ξ + k2
⊥

x
+ m2

s + k2
⊥

1 − x
− M2. (B8)

At first glance, it might appear that the light-cone integral
(B7) has nothing to do with the spectator integral (B4), but an
interesting connection was noticed a long time ago . To make
this connection explicit, we transform the spectator integral
into light-cone variables by transforming kz to x using

M(1 − x) = Es − kz,

Mdx =
(

1 − kz

Es

)
dkz = M(1 − x)

dkz

Es

,

(B9)
M(Es + kz) = (

m2
s + k2

⊥
)
/(1 − x),

D̂2 ≡ D2(k̂) = ξ + k2
⊥ + k2

z − (M − Es)
2 = x d.

This gives the result

Is =
∫ 1

−∞

dx

1 − x

∫
d2k⊥

2(2π )3

M2N2
0

x2d2
, (B10)

as discussed in Sec. V B.
The difference in support of the light-cone and spectator

integrals is due to the different way the singularities of the
triangle diagram are handled. An analysis of the advantages
and disadvantages of these two methods is beyond the scope
of this paper and will be discussed in a future work. Here
note only that from the standpoint of the spectator method, the
integral over kz is limited by the light-cone requirement that
0 < x, which translates into the limit 0 < Es − kz, implying

m2
s + k2

⊥ − M2

2M
< kz. (B11)

This limit breaks the symmetry between the components of k,
with kz treated differently from the other two components. If
one is not careful, the light-cone method breaks rotational
invariance and can cause problems at low energy where
manifest rotational invariance is an important constraint.
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APPENDIX C: DETAILS OF THE CONSTRUCTION OF THE
TWO-PION CUT TERM, EQ. (73)

Unfortunately, chiral calculations of the nucleon form
factors [46,47] only give information about the imaginary
part of the isovector form factors in the timelike region, over
a small range of Q2 near the onset of the two-pion cut (in
the region of 4 m2

π < t = q2 = −Q2 <∼ 10 m2
π ). The real parts

of the form factors for both spacelike and timelike regions
are obtained using dispersion theory and are sensitive to the
high momentum behavior (t = −Q2 � M2) of the imaginary
part.

Hence, to use the results of the chiral calculations, we chose
a mathematical function that reproduced the chiral calculations
of the imaginary part at small t , but gave a real part with a
strength that could be varied. A convenient function with a
simple behavior in the complex plane is

gi−(t) = b2
i

bi

(
1 − t

m2
1

) (
1 − t

m2
2

)
− iai

γ (t)
t

, (C1)

with the width function

γ (t) = µ2q3
ππ(

1 − t
2µ2

) , (C2)

where µ ≡ mπ and qππ =
√

t/µ2 − 4 is the relative momen-
tum of the two pions (in units of µ) in the ππ rest system.
Note that the width goes as q3

ππ , as required by the P -wave

nature of the ρ, and that gi−(0) = 0, so gi− does not contribute
to the charge or magnetic moments. The imaginary part of gi−
for t > 4µ2 is

Imgi−(t) = b2
i aiγ (t)/t

b2
i

(
1 − t

m2
1

)2 (
1 − t

m2
2

)2
+ a2

i

(
γ (t)
t

)2

� ai

γ (t)/t

E(t)

{
1 − a2

i

b2
i

γ 2(t)

t2E(t)
+ · · ·

}
, (C3)

where

E(t) ≡
(

1 − t

m2
1

)2 (
1 − t

m2
2

)2

. (C4)

The expansion holds for low qππ momentum (qππ � M),
when E(t) � 1. This shows that Imgi−(t) is independent of bi

to lowest order, as shown in in Figs. 7 and 8.
As it turns out, the simple function γ (t)/t does an excellent

job of fitting the chiral calculations, provided we choose aE =
0.17 and aM = 0.68. The mass m2

1 = 28 µ2 was chosen to
equal the square of the ρ mass, and m2

2 = 50 µ2 is large enough
to provide the needed high momentum convergence without
seriously affecting the shape of the imaginary part in the low
t region.

Finally, Eq. (C1) may be analytically continued to t =
−Q2 < 0. Giving t a small positive imaginary part and using

i
√

(t + iε)/µ2 − 4 →
√

4 + Q2/µ2 (C5)

gives the result that is Eq. (73).
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