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A simple model of quintessential inflation with the modified exponential potential e���½Aþ ð��
�0Þ2� is analyzed in the braneworld context. Considering reheating via instant preheating, it is shown that

the evolution of the scalar field � from inflation to the present epoch is consistent with the observational

constraints in a wide region of the parameter space. The model exhibits transient acceleration at late times

for 0:96 & A�2 & 1:26 and 271 & �0� & 273, while permanent acceleration is obtained for 2:3�
10�8 & A�2 & 0:98 and 255 & �0� & 273. The steep parameter � is constrained to be in the range

5:3 & � & 10:8.
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I. INTRODUCTION

The recent measurements of the Wilkinson Microwave
Anisotropy Probe (WMAP) [1–8] on the cosmic micro-
wave background (CMB) made it clear that the current
state of the Universe is very close to a critical density and
that the primordial density perturbations that seeded large-
scale structure in the Universe are nearly scale invariant
and Gaussian, which is consistent with the inflationary
paradigm. Inflation is often implemented in models with
a single or multiple scalar fields [9], which undergo a slow-
roll period allowing an early accelerated expansion of the
Universe.

Furthermore, the Universe seems to exhibit an interest-
ing symmetry with regard to the accelerated expansion,
namely, it underwent inflation at early epochs and is be-
lieved to be accelerating at present. The current accelera-
tion of the Universe is supported by observations of high
redshift type Ia supernovae [10,11] and, more indirectly, by
observations of the CMB and galaxy clustering [5,8,12].
Within the framework of general relativity, cosmic accel-
eration should be sourced by an energy-momentum tensor
which has a large negative pressure (dark energy) [13–22].
Therefore, in order to comply with the logical consistency
and observations, the standard model should be valid
somewhere between inflation at early epochs and quintes-
sence at late times. It is then natural to ask whether one can
build a model to join these two ends without disturbing the
thermal history of the Universe. Attempts have been made
to unify both these concepts using models with a single
scalar field [23–30], i.e., in which a single scalar field plays
the role of the inflaton and quintessence—the so-called
quintessential inflation.

On the other hand, in recent years there has been in-
creasing interest in the cosmological implications of a

certain class of braneworld scenarios where the
Friedmann equation is modified at very high energies. In
particular, in the Randall-Sundrum type II (RSII) model
[31] the square of the Hubble parameter, H2, acquires a
term quadratic in the energy density, allowing slow-roll
inflation to occur for potentials that would be too steep to
support inflation in the standard Friedmann-Robertson-
Walker cosmology [32–39]. Indeed, in a cosmological
scenario in which the metric projected onto the brane is a
spatially flat Friedmann-Robertson-Walker model, the
Friedmann equation in four dimensions reads (after setting
the 4D cosmological constant to zero and assuming that
inflation rapidly makes any dark radiation term negligible)
[32]

H2 ¼ 1

3M2
4

�

�
1þ �

2�

�
: (1)

Here M4 is the 4D reduced Planck mass and � � �� ¼
1
2
_�2 þ Vð�Þ in a universe dominated by a single mini-

mally coupled homogeneous scalar field. The brane ten-
sion � relates the 4D and 5D Planck masses through the
relation

� ¼ 3

32�2

M6
5

M2
4

; (2)

where M5 is the 5D Planck mass.
We notice that Eq. (1) reduces to the usual Friedmann

equation at sufficiently low energies, �� �, while at very
high energies H / �. In this scenario, all matter fields are
confined to the brane and, hence, inflation is driven by a 4D
scalar field trapped on the brane with the usual equation of
motion

€�þ 3H _�þ V 0ð�Þ ¼ 0; (3)

where the prime denotes the derivative with respect to the
scalar field �. From Eqs. (1) and (3) it becomes clear that
the presence of the additional term ��2=� increases the
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damping experienced by the scalar field as it rolls down its
potential.

It has been shown that, in the RSII braneworld context,
quintessential inflation can occur for a sum of exponentials
or cosh potentials [26–28]. In this paper we show that the
modified exponential potential (hereafter we adopt natural
units, M4 ¼ 1, unless stated otherwise)

Vð�Þ ¼ e���½Aþ ð���0Þ2� (4)

also leads to a successful quintessential inflation model.
In the context of quintessence, this potential was first

analyzed by Albrecht and Skordis (AS) [40]. Afterward, it
has been extensively studied in the literature [41–45].
Regarding its motivation, it is worth noticing that expo-
nential potentials naturally appear in 4D field theories
coming from string/M theory [46], where the scalar field
� is typically identified with the dilaton field. As far as the
origin of the polynomial factor is concerned, it can be
associated with a nontrivial Kähler term in an effective
4D supergravity theory [47]. The scalar � could also be
associated with a modulus (radion) field in curled extra
dimensions [48], which need not be universally coupled to
matter/gauge fields and, therefore, is not subject to quan-
tum corrections [49].

The tracking properties of the AS potential are similar to
the pure exponential, namely, it allows sufficient radiation
domination during big bang nucleosynthesis (BBN), fol-
lowed by matter domination. Nevertheless, due to the
presence of the polynomial factor, the field evolves to
quintessence dominance near the present epoch. One
should notice that, in order to the transition to happen
near the present, the parameter�0 must be suitably chosen.
In other words, this model does not explain the so-called
coincidence problem. However, the model displays an
interesting feature: it can lead to both permanent and
transient acceleration regimes. Permanent acceleration oc-
curs for A�2 < 1, when the field is trapped in the local
minimum of the potential. Transient vacuum domination
arises in two ways [41]: when A�2 < 1 and the � field
arrives at the minimum of the potential with enough kinetic
energy to roll over the barrier and resumes descending the
potential where �� �0, or for A�

2 > 1, when the poten-
tial loses its local minimum.

In the models mentioned above, inflation takes place
when the pure exponential potential dominates the poten-
tial. The exit from inflation takes place naturally when the
slow-roll conditions are violated because the high-energy
brane corrections become unimportant. Moreover, these
models belong to the category of nonoscillating models
in which the standard reheating mechanism does not work.
In this case, one can employ an alternative mechanism of
reheating via gravitational particle production [50–52].
However, this mechanism is faced with difficulties associ-
ated with excessive production of gravity waves. Indeed,
the reheating mechanism based upon this process is ex-

tremely inefficient. The energy density of the produced
radiation is typically one part in 1016 [24] to the scalar field
energy density at the end of inflation. As a result, these
models have a prolonged kinetic regime during which the
amplitude of primordial gravity waves is enhanced and the
nucleosynthesis constraints are violated [53]. These prob-
lems can be circumvented if one invokes an alternative
method of reheating, namely, the so-called instant preheat-
ing [54–56]. This mechanism is quite efficient and robust,
and is well suited to nonoscillating models [57]. The larger
reheating temperature in this model results in a smaller
amplitude of relic gravity waves which is consistent with
the BBN bounds [28].

II. BRANEWORLD INFLATION WITH AN
EXPONENTIAL POTENTIAL

The exponential potential

Vð�Þ ¼ V0e
��� (5)

with _�> 0 has traditionally played an important role
within the inflationary framework since, in the absence of

matter, it gives rise to power-law inflation a / t2=�2
, pro-

vided � � ffiffiffi
2

p
. For �>

ffiffiffi
2

p
the potential becomes too

steep to sustain inflation and for larger values � 	 ffiffiffi
6

p
the field enters a kinetic regime during which the field
energy density �� / a�6. Thus, within the standard gen-

eral relativity framework, steep potentials are not capable
of sustaining inflation. However, in the RSII scenario, the
increased damping of the scalar field when V=�� 1 leads
to a decrease in the value of the slow-roll parameters and
inflation becomes possible even for large values of �.
The cosmological dynamics with a steep exponential

potential in the presence of a background (radiation/mat-
ter) admits a scaling solution as the attractor of the system.
The attractor is characterized by the tracking behavior of
the field energy density ��. During the tracking regime,

the ratio of �� to the background energy density �B is held

fixed,

�� � ��
�� þ �B

¼ 3ð1þ wBÞ
�2

; (6)

where wB is the equation-of-state parameter for the back-
ground (wB ¼ 0, 1=3 for matter and radiation, respec-
tively). The field energy density in the postinflationary
regime would keep tracking the background being subdo-
minant such that it does not interfere with the thermal
history of the universe. Nevertheless, the polynomial factor
in the AS potential will allow the scalar field to dominate
near the present time, for a suitable choice of the parame-
ters. If one takes into account the nucleosynthesis con-
straint �BBN

� & 0:09 [58], coming from the primordial

abundances of 4He and D, Eq. (6) would require � *
6:7. We notice however that this bound can be slightly
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relaxed if the scalar field has not yet entered the tracking
regime during BBN (see Sec. IV).

A. Slow-roll inflation

Let us first review the slow-roll inflation driven by an
exponential potential in the high-energy regime of the RSII
braneworld. These results will be important to determine
the initial conditions for the solution of the evolution
equations at later times.

The number of e-folds during the inflationary period is
given by [37]

Nð�Þ ¼ �
Z �end

�

V

V 0

�
1þ V

2�

�
d�; (7)

where �end corresponds to the field value at the end of
inflation. Braneworld effects at high energies increase the
Hubble rate by a factor V=ð2�Þ, yielding more inflation
between any two values of� for a given potential. As V �
� during inflation, one gets

N ’ 1

2��2
ðVN � VendÞ; (8)

where VN is the potential evaluated at N e-folds from the
end of inflation.

The prediction for the inflationary variables typically
depends on the number of e-folds of inflation occurring
after the observable universe leaves the horizon, N? ¼
Nð�?Þ. The calculation of this quantity requires a model
of the entire history of the Universe [59,60] and, as we shall
see later, it can be determined once we set the reheating
mechanism after inflation.

Inflation ends when the slow-roll conditions are vio-
lated, because the brane high-energy corrections become
unimportant. Hence, the value of the potential Vend at the
end of inflation can be obtained from the condition

maxf�ð�endÞ; j�ð�endÞjg ¼ 1; (9)

where the slow-roll parameters are defined as

� ¼ 1

2

V 02

V2

1þ V=�

ð1þ V=2�Þ2 ; (10)

� ¼ V 00

V

1

1þ V=2�
: (11)

In the brane high-energy regime, i.e., for V � �, one
obtains

� ¼ � ’ 2�2�

V
; (12)

leading to

Vend ’ 2�2�: (13)

Therefore, taking into account Eq. (8), the value of the
potential V? at horizon crossing is

V? ’ VendðN? þ 1Þ: (14)

In the RSII model, the scalar and tensor perturbation
amplitudes are given by [37,61]

A2
s ¼ 1

75�2

V3

V 02

�
1þ V

2�

�
3
; (15)

A2
t ¼ 1

150�2
V

�
1þ V

2�

�
F2; (16)

where

F2 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p

� x2sinh�1

�
1

x

���1
; (17)

and

x �
�
3H2

4��

�
1=2 ¼

�
2V

�

�
1þ V

2�

��
1=2
: (18)

In the low-energy limit (x� 1), F2 
 1, whereas F2 

3V=2� in the high-energy limit. The right-hand sides of
Eqs. (15) and (16) should be evaluated at the horizon
crossing, i.e., at V ¼ V?.
The amplitude of the density perturbations fixes the

brane tension. Taking the high-energy limit of Eq. (15)
one can write

� ’
�
2�6

75�2
ð1þ N?Þ4

��1
A2
s : (19)

The spectral tilt for scalar perturbations can be written in
terms of the slow-roll parameters as

ns � 1 � d lnA2
s

d lnk
’ �6�? þ 2�?; (20)

while the tensor power spectrum can be parametrized in
terms of the tensor-to-scalar ratio as

rs � 16
A2
t

A2
s

; (21)

which in the high-energy limit leads to

rs ’ 24�?: (22)

From Eqs. (12)–(14), the spectral index of the density
perturbations and the tensor to scalar are found to be

ns ¼ 1� 4

N? þ 1
; (23)

rs ¼ 24

N? þ 1
: (24)

These results are both independent of the potential parame-
ter � and the brane tension �.
Finally, the running of the scalar spectral index �s can

be written as
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�s � dns
d lnk

’ 16�?�? � 18�2? � 2�?; (25)

in the high-energy limit, where

� ’ 4�2V0V000

V4
(26)

is the ‘‘jerk’’ parameter.

B. Observational constraints

The recent publication of the 5-year results of WMAP
[6–8] puts very accurate constraints on the spectral index:
ns ¼ 0:963þ0:014

�0:015 at 68% confidence level (C.L.), for van-

ishing running and no tensor modes. This value is slightly
above the 3-year result, ns ¼ 0:958� 0:016 [5], and has a
smaller uncertainty.

In what concerns the tensor modes, WMAP5 [8] alone
gives rs < 0:43 (with vanishing running) and rs < 0:58
(with running), both at 95% C.L. However, the strongest
overall constraint on the tensor mode contribution comes
from the combination of CMB, large-scale structure mea-
surements and supernovae data. The combination of
WMAP5, baryon acoustic oscillations (BAO) in the distri-
bution of galaxies and supernovae [8] yields rs < 0:20
(without running) and rs < 0:54 (with running), at 95%
C.L.

Since the running �s is very small in the model under
consideration, j�sj �Oð10�3–10�4Þ, we can make use of
the observational bounds obtained for the case of vanishing
running. However, the tensor modes cannot be neglected in
this model. The inclusion of tensor modes has implications
for ns as well: the constraint becomes ns ¼ 0:968� 0:015
at 68% C.L., for combined WMAP5, baryon acoustic
oscillations, and supernovae data.

In our analysis we shall consider the 99.9% C.L. bounds
obtained in Ref. [12], which take into account the 3-year
results of WMAP together with other CMB experiments,
galaxy surveys and supernovae data, as well as the
Lyman-� forest power spectrum data from the Sloan
Digital Sky Survey. These bounds are [12]

ns ¼ 0:964þ0:025
�0:024 ðþ0:037

�0:038Þ; (27)

rs < 0:22 ð<0:37Þ: (28)

The error bars are at 2	 (3	) and the upper bounds at 95%
(99.9%) C.L.

In order to comply with the bounds of Eqs. (27) and (28),
one needs N? * 63ð53Þ and N? * 108ð64Þ, respectively,
[cf. Equations (23) and (24); see also Fig. 1]. Hereafter we
use the 99.9% C.L. lower bound coming from rs,

N? * 64: (29)

The brane tension � can be determined from Eq. (19)
by imposing the correct amplitude for the density
fluctuations, as measured by the WMAP team: A2

sðk ¼

0:002 Mpc�1Þ 
 4� 10�10 [5,8]. One finds

� ’ 1:5� 10�7

�6

�
M4

N? þ 1

�
4
; (30)

N
*

n s
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FIG. 1 (color online). The spectral index ns and tensor-to-
scalar ratio rs as functions of the number of e-folds N?,
Eqs. (23) and (24). The shaded areas are the bounds given in
Eqs. (27) and (28).
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FIG. 2 (color online). The fundamental 5D Planck mass as a
function of the parameter � [see Eq. (31)] for N? ¼ 64. The
shaded area corresponds to the values of � allowed by the
observational constraints.
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or, in terms of the 5D fundamental Planck mass,

M5 ’ 1:6� 10�1

�ðN? þ 1Þ2=3M4 & 1:9� 10�3M4; (31)

where we have recovered the 4D Planck mass to help in
noticing that this mass is of the order of the typical uni-
fication scale in grand unified theories. To obtain the upper
bound we have used the lower bounds � * 5:3 (see
Sec. IV) and N? * 64 (cf. Figure 2).

III. FROM INFLATION TO QUINTESSENCE

Braneworld inflation induced by the steep exponential
potential ends when the inflaton field � takes the value

� ¼ �end ’ 1

�
ln
V0

Vend

; (32)

where V0 ¼ Aþ�2
0, for the AS potential with�end � �0.

The kinetic energy of the field at the end of inflation can
also be easily estimated. Indeed, during the slow-roll pe-

riod one has 3H _� ’ �V 0, which in the high-energy limit

of brane cosmology leads to _� ’ � ffiffiffiffiffiffiffiffiffiffiffi
2�=3

p
. Therefore,

taking into account Eq. (13) we find

_� end ¼
ffiffiffiffiffiffiffiffiffi
Vend

3

s
: (33)

At the end of inflation, the Universe is in a cold and low-
entropy state and it must be reheated to become a high-
entropy and radiation-dominated universe. Such a reheat-
ing process could occur, for instance, through the coherent
oscillations of the inflaton field about the minimum of the
potential until the age of the Universe equals the lifetime of
the inflaton. The latter decays into ordinary particles,
which then scatter and thermalize. However, our scenario
of quintessential inflation belongs to the class of nonoscil-
latory models where the conventional reheating mecha-
nism does not work: there is no minimum near �end and
the inflaton field cannot decay.

Therefore, reheating should be achieved by other means.
One possibility is to assume that the Universe was reheated
by the gravitational particle production at the end of the
inflationary period [50–52]. This is a democratic process
which leads to the production of a variety of species
quantum mechanically by the changing gravitational field
at the end of inflation. Unlike the conventional reheating
mechanism, this process does not require the introduction
of extra fields. The radiation density created via this
mechanism is given by

�r � 0:01gpH
4
end; (34)

where gp is the number of different particle species created

from vacuum, likely to be Oð10Þ & gp & Oð100Þ. Using
Eqs. (13), (19), and (34), it can be easily shown that

�end
�

�end
r

� 3:2� 109ðN? þ 1Þ4g�1
p : (35)

For N? * 64 one gets �r=�� & 10�17gp, which implies

that the equality between the scalar field and radiation
energy densities is reached very late. This leads to a
prolonged kinetic regime during which �� � �r and p� ’
��. It can be shown [53] that such a prolonged regime with

a ‘‘stiff’’ equation of state will generate an excessive
gravity wave background which violates the BBN bound.
Alternatively, the Universe could have been instantane-

ously reheated via the so-called instant preheating mecha-
nism [54–57]. Since this method turns out to be the most
efficient in the context of quintessence models, it is as-
sumed here as the reheating mechanism operative at the
end of inflation.

A. Braneworld inflation followed by instant preheating

A successful reheating after inflation can be easily
achieved in a field-theoretical framework where the infla-
ton � interacts with another scalar field 
 which, in turn,
couples minimally to a fermionic field  through a Yukawa
coupling hf [54,57]. The simplest interaction Lagrangian

is

Lint ¼ �1
2g

2�2
2 � hf �  
: (36)

The process of 
-particle production takes place as soon as
m
 ¼ gj�j begins changing nonadiabatically [54,57]

j _m
j * m2

: (37)

This condition is satisfied immediately after inflation has
ended when

j�j & j�prodj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j _�endj
g

s
; (38)

provided that g� 10�9 [62]. The energy density of the
created 
-field particles is then given by

�
 ¼ m
n


�
aend
a

�
3
; (39)

where n
 ¼ g3=2ðVend=2�Þ3 and the ðaend=aÞ3 term ac-

counts for the cosmological dilution of the energy density
with time.
If the quanta of the 
-field are converted (thermalized)

into radiation instantaneously, the radiation energy density
becomes [54]

�r ’ �
 �
�
g1=2Vend

2�

�
3
g�prod � 10�2g2Vend: (40)

Thus, at the time inflation ends,

�end
r

�end
�

� 10�2g2: (41)
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Clearly, the energy density created by instant preheating
can be much larger than the energy density produced by
quantum particle production, for which �r=�� ’ 10�17gp.

In Ref. [28] it was shown that in order to evade the BBN
constraint on the energy density of relic gravity waves �g
at the start of the radiative era, �rad

g =�rad
r & 0:2, one must

have �end
r =�end

� * 10�7. Therefore, from the relation (41)

we should have g * 10�3.
The reheating process occurs through the decays of 


particles into fermions, as a consequence of the interaction
term in the Lagrangian (36). One can show that there is a
wide region in the parameter space ðg; hfÞ for which re-

heating is rapid and the relic gravity background in non-
oscillatory braneworld models of quintessential inflation is
consistent with the nucleosynthesis constraints. In fact, it is
possible to derive a lower bound on hf so that the decay of

the 
-particles is sufficiently rapid and the reheating can be

considered instantaneous: one should have hf *

10�4g�1=2 [28].

B. Initial conditions for quintessence

In order to integrate the equations of motion (1) and (3),
it is convenient to rewrite them in the form [25,63,64]

dx

dN
¼ �3xþ 	

ffiffiffi
3

2

s
y2 þ 3

2
x½2x2 þ �ð1� x2 � y2Þ�;

dy

dN
¼ �	

ffiffiffi
3

2

s
xyþ 3

2
y½2x2 þ �ð1� x2 � y2Þ�; (42)

where � ¼ wB þ 1, N � lna, and

x �
_�ffiffiffiffiffiffi
2�

p ; y �
ffiffiffiffi
V

p
ffiffiffiffi
�

p ; (43)

	 � �V 0

V

�
1þ �

2�

��1=2
: (44)

We have to fix the initial conditions for the different energy
components: scalar field, radiation, and matter densities.
For the scalar field we assume that the initial value is given
by the field value at the end of inflation, i.e.,

�i ¼ �end; _�i ¼ _�end: (45)

To set the initial value for the radiation component we
use Eq. (41), obtained from the instant preheating mecha-
nism discussed above. We have then

�ir ¼ 10�2g2�end
� ; (46)

where we leave g as a free parameter to be constrained by
observations.

The beginning of the integration is fixed by imposing the
correct amount of radiation �0

r at present,

1þ zi ¼
�
�ir
�0
r

�
1=4
: (47)

For the fraction of radiation at present we use the central
value �0

rh
2 ¼ 4:3� 10�5, which assumes the addition of

three neutrino species. The matter content at zi is such that
the correct fraction is reproduced at present, �0

mh
2 ¼

0:1369� 0:0037 [8]. In our computations we will allow
this quantity to vary in this interval.

IV. QUINTESSENCE

As discussed above, the scalar field with exponential
potential leads to a viable evolution at early times. We
should, however, ensure that the scalar field becomes quin-
tessence at late times. In fact, any scalar field potential
which interpolates between an exponential at early epochs
and a power-law type potential at late times could lead to a
viable cosmological evolution. The AS potential in Eq. (4)
provides such an example. For illustration, in Fig. 3, we

−50510152025
0
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40

log
10

 (1+z)

φ

−50510152025
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0.25
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Ω
φ

−50510152025
−1

0.5
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−0.5

1

log
10

 (1+z)

w
φ

permanent
transient

FIG. 3 (color online). Evolution of the scalar field, fractional
energy density and equation of state of dark energy (from top to
bottom) for g ¼ 0:025, �0

mh
2 ¼ 0:137, and two sets of the

potential parameters ð�; A;�0Þ ¼ ð7; 0:01; 38:85Þ and (7, 0.02,
38.925), leading to permanent (solid lines) and transient (dashed
lines) acceleration, respectively.
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show the evolution of the scalar field, the fractional energy
density, and equation of state of dark energy for two sets of
parameters, one leading to permanent acceleration and the
other to transient acceleration.

A. Postinflationary evolution

After inflation ends, it takes a little while for the brane
corrections to disappear and for the kinetic regime to
commence. When � ’ �� & 2�, the scalar field rolling

down a steep potential is now subject to minimum damping

and soon goes into a free fall mode during which _�2 �
Vð�Þ and �� / a�6. The Universe undergoes a transition

from an era dominated by the scalar field potential energy
to a kination era. Since during the kination epoch �r=�� �
a2, the Universe eventually makes a transition to the stan-
dard radiation era (cf. Fig. 3).

We should mention that the number of e-folds from
horizon crossing to the end of inflation, N?, can now be
determined from the following considerations. A length
scale k? which crosses the Hubble radius during the infla-
tionary epoch (a?) and reenters it today (a0) will satisfy
k? ¼ a?H? ¼ a0H0, or equivalently,

k?
a0H0

¼ a?H?

a0H0

¼ a?
aend

aend
aeq

H?

Heq

aeqHeq

a0H0

; (48)

where Heq ¼ 4:4� 10�54ð�0
mh

2Þ2 and aeq are the values

of the Hubble radius and the scale factor at the matter-
radiation equality epoch, respectively; H? is the Hubble
radius at the horizon crossing scale k?,

H2
? ’ 1

3

V2
?

2�
: (49)

Taking into account that a?=aend ¼ e�N? and

aeqHeq

a0H0

¼ 217:7�0
mh; (50)

one can write

N? ¼ ln
k�1
?

3000h�1 Mpc
þ ln

aend
aeq

þ ln
V?ffiffiffiffiffiffi
6�

p
Heq

þ ln217:7�0
mh: (51)

To estimate aend=aeq, one can track the radiation evolution,

�r / a�4. Using relation (46) we find

aend
aeq

¼
�
g

10

��1=2
�
�eq

�end
�

�
1=4
; (52)

where �eq ¼ 3H2
eq denotes the energy density at matter-

radiation equality epoch. Finally we obtain

N? ¼ ln
k�1
?

3000h�1 Mpc
þ 1

4
ln
�eq

�end
�

� 1

2
ln
g

10

þ ln
V?ffiffiffiffiffiffi
6�

p
Heq

þ ln217:7�0
mh: (53)

Taking into account the lower bound on N? given by
Eq. (29), and noticing that N? is almost independent of
�0
mh

2 and �, it is possible to derive an upper bound on the
coupling g. Numerically we find that g & 2:6� 10�2. This
in turn implies a lower bound on the Yukawa coupling hf.

For the reheating of the Universe to be instantaneous at the
end of the inflationary period, one should have hf * 10�3.

B. Late time evolution and observational constraints

In our study, we perform a random analysis on the
potential parameters �, A, and �0, together with N? [g is
determined by Eq. (53)] and �0

mh
2 ¼ 0:1369� 0:0037.

We consider the two possible late time behaviors: perma-
nent or transient acceleration.
In order to have a viable model, besides the inflationary

constraints, one needs to verify the other observational
bounds on the different measured quantities during the
different stages of the evolution of the Universe. As men-
tioned before, a stringent bound comes from the amount of
dark energy during nucleosynthesis �BBN

� ðz ’ 1010Þ &
0:09 [58]. The bound arising from the CMB data,
�CMB
� ðz ’ 1100Þ< 0:39 [58] at last scattering, is less strin-

gent than the BBN bound. At present, we consider the
following conservative bounds:

0:6 � h � 0:8; 0:6 � �0
� � 0:8;

w0
� � �0:8; q0 < 0;

(54)

where q � � €a=ðaH2Þ is the deceleration parameter.
The results of our analysis1 are displayed in Figs. 4 and

5. We can see that the evolution of the scalar field � from
inflation to the present epoch is consistent with the obser-
vational constraints in a wide region of the parameter space
of the AS potential, making it possible to obtain solutions
with either eternal or transient accelerations.
The already discussed upper bound on the coupling g,

coming from the rs constraint on N?, as well as the lower
bound on the potential parameter �, resulting from the
bound on the amount of dark energy during BBN, is also

1Notice that instead of A and �0 we use the combination of
parameters A�2 and �0� to present our results. As already
explained, A�2 determines the presence or absence of the
minimum in the AS potential and, hence, it is useful for dis-
tinguishing between the permanent and transient regimes. The
combination �0� determines the position of the minimum/
maximum or inflection point of the potential

[�� ¼ ð1þ�0��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A�2

p
Þ=�], which is related to the

exit from the tracking regime and to the scalar field energy
density domination at present.
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FIG. 4 (color online). Parameter space consistent with all the observational constraints considered, for the permanent acceleration
case.
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FIG. 5 (color online). Same as in Fig. 4, but for the transient acceleration case.
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shown in the figures (horizontal and vertical dashed lines,
respectively). Decreasing g or increasing � prolongs the
kinetic regime. If this regime is too long, the history of the
Universe is spoiled. This allows us to put a lower and an
upper bound on g and �, respectively. From the complete
numerical analysis we find that the model exhibits transient
acceleration at late times for

5:3 & � & 9:9; 2:7� 10�4 & g & 2:6� 10�2;

(55)

0:96 & A�2 & 1:26; 271 & �0� & 273; (56)

while permanent acceleration is obtained for

5:5 & � & 10:8; 4:0� 10�4 & g & 2:6� 10�2;

(57)

2:3� 10�8 & A�2 & 0:98; 255 & �0� & 273:

(58)

We notice that the bound on� is slightly lower than the one
determined from Eq. (6), � * 6:7. We recall that Eq. (6) is
only valid if the field is in the tracking regime, and, in the
present model, it is possible to have initial conditions such
that the scalar field has not yet entered the tracking regime
during BBN.

The number of e-folds from horizon crossing till the end
of inflation N? and the value for the 5D Planck mass are
very constrained:

64 & N? & 66; (59)

and (cf. Figure 2)

9:0� 10�4 &
M5

M4

& 1:9� 10�3; (60)

which imposes strong constraints on the inflationary ob-
servables ns and rs.

V. CONCLUSIONS

We have analyzed a simple model of quintessential
inflation in the RSII braneworld context with a modified

exponential potential. One of the attractive features of the
model is that it can lead to transient acceleration at late
times. This is particularly welcome in string theoretical
formulations in order to avoid the difficulties arising in the
S-matrix construction at the asymptotic future in a de Sitter
space [65–67]. Assuming that the Universe was reheated
via the instant preheating mechanism, we have shown that
the evolution of the scalar field from inflation till the
present epoch is consistent with the observations in a
wide region of the parameter space. Requiring that the
model meets various cosmological constraints at the differ-
ent stages of the evolution, we were able to constrain
tightly its parameters, as summarized in Eqs. (55)–(60).
In view of the very constrained bounds we obtained from

the inflationary period, it is useful to consider how we
could circumvent them in a simple and natural way. For
instance, theoretical predictions for the inflationary observ-
ables may be modified by the presence of fields that are
heavier than the Hubble rate during inflation. In this case,
the coupling of the inflaton field to such heavy fields
introduce corrections [68] which can be larger than the
second-order contributions in the slow-roll parameters.
Another way to change predictions for these observables
is to consider the more general framework of Gauss-
Bonnet gravity. In the presence of the Gauss-Bonnet
term, the value of the spectral index is determined by the
Gauss-Bonnet coupling parameter and the tension of the
brane and is independent of the slope of the potential,
thereby bringing the scenario in closer agreement with
the most recent observations [69,70].
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