
October 16, 2012 9:24 WSPC/Guidelines-IJMPA S0217751X12300256

International Journal of Modern Physics A
Vol. 27, No. 26 (2012) 1230025 (28 pages)
c© World Scientific Publishing Company

DOI: 10.1142/S0217751X12300256

A RESOURCE FOR SIGNS AND

FEYNMAN DIAGRAMS OF THE STANDARD MODEL

JORGE C. ROMÃO
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When performing a full calculation within the standard model (SM) or its extensions,
it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge
fields. Unfortunately, the literature is plagued with differing signs and notations. We
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1. Introduction

Almost every book and review on the standard model (SM) has its own conventions

for the signs that enter the definitions of the couplings and fields. Although the

signs are irrelevant when a full calculation is made with any given convention, the

signs of the various Feynman diagrams are usually different in different conventions.

Of course, most papers sidestep writing all Feynman diagrams, with the rationale

that these are already contained in several books. Typically, a paper on a model

of physics beyond the SM shows only a few Feynman rules, or not even that. As

a result, the remaining Feynman rules needed for any given calculation must be

derived from first principles or found in books. And this is where the problem
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resides; which convention was used in the paper? How does it compare with the

convention in some specific book?

Here we perform two tasks. We list all Feynman rules with arbitrary signs,

allowing one to specify later for any given sign convention being used, and we list

the sign conventions of close to 40 known books and reviews.

Section 2 summarizes the SM Lagrangian including the generic signs (repre-

sented by parameters η = ±1) necessary to specify the different notations found

in the literature. These are listed in table form in Sec. 3, including only those

references we consulted which: (i) follow the metric (+,−,−,−); (ii) follow Bjorken

and Drell’s1 convention for the propagator, with the explicit i; and (iii) are inter-

nally consistent (i.e. we do not include references which make one sign choice in one

part of the Lagrangian and a different choice elsewhere). Sections 4 and 5 contain

all Feynman rules of the SM, including would-be Goldstone bosons and ghosts in

an arbitrary Rξ gauge, in a convention-independent notation. Consistency remarks

due to gauge invariance and invariance under Becchi–Rouet–Stora–Tyutin (BRST)

transformations are relegated to App. A.

2. The Standard Model

2.1. Gauge group SU(3)c

Here the important conventions are for the field strengths and the covariant deriva-

tives. We have

Gaµν = ∂µG
a
ν − ∂νG

a
µ − ηsgsf

abcGbµG
c
ν (a = 1, . . . , 8) , (1)

where fabc are the group structure constants, satisfying
[

T a, T b
]

= ifabcT c (2)

and T a are the generators of the group. The parameter ηs = ±1 reflects the two

usual signs in the literature. The covariant derivative of a (quark) field q in some

representation T a of the gauge group is given by

Dµq =
(

∂µ + iηsgsG
a
µT

a
)

q . (3)

In QCD, the quarks are in the fundamental representation and T a = λa/2, where

λa are the Gell-Mann matrices. A gauge transformation is given by the matrix

U = eiηsgsT
aβa

(4)

and the fields transform as

q → eiηsgsT
aβa

q , δq = iηsgsT
aβaq ,

GaµT
a → UGaµT

aU−1 +
i

ηsgs
∂µUU

−1 ,

δGaµ = −∂µβa − ηsgsf
abcβbGcµ ,

(5)
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where the second column is for infinitesimal transformations.With these definitions,

one can verify that the covariant derivative transforms like the field itself,

δ(Dµq) = iηsgsT
aβa(Dµq) , (6)

ensuring the gauge invariance of the Lagrangian. Further consistency checks due to

gauge invariance will be relegated to App. A.

2.2. Gauge group SU(2)L × U(1)Y

For the SU(2)L group, we have

W a
µν = ∂µW

a
ν − ∂νW

a
µ − ηgǫabcW b

µW
c
ν (a = 1, . . . , 3) , (7)

where, for the fundamental representation of SU(2)L, T
a = τa/2, where τa are the

Pauli matrices, ǫabc is the completely antisymmetric tensor in three dimensions and

η = ±1. The covariant derivative for any field ψL transforming nontrivially under

this group is

DµψL =
(

∂µ + iηgW a
µT

a
)

ψL . (8)

As for the Abelian U(1)Y group, we have

Bµν = ∂µBν − ∂νBµ , (9)

with the covariant derivative given by

Dµψ =
(

∂µ + iη′g′ηY Y Bµ
)

ψ , (10)

where Y is the hypercharge of the field, connected to the electric charge through

Q = T3 + ηY Y . (11)

As before, η′, ηY = ±1. Some authors use

Q = T3 + ηY
Ytheirs

2
=
τ3 + ηY Ytheirs

2
, (12)

instead of our Eq. (11). The difference is immaterial for the Feynman rules, which

depend only on Q.

It is useful to write the covariant derivative in terms of the mass eigenstates Aµ
and Zµ. These are defined by the relations,a

{

W 3
µ = ηZZµ cos θW +Aµηθ sin θW ,

Bµ = −ηZZµηθ sin θW +Aµ cos θW ,
{

ηZZµ =W 3
µ cos θW −Bµηθ sin θW ,

Aµ =W 3
µηθ sin θW +Bµ cos θW .

(13)

aOne could also include a sign in the photon field A, by substituting Aµ → ηAAµ. However, we
have found no author who made the choice ηA = −1.
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For a doublet field ψL, with hypercharge Y , we get

DµψL =

[

∂µ + iη
g√
2

(

τ+W+
µ + τ−W−

µ

)

+ iη
g

2
τ3W

3
µ + iη′g′ηY Y Bµ

]

ψL

=

[

∂µ + iη
g√
2

(

τ+W+
µ + τ−W−

µ

)

+ iηeeQAµ

+ iη
g

cos θW

(

τ3
2

−Q sin2 θW

)

ηZZµ

]

ψL , (14)

where

W±
µ =

W 1
µ ∓ iW 2

µ√
2

, (15)

τ± =
τ1 ± iτ2√

2
. (16)

The charge operator is defined by

Q =

[

1
2 + ηY Y 0

0 − 1
2 + ηY Y

]

(17)

and we have used the relations

ηee = (ηηθ)g sin θW = η′g′ cos θW . (18)

Many authors use ηe = +1. Some authors use ηe = −1, to account for their other

conventions (notably η = η′ = −1), and still keep e = +g′ cos θW = +g sin θW . For

a singlet of SU(2)L, ψR, we have

DµψR =
[

∂µ + iη′g′ηY Y Bµ
]

ψR

=

[

∂µ + iηeeQAµ − iη
g

cos θW
Q sin2 θW ηZZµ

]

ψR . (19)

We collect in Table 1 the quantum numbers of the SM particles.

Notice that the right-hand sides of Eqs. (14) and (19) only involve Y through

Q, where it appears in the combination ηY Y . A few authors write Eqs. (14) and

(19) directly for each field, sidestepping a precise definition for their ηY .

Table 1. Values of T f
3
, Q and Y for the SM particles.

Field ℓL ℓR νL uL dL uR dR φ+ φ0

T3 − 1

2
0 1

2

1

2
− 1

2
0 0 1

2
− 1

2

ηY Y − 1

2
−1 − 1

2

1

6

1

6

2

3
− 1

3

1

2

1

2

Q −1 −1 0 2

3
− 1

3

2

3
− 1

3
1 0
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For each fermion field ψ, one defines ψR,L = PR,Lψ, where

PR,L =
1± γ5

2
(20)

and ψ = ψR + ψL.

2.3. The gauge and fermion fields Lagrangian

The gauge field Lagrangian is

Lgauge = −1

4
GaµνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (21)

where the field strengths are given in Eqs. (1), (7) and (9).

The kinetic terms for the fermions, including the interaction with the gauge

fields due to the covariant derivative, is written as

LFermion =
∑

quarks

iq̄γµDµq +
∑

ψL

iψLγ
µDµψL +

∑

ψR

iψRγ
µDµψR , (22)

where the covariant derivatives are obtained with the rules in Eqs. (3), (14) and (19).

2.4. The Higgs Lagrangian

The SM includes a Higgs doublet with the following assignments:

Φ =







ϕ+

v +H + iϕZ√
2






. (23)

Since ηY YΦ = +1/2, the covariant derivative reads

DµΦ =

[

∂µ + iη
g√
2

(

τ+W+
µ + τ−W−

µ

)

+ iη
g

2
τ3W

3
µ + iη′

g′

2
Bµ

]

Φ

=

[

∂µ + iη
g√
2

(

τ+W+
µ + τ−W−

µ

)

+ iηeeQAµ

+ iη
g

cos θW

(

τ3
2

−Q sin2 θW

)

ηZZµ

]

Φ , (24)

where, for the doublet field Φ,

Q =

(

1 0

0 0

)

. (25)

The Higgs Lagrangian is

LHiggs = (DµΦ)
†DµΦ + µ2Φ†Φ− λ(Φ†Φ)2 , (26)

leading to the relations

v2 =
µ2

λ
, m2

h = 2µ2 , λ =
g2

8

m2
h

m2
W

. (27)
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Expanding this Lagrangian, we find the following terms quadratic in the fields:

LHiggs = · · ·+ 1

8
g2v2W 3

µW
µ3 +

1

8
g′2v2BµB

µ − 1

4
ηη′gg′v2W 3

µB
µ

+
1

4
g2v2W+

µ W
−µ +

1

2
v∂µϕZ

(

η′g′Bµ − ηgW 3
µ

)

− i

2
ηgvW−

µ ∂
µϕ+ +

i

2
ηgvW+

µ ∂
µϕ− . (28)

The first three terms give, after diagonalization, a massless field (the photon) and

a massive one (the Z), with the relations given in Eq. (13), while the fourth term

gives mass to the charged W±
µ bosons. Using Eq. (13), we get

LHiggs = · · ·+ 1

2
m2
ZZµZ

µ +m2
WW

+
µ W

−µ

− ηηZmZZµ∂
µϕZ − iηmW

(

W−
µ ∂

µϕ+ −W+
µ ∂

µϕ−
)

, (29)

where

mW =
1

2
gv , mZ =

1

cos θW

1

2
gv =

1

cos θW
mW . (30)

By looking at Eq. (29) we realize that, besides finding a realistic spectra for the

gauge bosons, we also get a problem. In fact, the terms in the last line are quadratic

in the fields and complicate the definition of the propagators. The gauge fixing terms

discussed in Subsec. 2.6 solve this problem.

2.5. The Yukawa Lagrangian, fermion masses and the

CKM matrix

After spontaneous symmetry breaking, the interaction between the fermions and

the Higgs doublet gives masses to the elementary fermions. We have

LYukawa = −L̄LYlΦℓR − Q̄′
LYdΦ d

′
R − Q̄′

LYuΦ̃u
′
R + h.c. , (31)

where a sum over generations is implied by the matrix notation, LL (Q′
L) are the

left-handed lepton (quark) doublets and

Φ̃ = iσ2Φ
∗ =





v +H − iϕZ√
2

−ϕ−



 . (32)

Yl, Yd and Yu are general complex 3× 3 matrices in the respective flavor spaces.

To bring the quarks into the mass basis, Yd and Yu are diagonalized through

unitary transformations

ū′L = ūLU
†
uL , d̄′L = d̄LU

†
dL ,

u′R = UuRuR , d′R = UdRdR ,
(33)
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such that

v√
2
U †
uLYuUuR = Mu = diag(mu,mc,mt) ,

v√
2
U †
dLYdUdR = Md = diag(md,ms,mb) .

(34)

In this new basis, the Higgs couplings of the quarks become diagonal:

−LH =

(

1 +
h0

v

)

[

ūMuu+ d̄Mdd
]

. (35)

The couplings to the photon and the Z remain diagonal. In contrast, the couplings

to the W mix the upper and lower components of Q′
L, which transform differently

under Eqs. (33). As a result, the couplings to W± become off-diagonal:

−ηLW =
g√
2
ūLV γ

µdLW
†
µ + h.c. , (36)

where

V = U †
uLUdL (37)

is the Cabibbo–Kobayashi–Maskawa (CKM) matrix, which also affects the inter-

actions with the charged Goldstone bosons.

In the SM, there are no right-handed neutrinos. As a result, the neutrinos are

massless and we are free to rotate them in order to accommodate the transfor-

mations of the charged quarks needed to diagonalize Yl. Thus, without loss of

generality, we may take Yl = diag(me,mµ,mτ ) and V = 1 in the leptonic sector.

2.6. The gauge fixing

One needs to gauge fix the gauge part of the Lagrangian in order to be able to

define the propagators. In the Rξ gauges, the gauge fixing Lagrangian reads

LGF = − 1

2ξG
F 2
G − 1

2ξA
F 2
A − 1

2ξZ
F 2
Z − 1

ξW
F−F+ , (38)

where

F aG = ∂µGaµ ,

FA = ∂µAµ ,

FZ = ∂µZµ + ηηZξZmZϕZ ,

F+ = ∂µW+
µ + iηξWmWϕ

+ ,

F− = ∂µW−
µ − iηξWmWϕ

− .

(39)

One can easily verify that, with these definitions, LGF cancels the mixed quadratic

terms on the second line of Eq. (29).
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2.7. The ghost Lagrangian

The last piece needed for the SM Lagrangian is the ghost Lagrangian. For a linear

gauge fixing condition, as in Eq. (39), this is given by the Fadeev–Popov pre-

scription:

LGhost = ηG

4
∑

i=1

[

c̄+
∂(δF+)

∂αi
+ c̄−

∂(δF+)

∂αi
+ c̄Z

∂(δFZ)

∂αi
+ c̄A

∂(δFA)

∂αi

]

ci

+ ηG

8
∑

a,b=1

ω̄a
∂(δF aG)

∂βb
ωb , (40)

where we have denoted by ωa the ghosts associated with the SU(3)c transformations

defined by Eq. (4), and by c±, cA, cZ the electroweak ghosts associated with the

gauge transformations,

U = eiηgT
aαa

(a = 1, . . . , 3) , (41)

and

U = eiη
′ηY g

′Y α4

. (42)

For completeness, we write in App. A the gauge transformations of the gauge fixing

terms needed to find the Lagrangian in Eq. (40).

Because ghosts are not external states, the sign ηG = ±1 is immaterial and,

although it corresponds to an overall sign affecting all propagators and vertices

with ghosts, it drops out in any physical calculation involving ghosts.

2.8. The complete SM Lagrangian

Finally, the complete Lagrangian for the SM is obtained by putting together all the

pieces. We have

LSM = Lgauge + LFermion + LHiggs + LYukawa + LGF + LGhost , (43)

where the different terms were given in Eqs. (21), (22), (26), (31), (38) and (40).

3. Notations Found in the Literature

In order to use the results contained in some specific source in the literature, one

must find the covariant derivative

Dµ = ∂µ + iηg
τa
2
W a
µ + iη′ηY g

′Y Bµ (44)

and Eqs. (11) and (13). This sets the sign convention for η, η′, ηZ , ηθ and ηY .

Typically, authors set ηs = η.

The signs and conventions in the literature are shown in Table 2.
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Table 2. Sign conventions found in the literature. An asterisk, ∗, on

the last column means that such authors have used Q = (τ3 + Ytheirs)/2
instead of our Eq. (11).

Ref. η η′ ηZ ηθ ηY ηe Y

2–6, 47 + + + + + +

7–17 + + + + + + ∗

18, 19 − − + + + −

20–31 − − + + + − ∗

32, 33 − − + − + +

34 − − − + + − ∗

35 − + + − +

36, 37 − + + − − +

38 − + + − + +

39 + − + − + − ∗

The corresponding Feynman rules are presented in the following sections. A few

remarks are in order. As mentioned, since the Feynman rules depend only on Q,

authors may choose to sidestep a definition of ηY ; or whether they are using Y ,

from Eq. (11), or Ytheirs, from Eq. (12); or even neglect to mention the hypercharge

Y altogether. Similarly, ηθ, η
′ and g′ are absent from the Feynman rules and thus

not needed in any calculation. We see that only ηs, in the strong sector, and η, ηe
and ηZ , in the electroweak sector, show up in Feynman diagrams.

The fact that authors differ by their η sign, but all keep to the definition of

mW and mZ in Eq. (30) (assumed positive), means that diagrams proportional to

gauge boson masses are also affected by the sign choice. Some conventions lead to

peculiar results. For example, the convention in Ref. 32 leads to the unconventional

e = −g′ cos θW , while keeping the usual e = g sin θW . If one wishes to keep all

quantities positive in the relation mZ = gv/(2 cos θW ), then one must assume that

g′ is negative. This is irrelevant for the Feynman rules, where g′ does not show, but

is unusual.

The relevant electroweak choices for η, ηe and ηZ may be inferred from any given

reference, as long as a few Feynman rules are given. For example, the coupling of the

photon with fermions (or W+W−, or ϕ+ϕ−) sets ηe. Similarly, the coupling of the

Z with fermions (or W+W−, or ϕ+ϕ−) sets ηηZ . Finally, the coupling of the W+

with fermions sets η. This sets the notation for all other Feynman rules, even when

Goldstone bosons and/or ghosts are included, except for ηG which can be found

in any of the propagators or vertices involving ghosts. The sign for ηG is shown

in Table 3 for those references including ghosts. A star (*) indicates the references

that only include Feynman rules with ghosts for the pure non-Abelian gauge theory

or that have an incomplete list of the Feynman rules for the electroweak ghosts.

A dagger (†) indicates the references that include all Feynman rules, including

electroweak ghosts.
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Table 3. Sign convention for ηG found in the literature.

Ref. ηG

6, 9, 11, 14–16, 18, 22, 28, 31, 34–36, 39 + ∗

2, 20, 32, 37, 38 + †

13, 23, 47 − ∗

3 − †

Next we present all Feynman rules, including the generic signs, which have

been obtained using the FeynRules package.40 The first Roman letters (a, d, c, d, e)

denote group indices; the Roman letters (i, j) refer to the QCD component; the

Greek letters (µ, ν, σ, ρ) denote Lorentz indices; while the first Greek letters (α, β),

appearing in the CKM matrix V , refer to the flavor indices.

We finish this section by comparing our results with those found in the literature.

We only do this comparison for the set of references that have all the Feynman rules

for the SM, including ghosts, namely Refs. 2, 3, 20, 32, 37 and 38. We agree with

Ref. 2 (including the errata) except for an overall sign in Eqs. (14.66) and (14.67).

As for Ref. 3, we disagree with the four gluon vertex on page 572, but we agree

when it is written on page 557. We also note that this reference has the complete

Feynman rules for the counterterms that we do not include here. Reference 20 has

all the Feynman rules, including also those for the counterterms. The conventions

of this reference are different from all those that we cite and therefore difficult to

compare. However, we have checked a reasonable number of Feynman rules and got

agreement in all cases. Reference 37 has all Feynman rules correct, except for an

overall sign on the last vertex on page A.16 and the fourth on page A.18. We agree

with all Feynman rules contained in Refs. 32 and 38.

4. Feynman Rules for QCD

We give separately the Feynman rules for QCD and the electroweak part of the SM.

All moments are incoming, except in the ghost vertices where they are explicitly

shown.

4.1. Propagators

µ, a ν, b

g

− iδab

[

gµν
k2 + iǫ

− (1− ξG)
kµkν
(k2)2

]

, (45)

ω
a b δab

iηG
k2 + iǫ

. (46)
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4.2. Triple gauge interactions

µ, a ν, b

ρ, c

p1

p2

p3
−ηsgsfabc[gµν(p1 − p2)

ρ + gνρ(p2 − p3)
µ

+ gρµ(p3 − p1)
ν ] . (47)

4.3. Quartic gauge interactions

µ, a ν, b

ρ, cσ, d

p1 p2

p3p4
−ig2s

[

feabfecd(gµρgνσ − gµσgνρ)

+ feacfedb(gµσgρν − gµνgρσ)

+ feadfebc(gµνgρσ − gµρgνσ)
]

. (48)

4.4. Fermion gauge interactions

µ, a

ji
p1

p2

p3 −iηsgsγµT aij . (49)

4.5. Ghost interactions

µ, c

a b
p1

p2

p3 −ηsηGgsfabcpµ1 . (50)

5. Feynman Rules for the Electroweak Theory

5.1. Propagators

µ ν

γ

−i
[

gµν
k2 + iǫ

− (1 − ξA)
kµkν
(k2)2

]

, (51)

µ ν

W

−i 1

k2 −m2
W + iǫ

[

gµν − (1 − ξW )
kµkν

k2 − ξWm2
W

]

, (52)
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µ ν

Z

−i 1

k2 −m2
Z + iǫ

[

gµν − (1− ξZ)
kµkν

k2 − ξZm2
Z

]

, (53)

p

i(p/ +mf )

p2 −m2
f + iǫ

, (54)

p

h i

p2 −m2
h + iǫ

, (55)

p

ϕZ i

p2 − ξZm2
Z + iǫ

, (56)

p

ϕ± i

p2 − ξWm2
W + iǫ

. (57)

5.2. Triple gauge interactions

p−
q

p+

W−
σ

W+
ρ

Aµ

−iηee
[

gσρ(p− − p+)µ

+ gρµ(p+ − q)σ + gµσ(q − p−)ρ
]

, (58)

p−
q

p+

W−
σ

W+
ρ

Zµ

−iηηZg cos θW [gσρ(p− − p+)µ

+ gρµ(p+ − q)σ + gµσ(q − p−)ρ] . (59)

5.3. Quartic gauge interactions

W+
σ

Aµ

W−
ρ

Aν

−ie2[2gσρgµν − gσµgρν − gσνgρµ] , (60)
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W+
σ

Zµ

W−
ρ

Zν

−ig2 cos2 θW [2gσρgµν − gσµgρν − gσνgρµ] , (61)

W+
σ

Aµ

W−
ρ

Zν

−iηeηηZeg cos θW [2gσρgµν − gσµgρν − gσνgρµ] , (62)

W+
σ W−

ρ

W+
µ W−

ν

ig2[2gσµgρν − gσρgµν − gσνgρµ] . (63)

5.4. Charged current interaction

dβ

uα

W+
µ

−iη g√
2
γµPLVαβ , (64)

uα

dβ
W−

µ
−iη g√

2
γµPLV

∗
αβ , (65)

ℓ, ν

ν, ℓ
W±

µ

−iη g√
2
γµPL . (66)

5.5. Neutral current interaction

ψf

ψf

Aµ

−iηeeQfγµ , (67)
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ψf

ψf

Zµ

−iηηZ
g

cos θW
γµ

(

gfV − gfAγ5

)

, (68)

where

gfV =
1

2
T 3
f −Qf sin

2 θW , gfA =
1

2
T 3
f . (69)

5.6. Fermion-Higgs and fermion-Goldstone interactions

h

f

f

−i g
2

mf

mW

, (70)

f

ϕZ

f

f

−gT 3
f

mf

mW

γ5 , (71)

ϕ+

uα

dβ

i
g√
2

(

muα

mW

PL − mdβ

mW

PR

)

Vαβ , (72)

ϕ−

dβ

uα

i
g√
2

(

muα

mW

PR − mdβ

mW

PL

)

V ∗
αβ , (73)

ϕ±

ν, ℓ

ℓ, ν

−i g√
2

mℓ

mW

PR,L . (74)
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5.7. Triple Higgs-gauge and Goldstone-gauge interactions

Aµ

ϕ+

ϕ−

p−

p+

−iηee(p+ − p−)µ , (75)

Zµ

ϕ+

ϕ−

p−

p+

−iηηZg
cos 2θW
2 cos θW

(p+ − p−)µ , (76)

W±
µ

h

ϕ∓

k

p

± i

2
ηg(k − p)µ , (77)

W±
µ

ϕZ

ϕ∓

k

p

−η g
2
(k − p)µ , (78)

Zµ

h

ϕZ

k

p

−ηηZ
g

2 cos θW
(k − p)µ , (79)

Aµ

W±
ν

ϕ∓

iηeηemW gµν , (80)

1230025-15



October 16, 2012 9:24 WSPC/Guidelines-IJMPA S0217751X12300256

J. C. Romão & J. P. Silva

Zµ

W±
ν

ϕ∓

−iηZgmZ sin2 θW gµν , (81)

W±
µ

W∓
ν

h

igmWgµν , (82)

Zµ

Zν

h

i
g

cos θW
mZgµν . (83)

5.8. Quartic Higgs-gauge and Goldstone-gauge interactions

h

h

W±
µ

W∓
ν

i

2
g2gµν , (84)

ϕZ

ϕZ

W±
µ

W∓
ν

i

2
g2gµν , (85)

h

h

Zµ

Zν

i

2

g2

cos2 θW
gµν , (86)
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ϕZ

ϕZ

Zµ

Zν

i

2

g2

cos2 θW
gµν , (87)

ϕ+

ϕ−

Aµ

Aν

2ie2gµν , (88)

ϕ+

ϕ−

Zµ

Zν

i

2

(

g cos 2θW
cos θW

)2

gµν , (89)

ϕ+

ϕ−

W+
µ

W−
ν

i

2
g2gµν , (90)

ϕ∓

h

W±
µ

Zν

−iηZg2
sin2 θW
2 cos θW

gµν , (91)

ϕ±

ϕZ

W∓
µ

Zν

∓ηZg2
sin2 θW
2 cos θW

gµν , (92)
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ϕ±

h

W∓
µ

Aν

i

2
ηeηeggµν , (93)

ϕ∓

ϕZ

W±
µ

Aν

∓1

2
ηeηeggµν , (94)

ϕ+

ϕ−

Zµ

Aν

iηeηηZeg
cos 2θW
cos θW

gµν . (95)

5.9. Triple Higgs and Goldstone interactions

ϕ−

ϕ+

h
− i

2
g
m2
h

mW

, (96)

h

h

h
−3

2
ig
m2
h

mW

, (97)

ϕZ

ϕZ

h
− i

2
g
m2
h

mW

. (98)
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5.10. Quartic Higgs and Goldstone interactions

ϕ+

ϕ+

ϕ−

ϕ−

− i

2
g2
m2
h

m2
W

, (99)

ϕ+

ϕ−

h

h

− i

4
g2
m2
h

m2
W

, (100)

ϕ+

ϕ−

ϕZ

ϕZ

− i

4
g2
m2
h

m2
W

, (101)

h

h

h

h

−3

4
ig2

m2
h

m2
W

, (102)

ϕZ

ϕZ

h

h

− i

4
g2
m2
h

m2
W

, (103)

ϕZ

ϕZ

ϕZ

ϕZ

−3

4
ig2

m2
h

m2
W

. (104)
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5.11. Ghost propagators

cA

k

ηGi

k2 + iǫ
, (105)

c±

k

ηGi

k2 − ξWm2
W + iǫ

, (106)

cZ

k

ηGi

k2 − ξZm2
Z + iǫ

. (107)

5.12. Ghost gauge interactions

Aµ

c±

c±

p

∓iηGηeepµ , (108)

Zµ

c±

c±

p

∓iηGηηZg cos θW pµ , (109)

W±
µ

c±

cZ

p

±iηGηηZg cos θW pµ , (110)

W±
µ

c±

cA

p

±iηGηeepµ , (111)
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W∓
µ

c±

cZ
p

±iηGηg cos θW pµ , (112)

W∓
µ

c±

cA
p

±iηGηeepµ . (113)

5.13. Ghost-Higgs and ghost-Goldstone interactions

ϕZ

c±

c±

±ηG
g

2
ξWmW , (114)

h

c±

c±

− i

2
ηGgξWmW , (115)

h

cZ

cZ

−ηG
ig

2 cos θW
ξZmZ , (116)

ϕ∓

c±

cZ

i

2
ηGηZgξZmZ , (117)
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ϕ±

c±

cZ

−iηGηZg
cos 2θW
2 cos θW

ξWmW , (118)

ϕ±

c±

cA

−iηGηeηeξWmW . (119)

5.14. Brief comment on the alternative metric

As mentioned in Sec. 1, all our calculations and Feynman diagrams have been

obtained with the metric (+,−,−,−). A few books use instead the metric

(−,+,+,+). Reference 41 differs from ours only in the metric. For example, it

uses as we do, iψ̄∂/ ψ, for the fermion kinetic term. Therefore, our results agree with

the change gµν → −gµν , implying also changes of the type p2 → −p2 and p/ → −p/ .
The comparison is much more involved with respect to Refs. 42 and 43, because

in those cases there are many changes besides the metric, involving, in particular,

multiple factors of i and 2π in the Feynman rules. As an additional complication,

Ref. 43 uses −ψ̄∂/ψ for the fermion kinetic term, implying also a change in the

matrices γµ, compounded by different gauge fixing terms. A detailed analysis of all

such choices lies beyond the scope of this work.

Acknowledgments

We are grateful to A. Barroso and P. Nogueira for useful discussions and
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Appendix A. Gauge and BRST Consistency Checks

A.1. Gauge transformation and gauge invariance

For completeness, we write here the gauge transformations of the gauge fixing

terms needed to find the Lagrangian in Eq. (40). It is convenient to redefine the
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parameters as

α± =
α1 ∓ α2

√
2

,

ηZαZ = α3 cos θW − ηθα
4 sin θW ,

αA = ηθα
3 sin θW + α4 cos θW .

(A.1)

We then get

δF aG = ∂µ
(

−∂µβa − ηsgsf
abcβbGcµ

)

,

δFA = ∂µ(δAµ) ,

δFZ = ∂µ(δZ
µ) + ηηZξZmZδϕZ ,

δF+ = ∂µ(δW
+
µ ) + iηξWmW δϕ

+ ,

δF− = ∂µ(δW
−
µ )− iηξWmW δϕ

− .

(A.2)

Using the explicit form of the gauge transformations we can finally find the missing

pieces:

δAµ = −∂µαA − iηee
(

W+
µ α

− −W−
µ α

+
)

,

δZµ = −∂µαZ − iηηZg cos θW
(

W+
µ α

− −W−
µ α

+
)

,

δW+
µ = −∂µα+ − iηg

[

α+(ηZZµ cos θW + ηθAµ sin θW )

− (ηZαZ cos θW + ηθαA sin θW )W+
µ

]

,

δW−
µ = −∂µα− + iηg

[

α−(ηZZµ cos θW + ηθAµ sin θW )

− (ηZαZ cos θW + ηθαA sin θW )W−
µ

]

.

(A.3)

To get the variation of the Goldstone bosons we notice that

δΦ =

[

iη
g√
2

(

τ+α+ + τ−α−
)

+ iη
g

2
τ3α

3 + iη′
g′

2
α4

]

Φ (A.4)

=

[

iη
g√
2

(

τ+α+ + τ−α−
)

+ iηeeQαA

+ iη
g

cos θW

(

τ3
2

−Q sin2 θW

)

ηZαZ

]

Φ , (A.5)
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which we can write as







δϕ+

δ(H + iϕZ)√
2






= − i

2









−ηg cos 2θW
cos θW

ηZαZ − 2ηeeαA −
√
2ηgα+

−
√
2ηgα− η

g

cos θW
ηZαZ









×







ϕ+

v +H + iϕZ√
2






, (A.6)

leading to

δϕZ =
1

2
ηg(α−ϕ+ + α+ϕ−)− η

g

2 cos θW
ηZαZ(v +H) ,

δϕ+ = iη
g

2
(v +H + iϕZ)α

+ + iη
g

2

cos 2θW
cos θW

ϕ+ηZαZ + iηeeϕ
+αA ,

δϕ− = −iη g
2
(v +H − iϕZ)α

− − iη
g

2

cos 2θW
cos θW

ϕ−ηZαZ − iηeeϕ
−αA ,

δH = −iη g
2
(α+ϕ− − α−ϕ+) + η

g

2 cos θW
ηZαZϕZ .

(A.7)

With the gauge transformations given in Eqs. (A.3) and (A.7), one can easily

verify that Lgauge and LHiggs are gauge invariant, independently of the choice of

the η’s. For instance, for LHiggs we have

δLHiggs = δ(DµΦ)
†DµΦ+ (DµΦ)

†δ(DµΦ) + δ
(

µ2Φ†Φ− λ(Φ†Φ)2
)

= 0 . (A.8)

To check the fermion part we have to give explicitly the gauge transformations for

ψL and ψR. They can be easily obtained from Eqs. (14) and (19). We get

δψL =

[

iη
g√
2
(τ+α+ + τ−α−) + iηeeQαA

+ iη
g

cos θW

(

τ3
2

−Q sin2 θW

)

ηZαZ

]

ψL ,

δψR =

[

iηeeQαA − iη
g

cos θW
Q sin2 θW ηZαZ

]

ψR ,

(A.9)

supplemented by Eq. (5) for the SU(3)c transformation of the quarks. Using these

transformation laws one can verify that

δ(LFermion + LYukawa) = 0 , (A.10)

completing the proof of the gauge invariance of the classical part of LSM. This

means that, except for LGF + LGhost to be discussed later, we have included the

various η parameters in the appropriate fashion.
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A.2. Consistency checks and the BRST transformations

To make the proof of gauge invariance for the complete Lagrangian we have to

deal with the gauge fixing and ghost terms. This is more easily done using the

BRST transformations of Becchi, Rouet and Stora44 and Tyutin,45 and the Slavnov

operator. The Slavnov operator is a special kind of gauge transformation on the

gauge and matter fields. More specifically, we define

s(Aiµ) =
δAiµ
δαi

ci , s(φi) =
δφi
δαi

ci , (A.11)

where Aiµ are the gauge fields and φi represents generically any matter field (fermion

or boson). They have the following properties:

(i) For a product of two fields, we have

s(XY ) = s(X)Y + (−1)GN(X)Xs(Y ) . (A.12)

In this expression the ghost number, GN(X), is defined as zero for gauge and

matter fields, +1 for ci fields (ghosts) and −1 for c̄i (antighosts).

(ii) s raises the dimension by one unit (in terms of mass).

(iii) s does not change the charge.

(iv) The Slavnov operator is nilpotent, that is, s2 = 0.

To check the last identity we must have, for a non-Abelian group,

s(ci) = −η g
2
f ijkc jck . (A.13)

Let us show how the nilpotency of s is obtained for the gauge fields of a non-Abelian

theory. From Eq. (A.11) we have

s(Aiµ) = −∂µci − ηgf ijkc jAkµ . (A.14)

Therefore, using Eq. (A.12) we get

s2Aiµ = −∂µs(ci)− ηgf ijks(c j)Akµ + ηgf ijkc js
(

Akµ
)

= η
g

2
f ijk

(

∂µc
jck + c j∂µc

k
)

+ η2
g2

2
f ijkf jmncmcnAkµ

+ ηgf ijkc j
(

−∂µck − ηgfkmncmAnµ
)

= ηgf ijk
(

c j∂µc
k − c j∂µc

k
)

+
g2

2
(f ijkf jmn + f ijmf jnk + f ijnf jkm)cmcnAkµ = 0 , (A.15)

where we have used the antisymmetry of the structure constants and of the ghost

fields, and the Jacobi identity. This confirms that the assignment of Eq. (A.13) is

consistent with Eqs. (A.12) and (A.14). Before proceeding, we should notice that

another definition for the product can be used. In particular, Ref. 46 uses

s(XY ) = (−1)GN(Y )s(X)Y +Xs(Y ) . (A.16)

Then, to verify the nilpotency of s, we must reverse the sign in Eq. (A.13).
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To prove the invariance of LGF+Ghost, we use the BRST technique. This is best

explained for a simple group. We have

LGF+Ghost = − 1

2ξ
F 2
i + ηGc̄

j δFj
δαi

ci = −1

ξ
F 2
i + c̄ js(Fj) , (A.17)

where the last step follows from Eq. (A.11). Now, because of the nilpotency of the

Slavnov operator, to ensure the invariance of Eq. (A.17) under BRST transforma-

tions, it is enough to require that

s(c̄ j) = ηG
1

ξ
F j . (A.18)

If the gauge fixing is nonlinear, some subtleties arise, as explained in Ref. 46.

Coming back to the SM, we only have to verify that the Slavnov operator is

indeed nilpotent in all the fields. We have verified this explicitly for all the cases.

For completeness, we give here the action of the Slavnov operator in all of the SM

fields, in a way consistent with our notation. We just give the electroweak part,

because, for QCD, they can be read from Eqs. (A.13) and (A.14). We start with

the gauge fields

s(Aµ) = −∂µcA − iηee
(

W+
µ c

− −W−
µ c

+
)

,

s(Zµ) = −∂µcZ − iηηZg cos θW
(

W+
µ c

− −W−
µ c

+
)

,

s(W+
µ ) = −∂µc+ − iηg

[

c+(ηZZµ cos θW + ηθAµ sin θW )

− (ηZcZ cos θW + ηθcA sin θW )W+
µ

]

,

s(W−
µ ) = −∂µc− + iηg

[

c−(ηZZµ cos θW + ηθAµ sin θW )

− (ηZcZ cos θW + ηθcA sin θW )W−
µ

]

.

(A.19)

For the Higgs we get

s(ϕZ) =
1

2
ηg(c−ϕ+ + c+ϕ−)− η

g

2 cos θW
ηZcZ(v +H) ,

s(ϕ+) = iη
g

2
(v +H + iϕZ)c

+ + iη
g

2

cos 2θW
cos θW

ϕ+ηZcZ + iηeeϕ
+cA ,

s(ϕ−) = −iη g
2
(v +H − iϕZ)c

− − iη
g

2

cos 2θW
cos θW

ϕ−ηZcZ − iηeeϕ
−cA ,

s(H) = −iη g
2
(c+ϕ− − c−ϕ+) + η

g

2 cos θW
ηZcZϕZ ,

(A.20)
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and for the fermions,

s(ψL) =

[

iη
g√
2
(τ+c+ + τ−c−) + iηeeQcA

+ iη
g

cos θW

(

τ3
2

−Q sin2 θW

)

ηZcZ

]

ψL ,

s(ψR) =

[

iηeeQcA − iη
g

cos θW
Q sin2 θW ηZcZ

]

ψR .

(A.21)

Finally, we need the rules for the ghost fields. These are obtained from Eq. (A.13).

We get

s(cA) = iηeec
+c− ,

s(cZ) = iηηZg cos θW c
+c− ,

s(c+) = iηηZg cos θW cZc
+ + iηeecAc

+ ,

s(c−) = −iηηZg cos θW cZc− − iηeecAc
− .

(A.22)
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