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When performing a full calculation within the standard model (SM) or its extensions,
it is crucial that one utilizes a consistent set of signs for the gauge couplings and gauge
fields. Unfortunately, the literature is plagued with differing signs and notations. We
present all SM Feynman rules, including ghosts, in a convention-independent notation,
and we table the conventions in close to 40 books and reviews.
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1. Introduction

Almost every book and review on the standard model (SM) has its own conventions
for the signs that enter the definitions of the couplings and fields. Although the
signs are irrelevant when a full calculation is made with any given convention, the
signs of the various Feynman diagrams are usually different in different conventions.
Of course, most papers sidestep writing all Feynman diagrams, with the rationale
that these are already contained in several books. Typically, a paper on a model
of physics beyond the SM shows only a few Feynman rules, or not even that. As
a result, the remaining Feynman rules needed for any given calculation must be
derived from first principles or found in books. And this is where the problem
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resides; which convention was used in the paper? How does it compare with the
convention in some specific book?

Here we perform two tasks. We list all Feynman rules with arbitrary signs,
allowing one to specify later for any given sign convention being used, and we list
the sign conventions of close to 40 known books and reviews.

Section 2 summarizes the SM Lagrangian including the generic signs (repre-
sented by parameters n = £1) necessary to specify the different notations found
in the literature. These are listed in table form in Sec. 3, including only those
references we consulted which: (i) follow the metric (+, —, —, —); (ii) follow Bjorken
and Drell’s! convention for the propagator, with the explicit 4; and (iii) are inter-
nally consistent (i.e. we do not include references which make one sign choice in one
part of the Lagrangian and a different choice elsewhere). Sections 4 and 5 contain
all Feynman rules of the SM, including would-be Goldstone bosons and ghosts in
an arbitrary Re gauge, in a convention-independent notation. Consistency remarks
due to gauge invariance and invariance under Becchi-Rouet-Stora—Tyutin (BRST)
transformations are relegated to App. A.

2. The Standard Model
2.1. Gauge group SU(3).

Here the important conventions are for the field strengths and the covariant deriva-
tives. We have

G, = 0,Gy — 0,G% — g f*7°GLGS (a=1,...,8), (1)
where ¢ are the group structure constants, satisfying
[Ta7 Tb] _ Z-fabcTc (2)

and T are the generators of the group. The parameter ns = +1 reflects the two
usual signs in the literature. The covariant derivative of a (quark) field ¢ in some
representation 7% of the gauge group is given by

D,q= <8M + insgsGZTG)Q- (3)

In QCD, the quarks are in the fundamental representation and 7% = \*/2, where
A% are the Gell-Mann matrices. A gauge transformation is given by the matrix

U = ¢ns9sT%8° (4)
and the fields transform as
q— 9T g Gq = in.g T B,
i
NsYs
5Gy, = ~0,0° — neg VG,
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Signs and Feynman Diagrams of the Standard Model

where the second column is for infinitesimal transformations. With these definitions,
one can verify that the covariant derivative transforms like the field itself,

6(Dpuq) = insgsT*B*(Dpq) (6)

ensuring the gauge invariance of the Lagrangian. Further consistency checks due to
gauge invariance will be relegated to App. A.

2.2. Gauge group SU(2)r x U(1)y
For the SU(2), group, we have
Wi, = 0,We — 0,WSi —nge®™WWs (a=1,...,3), (7)

where, for the fundamental representation of SU(2)r, T'* = 7*/2, where 7% are the
Pauli matrices, €2°¢ is the completely antisymmetric tensor in three dimensions and
1n = £1. The covariant derivative for any field v transforming nontrivially under
this group is

Dyop, = (8, + ingWiT* )y, . (8)
As for the Abelian U(1)y group, we have
B, =0,B, —0,B,, 9)
with the covariant derivative given by
Dyp = (8 +inf'g'ny Y B, (10)
where Y is the hypercharge of the field, connected to the electric charge through
Q=T3+nyY. (11)

As before, 1/, ny = £1. Some authors use

Y; ir: Y; ir:
Q="Ts+ny t};s:7-3+7]§2’ the s7 (12)

instead of our Eq. (11). The difference is immaterial for the Feynman rules, which
depend only on Q.

It is useful to write the covariant derivative in terms of the mass eigenstates A,
and Z,,. These are defined by the relations,®

{ Ws’ =nzZ, cosbw + Aunesin Oy ,

B, = —nzZ,mesin Oy + A, cos by , (3)
13
{ NzZ, = Wl‘jf cos Oy — B,ng sin Oy ,

A, = Wi’ng sin Oy + By, cos Oy .

20ne could also include a sign in the photon field A, by substituting A, — naA,. However, we
have found no author who made the choice ng = —1.
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For a doublet field 1, with hypercharge Y, we get

Dby = {aﬂ + z’niz(#wj +TW) m%Tng +in'g'ny Y B |

V2

{aﬂ + z’n% (TTWE + 7 W) 4 ineeQA,

. g T3 . 92
= — 0 Z 14
—anosQW(Q Qsin W>772 M}iﬁL, (14)
where
Wk W2
W;it = L7 (15)
V2
L
= L2 (16)

V2

The charge operator is defined by

0= % +nyY 0 (17)
0 —3 Y
and we have used the relations
nee = (nng)gsin Oy = n'g’ cos Oy . (18)
Many authors use 1. = +1. Some authors use 1. = —1, to account for their other

conventions (notably n =7’ = —1), and still keep e = 4+¢’ cosyr = +gsinfy. For
a singlet of SU(2) 1, ¥r, we have

Dypr = [0 +in'g'nyY By Yr

9

COS@WQSiHQ QWT]ZZ“ ¢R- (19)

= |0, +in.eQA, —in

We collect in Table 1 the quantum numbers of the SM particles.

Notice that the right-hand sides of Eqgs. (14) and (19) only involve Y through
@, where it appears in the combination 7yY. A few authors write Egs. (14) and
(19) directly for each field, sidestepping a precise definition for their ny.

Table 1. Values of T?f , Q and Y for the SM particles.

Field 0 lr v ur, dr, ug dr ot ¢°
1 1 1 1 1 1

T3 -2 0 2 2 -2 0 0 2 -2
1 1 1 1 2 1 1 1

Y -3 -1 -3 5 5 3 3 3 2
Q -1 -1 0 2 -1 2 -1 1 0
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For each fermion field 1, one defines ¢ 1, = Pr,1%, where
1+

Pri1 = 5 (20)
and ¢ = ¢r + VYr.
2.3. The gauge and fermion fields Lagrangian
The gauge field Lagrangian is
1 1 1
£gauge = _ZwaGaHV N ZWEVWWW N ZBMVBMD ) (21)

where the field strengths are given in Egs. (1), (7) and (9).
The kinetic terms for the fermions, including the interaction with the gauge
fields due to the covariant derivative, is written as

Lrermion = Y, 07" Dug + Y i Dyt + Y iry"Dptor,  (22)

quarks YL YR

where the covariant derivatives are obtained with the rules in Egs. (3), (14) and (19).

2.4. The Higgs Lagrangian
The SM includes a Higgs doublet with the following assignments:

ot
= v+ H+ipy |- (23)
V2
Since ny Yy = +1/2, the covariant derivative reads
D@ = |0, + inde (et W+ W) + S W 1 i LB, |0
I 1w 77\/5 u u 772 3W, n 5
. g —rr— .
= [BM + an(TJ“W; +7 W, ) +inceQA,
. g T3 .92
- — Z,|® 24
+ ZnCOS 0W ( 2 QSlIl QW) Nz ,U,:| ) ( )
where, for the doublet field @,
10
= . 2
o=y o) (25)
The Higgs Lagrangian is
Liiges = (D, @) D, ® + 2070 — \(@T0)?2, (26)
leading to the relations
2 2 2
0 g>m
’Uz:T, m}QLZQ/J/Z, )\Zgﬁ (27)
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Expanding this Lagrangian, we find the following terms quadratic in the fields:

1 1 1
EHiggs — et 592U2W3WM3 + gg/QUQB“BM _ Znn/gQ/UZWSBM

1 _ 1
+ Zg2v2W;W b 51}8"9@3 (n'g'B“ — nngi’)

i _ 1 .
— §ngvVVH oot + 57]ng;8‘ 0. (28)

The first three terms give, after diagonalization, a massless field (the photon) and
a massive one (the Z), with the relations given in Eq. (13), while the fourth term
gives mass to the charged let bosons. Using Eq. (13), we get

1
Liggs = -+ + §mQZZuZM + m%/VWJWﬂL
— mmzmz Z,0" oz — inmw (W, 0"t — W Fore™), (29)
where
1 1 1
mwy = -gv, Mmz= (30)

2 cos Oy §gv ~ cos Ow

By looking at Eq. (29) we realize that, besides finding a realistic spectra for the
gauge bosons, we also get a problem. In fact, the terms in the last line are quadratic
in the fields and complicate the definition of the propagators. The gauge fixing terms
discussed in Subsec. 2.6 solve this problem.

2.5. The Yukawa Lagrangian, fermion masses and the
CKM matrix

After spontaneous symmetry breaking, the interaction between the fermions and
the Higgs doublet gives masses to the elementary fermions. We have

Lyuiawa = —L1Yi®lr — Q1 Ya® dfy — Q1Y dufy + hic. (31)

where a sum over generations is implied by the matrix notation, L;, (Q}) are the
left-handed lepton (quark) doublets and
v+ H —ipy
D = igy®* = V2 . (32)
_(p_
Y, Yy and Y, are general complex 3 x 3 matrices in the respective flavor spaces.
To bring the quarks into the mass basis, Yy and Y,, are diagonalized through
unitary transformations
'LLL:ﬂLUJ:L7 d_/L:d_LU;Lv
(33)
up = Uyrur, dp=Uqrdg,
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such that
%U:ELYUUUR = M, = diag(my, m.,m),
EUdLYdUdR = My = diag(mga, ms,mp) .
In this new basis, the Higgs couplings of the quarks become diagonal:
RO -
L= {1+ o [aMyu+ dMyd] . (35)

The couplings to the photon and the Z remain diagonal. In contrast, the couplings
to the W mix the upper and lower components of @, which transform differently
under Egs. (33). As a result, the couplings to W* become off-diagonal:

9 u t
—nlw = “=a VA*d W + hec. 36
nbw = SuLVytdiwy (36)
where
V=Ul Ui (37)

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix, which also affects the inter-
actions with the charged Goldstone bosons.

In the SM, there are no right-handed neutrinos. As a result, the neutrinos are
massless and we are free to rotate them in order to accommodate the transfor-
mations of the charged quarks needed to diagonalize Y;. Thus, without loss of
generality, we may take Y; = diag(m., m,, m,) and V =1 in the leptonic sector.

2.6. The gauge fixing

One needs to gauge fix the gauge part of the Lagrangian in order to be able to
define the propagators. In the R¢ gauges, the gauge fixing Lagrangian reads

1, 1 , 1 5 1

£GF:_2£—G T A_%_ZFZ fWF—F-‘r? (38)
where
Fg = 9hGa,
Fa=0rA,,
Fz =0"Z, +mmzézmzez , (39)

F+ = QMWJ + anWmWSO+7
F_=0"W, —infwmwe™ .

One can easily verify that, with these definitions, Lgr cancels the mixed quadratic
terms on the second line of Eq. (29).
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2.7. The ghost Lagrangian

The last piece needed for the SM Lagrangian is the ghost Lagrangian. For a linear
gauge fixing condition, as in Eq. (39), this is given by the Fadeev—Popov pre-

scription:
O(dFy) O(6F O(SF I(SF
LGhost = NG E '[ + e (80;) s (8aiZ) v s (80;0 "

_,O(0F%)
+ 16 Z 85’? w”, (40)
a,b=1

where we have denoted by w® the ghosts associated with the SU(3), transformations
defined by Eq. (4), and by ¢4, ca, ¢z the electroweak ghosts associated with the
gauge transformations,

U=engt™ e (a=1,...,3), (41)
and
U = ein'nvg' Yo' (42)

For completeness, we write in App. A the gauge transformations of the gauge fixing
terms needed to find the Lagrangian in Eq. (40).

Because ghosts are not external states, the sign ¢ = +1 is immaterial and,
although it corresponds to an overall sign affecting all propagators and vertices
with ghosts, it drops out in any physical calculation involving ghosts.

2.8. The complete SM Lagrangian

Finally, the complete Lagrangian for the SM is obtained by putting together all the
pieces. We have

CSM = Cgauge + £Fermi0n + £Higgs + £Yukawa + £GF + £Ghost ) (43)

where the different terms were given in Eqgs. (21), (22), (26), (31), (38) and (40).

3. Notations Found in the Literature

In order to use the results contained in some specific source in the literature, one
must find the covariant derivative

LT .
=0, + “795(1 Wi +in'nyg'Y B, (44)

and Egs. (11) and (13). This sets the sign convention for 7, ', nz, 19 and ny.
Typically, authors set 1y = n.
The signs and conventions in the literature are shown in Table 2.
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Table 2. Sign conventions found in the literature. An asterisk, *, on
the last column means that such authors have used Q = (73 + Yineirs)/2
instead of our Eq. (11).

Ref. n n’ Nz 7o Ny Ne Y
2-6, 47 + + + + + +
7-17 + + + + + + *
18, 19 - — + + + -
20-31 - — + + + - *
32, 33 - - + - + +
34 - - - + + - %
35 - + + - +
36, 37 - + + - - +
38 - + + - + +
39 + - + - + - *

The corresponding Feynman rules are presented in the following sections. A few
remarks are in order. As mentioned, since the Feynman rules depend only on @,
authors may choose to sidestep a definition of 7y ; or whether they are using Y,
from Eq. (11), or Yiheirs, from Eq. (12); or even neglect to mention the hypercharge
Y altogether. Similarly, 79, ' and ¢’ are absent from the Feynman rules and thus
not needed in any calculation. We see that only 7y, in the strong sector, and 7, 7.
and 7z, in the electroweak sector, show up in Feynman diagrams.

The fact that authors differ by their 7 sign, but all keep to the definition of
my and mz in Eq. (30) (assumed positive), means that diagrams proportional to
gauge boson masses are also affected by the sign choice. Some conventions lead to
peculiar results. For example, the convention in Ref. 32 leads to the unconventional
e = —g' cosfyy, while keeping the usual e = gsinfy . If one wishes to keep all
quantities positive in the relation myz = gv/(2 cosfy ), then one must assume that
g’ is negative. This is irrelevant for the Feynman rules, where ¢’ does not show, but
is unusual.

The relevant electroweak choices for 7, 1. and 77z may be inferred from any given
reference, as long as a few Feynman rules are given. For example, the coupling of the
photon with fermions (or WHW =, or ¢T¢™) sets 1.. Similarly, the coupling of the
Z with fermions (or WTW =, or ¢T¢™) sets nnz. Finally, the coupling of the W™
with fermions sets 7. This sets the notation for all other Feynman rules, even when
Goldstone bosons and/or ghosts are included, except for ng which can be found
in any of the propagators or vertices involving ghosts. The sign for 7ng is shown
in Table 3 for those references including ghosts. A star (*) indicates the references
that only include Feynman rules with ghosts for the pure non-Abelian gauge theory
or that have an incomplete list of the Feynman rules for the electroweak ghosts.
A dagger (1) indicates the references that include all Feynman rules, including
electroweak ghosts.
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Table 3. Sign convention for ng found in the literature.

Ref. ne
6,9, 11, 14-16, 18, 22, 28, 31, 34-36, 39 + %
2, 20, 32, 37, 38 + T
13, 23, 47 _ N
3 - T

Next we present all Feynman rules, including the generic signs, which have
been obtained using the FeynRules package.C The first Roman letters (a,d, ¢, d, )
denote group indices; the Roman letters (7,j) refer to the QCD component; the
Greek letters (i, v, 0, p) denote Lorentz indices; while the first Greek letters («, /),
appearing in the CKM matrix V', refer to the flavor indices.

We finish this section by comparing our results with those found in the literature.
We only do this comparison for the set of references that have all the Feynman rules
for the SM, including ghosts, namely Refs. 2, 3, 20, 32, 37 and 38. We agree with
Ref. 2 (including the errata) except for an overall sign in Eqgs. (14.66) and (14.67).
As for Ref. 3, we disagree with the four gluon vertex on page 572, but we agree
when it is written on page 557. We also note that this reference has the complete
Feynman rules for the counterterms that we do not include here. Reference 20 has
all the Feynman rules, including also those for the counterterms. The conventions
of this reference are different from all those that we cite and therefore difficult to
compare. However, we have checked a reasonable number of Feynman rules and got
agreement in all cases. Reference 37 has all Feynman rules correct, except for an
overall sign on the last vertex on page A.16 and the fourth on page A.18. We agree
with all Feynman rules contained in Refs. 32 and 38.

4. Feynman Rules for QCD

We give separately the Feynman rules for QCD and the electroweak part of the SM.
All moments are incoming, except in the ghost vertices where they are explicitly
shown.

4.1. Propagators

! R e
W, a N\N\NANNAN V7b —Z(Sab k2+7:6 _(1_§G)(k2)2 ) (45)
“ inG
(L eeeececcccccccsece D = 4
O T e (46)
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4.2. Triple gauge interactions

pyc
—nsgs f1g" (p1 — p2)? + g¥P (P2 — p3)"

+ 9" (ps — p1)¥]- (47)

lp3

P2
A
K, @ v,b

4.3. Quartic gauge interactions

o,d p,C
™ /. —igf [feabfecd(gupgl/o' - guo—gup)
y2 b3
+ feacfedb(g/mgpu - g/wgpo)
Pl/ P2
+ feadfebc(g/wgprr - gupguo)] . (48)
W, a v,b
4.4. Fermion gauge interactions
1y a
Tps —insgs VTS . (49)
2
£ R
i J
4.5. Ghost interactions
fh, ¢
Tps —nsnags Pl (50)

2

o b

5. Feynman Rules for the Electroweak Theory
5.1. Propagators

.
. 9uv kpku
NANNNANN Y — —(1- 1
’ o i e - a- ey, 61)
w
1 k. k
NANNNNNNY e g, — (1= ) e | (52
: Y Zk?—mgvﬂe[g‘ ( §W)k2—gwmgv (52)
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Z

1 k. k
NANNNNNY —(1—-¢z) 52—
a Y Zk2—m2z+ze Guwr = ( 5Z)kQ—{ZmQZ
- Z(]ﬁ + mf)
;; p2 — mff +ie’
h i
p p? —m3 +ie’
Pz 1
D p? —&zmZ + i€’
_____ AN i
p p? — Ewmiy + i€’
5.2. Triple gauge interactions
W,
q _inee [gap(pf _er)M
p- <« "
p+/< + gpu(p+ - Q)rr + g;w(q - p—)p] s
+
W,
W5
q —innzg cos Ow [gop(P— — P4 )
p- -« Zu
p+/ + gpu(p+ - Q)rr + g;w(q - p—)ﬂ] :
W,

5.3. Quartic gauge interactions

Wi W,

N

_i€2[290pguv —YouYpv — gougpu] s

O\

AH Al/

1230025-12
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wit W,

\ _iQQ cos® Ow [290/)9/1# —Y9opuYpv — grrugpu} ) (61)
ZIL ZI/
Wit Wp_

—1i1NeNNz€g COS Ow [290/)g/w —YopYGpv — grrugmt} s (62)

Z'QZ[QQWQW —YopYGuv — gougpu] . (63)

Wit W,

5.4. Charged current interaction

U
w+
¢ _in%%LPLVaﬁ , (64)
dp
. g *
—ZUE%PL B (65)
v,
Wi
_ZUEFVALPL . (66)
liv
5.5. Neutral current interaction
i
Ap
_inele'Yu , (67)
Yy
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Ui

Py

where

1 . .
g{/ = in—Qf&nQOW, g

5.6. Fermion-Higgs and fermion-Goldstone interactions

U
_____ ¢t
dg
dg
_____ v
U
v,
_____ o
N7

1230025-14
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5.7. Triple Higgs-gauge and Goldstone-gauge interactions

\\ \p
\
\
N Z,
PNANNNNAN
’
’
/
/K
’
/
\
\
\
\
\
AN A/J'

Signs and Feynman Diagrams of the Standard Model

—inee(p+ — p—

cos 20y
2 cos Oy

—innzg

i
+ong(k —p)y

g
—775(’@‘ - p)u )

—nnz

MeNEMW Juv

1230025-15
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)

(k - p)lt )
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(76)
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\
\
\
\

A
N
N
\\\
\ ZN . .2
;"WM —1Mzgmz S nguy,
W
h \
N
N
Y
\\ :t
\\ W}L .
Jflww YMwGuw
Wr
h \
N

\ th

\

.4
(3 m .
fw/vvvv\ﬁ P Z9uv
Zy

5.8. Quartic Higgs-gauge and Goldstone-gauge interactions

hoo wE
N
/j/ r\ o7 JHY
heo 153
Yz~ Wf
N Sy
/j,' \ o7 I
Yz 5 Wi

_9
cos? Oy

gullv

= =
~ ’
N \ / ’
~ .
~ ’
~ ’
~ ’
J\’,\J\:r{;'\"‘,\‘/‘
N =
N | =
[N
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m
. / i g2
‘ \ 2 cos? Oy Jp
Zy
AH
&
, \ 2ie“ g ,
Ay
Zy,
. / 1 cos 20 2
(=2
. N nv s
\ 2\ cosfOw
Zy

W
\ 59 Juv
W

Wi
{ o, sin?ly
\ —zg mgw,
Zy
Wi
.2
{‘/\‘ :FWZQQ%QMW

1230025-17

(88)

(89)

(90)

(92)



J. C. Romao & J. P. Silva

\ i
/ , 577877699;11/ )

h A,
L)O$ . Wﬁt
\\\ 1
/1 . \ :F§77e7]€ggw s
vz Ay
QD+ . Z“
\\‘ / . cos 20w
. MenMzed———p Guv -
/1' \ cos Oy
o A,
5.9. Triple Higgs and Goldstone interactions
ot
\\\ h . 2
mm e o _zg mp ;
K 27 myy
h AN
h 3 m2
ro----- 59—
/) 2 mw
hot
(VAN
\\\ h . 2
- _zg mp .
, 27 myy
vz’
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5.10. Quartic Higgs and Goldstone interactions

2
/"\ 59 3 (99)
(p+ ,I \\ (p_
QD+ \ ’ h
N2
AV oo My,
X ——g 100
/1' \\ \ 49 m%/V ( )
80_ 'I \\ h
<p+ \\ I, LPZ
x\ // . 2
./ 7 m
x ——g* L (101)
/,’ AN \ 47 my,
T Ny
h Y 4 h
N s m
X ——ig°—= 102
/,1 \\ \ 4 g m%‘/ bl ( )
h ,I \\ h
Yz \\ '1 h
. 1/ . 2
\ N 1 o My
x g2 103
/,1 \\ \ 49 WLIQ/V ( )
vz 7 “h
(pZ \\ I, @Z
\\ "/ 3. ,m?
X —Zig® 1. (104)
/,1 \\ \ 4 mW
¥z o R Yz
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5.11. Ghost propagators

CA 77Gi

i k2 +4¢e’

c* ylets
000000000000 000000 2 N 5

i k2 — &wm3, + ie

cz NGt

& k% —&{zm7, + e

5.12. Ghost gauge interactions

Ci .
AP
- AH )
'.vvvvvvvx Fincneepy ,
7
E
Ci .
AP
- Z, ]
s T Fingnzg cos Owpp
/
e
Ci .
\p
N WE Iy
: inGnMzg cos Owp,
s
Cz*
Ci .
AP
o WE
e EiNGNeepyu »
n...-/
CA <
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cz.
XP

— WF

s M ingmg cos By p, (112)
A
C:l: s
CA.
"D
e
:N\IVWV‘ " :I:inGneepM . (113)
A7
Ci s

5.13. Ghost-Higgs and ghost-Goldstone interactions

c* .
.:,__:i_ipz :‘:T}Gggw’ﬂlw s (114)
A
Ci a
c* .
o b
..»- —————— —EﬁGggw’ﬂLW s (115)
77
C:I: h
Cz.
. g
———— = ey — 116
6 S cos by §zmz , (116)
Cz <
Cz.
- SDJF i
e 3GN2982 M2 (117)
c:l: 5
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o+
. N
v oe— P . cos 20y,
oot —inanzgs——Ewmw, (118)
- 2 cos Oy
=/
Cz *
c*,
W g
o —inGnene§wmw - (119)
.'..'/
CA <

5.14. Brief comment on the alternative metric

As mentioned in Sec. 1, all our calculations and Feynman diagrams have been
obtained with the metric (+,—,—,—). A few books use instead the metric
(—,+,+,+). Reference 41 differs from ours only in the metric. For example, it
uses as we do, i1h@p, for the fermion kinetic term. Therefore, our results agree with
the change g,, — —¢,u, implying also changes of the type p*> — —p? and y — —p.
The comparison is much more involved with respect to Refs. 42 and 43, because
in those cases there are many changes besides the metric, involving, in particular,
multiple factors of ¢ and 27 in the Feynman rules. As an additional complication,
Ref. 43 uses —¢@ for the fermion kinetic term, implying also a change in the
matrices v*, compounded by different gauge fixing terms. A detailed analysis of all
such choices lies beyond the scope of this work.
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Appendix A. Gauge and BRST Consistency Checks
A.1. Gauge transformation and gauge invariance

For completeness, we write here the gauge transformations of the gauge fixing
terms needed to find the Lagrangian in Eq. (40). It is convenient to redefine the
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parameters as

i_al:Fa2

-5

nzaz = o cos by — ngat sin Oy | (A1)
a = nga’ sin Oy + a* cos Oy .
We then get
SFE = 0" (—0,B" — negs f*B°GY,)
0F4 = O*(0A*),
0Fz = 0,(0Z") +mz&zmzdpz, (A.2)
OFy = 0,(0W,F) + infwmwde™
OF_ = 90,(0W,) —ingwmwdep ™ .

Using the explicit form of the gauge transformations we can finally find the missing
pieces:

0A, = —0uoa — inee(W/foF - W;a*) ,

82, = —0uaz — innzg cos by (W/j‘a_ — leoﬂ') ,
W = —-0,a% —ing [ (nzZ, cos O + 1y A, sin Oy ) A3)
— (nzaz cos Ow + noaa sin Oy )W,
W, = =0, +ingla (nzZ, cos By + 1pA, sinOy)
— (nzayz cos Oy + ngaa sin OW)W;] .
To get the variation of the Goldstone bosons we notice that
50 = |in-L (ttat+77a7) + indrsad + in'g—la4 P (A.4)
NG 2 2
_ 9 SIS
= {mﬁ(r ot +77a7) +ineQaa
+in 00899W <%3 — Qsin® 9W> ﬂzaz} D, (A.5)
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which we can write as

+ cos 20
o | —ng——
i cos Oy

S(H+ipz) | = 73

ngoy — 2Mmeeas  —2ngat

) —V2nga~ Mo g 1297
ot
XV v+ H+ipy |- (A.6)
V2
leading to
dpz = 1779(0790+ +ateT) —ng———nzaz(v+ H)
2 2 cos Oy ’
. . . gcos20 )
St = zng(v+H+zgoz)a+ —|—an W ootnzaz + inceptan,
2 2 cos by
(A7)
. . . gcos26 - . _
s = —inS (v + H —ipz)a — in2 2V o0y — e an,
2 2 cos Oy
. g9 _ _
5H = —in%(ato —a—ot) +n—3— .
inglaTe” —a"e )+n2msgwrzzaz¢z

With the gauge transformations given in Eqgs. (A.3) and (A.7), one can easily
verify that Lgauge and Lhiges are gauge invariant, independently of the choice of
the n’s. For instance, for Lpigss we have

6 Lttiggs = 0(D, @) DH® + (D, @)1 6(D"®) + 5 (1*@T® — A(@T@)?) =0.  (A.8)

To check the fermion part we have to give explicitly the gauge transformations for
¢, and ¢ g. They can be easily obtained from Eqgs. (14) and (19). We get

= [in%(ﬁrcﬁ +77a7) + in.eQan
+1in J (E — Qsin? 9W>772042] VL, (A.9)
cos Oy \ 2

YR = [ineeQaA —in
cos Oy

Q sin2 ewnzaz] wR 5

supplemented by Eq. (5) for the SU(3). transformation of the quarks. Using these
transformation laws one can verify that

5(£Fermion + »CYukawa) — 0; (A].O)

completing the proof of the gauge invariance of the classical part of Lgy. This
means that, except for Laor + Lanost to be discussed later, we have included the
various 1 parameters in the appropriate fashion.
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A.2. Consistency checks and the BRST transformations

To make the proof of gauge invariance for the complete Lagrangian we have to

deal with the gauge fixing and ghost terms. This is more easily done using the

BRST transformations of Becchi, Rouet and Stora** and Tyutin,*® and the Slavnov

operator. The Slavnov operator is a special kind of gauge transformation on the
gauge and matter fields. More specifically, we define

. 0AY . ,

() = SEE () = 5

where AZ are the gauge fields and ¢; represents generically any matter field (fermion

c, (A.11)

or boson). They have the following properties:
(i) For a product of two fields, we have
5(XY) = s(X)Y + (=1)NH) x5(Y) . (A.12)

In this expression the ghost number, GN(X), is defined as zero for gauge and
matter fields, +1 for ¢! fields (ghosts) and —1 for ¢ (antighosts).

(ii) s raises the dimension by one unit (in terms of mass).

(iii) s does not change the charge.

(iv) The Slavnov operator is nilpotent, that is, s? = 0.

To check the last identity we must have, for a non-Abelian group,
s(ch) = —n%fijkcjck. (A.13)
Let us show how the nilpotency of s is obtained for the gauge fields of a non-Abelian
theory. From Eq. (A.11) we have
s(AfL) = —0,c — ngfijkchﬁ . (A.14)
Therefore, using Eq. (A.12) we get
82AL = —0,s(c") — ngfijks(cj)AZ + ngfijkcjs(Al’j)

2
= n%f”k (aucjck + cjauck) + 772%f”kf7m”cmc”Al’j
+ ngfijkcj(_auck o ngfkmncmAz)
= ngfik (cjauck — cjauck)
2
+7(fj’“fﬂ o frm pink g pin pikmyemen AR = (A.15)

where we have used the antisymmetry of the structure constants and of the ghost
fields, and the Jacobi identity. This confirms that the assignment of Eq. (A.13) is
consistent with Egs. (A.12) and (A.14). Before proceeding, we should notice that
another definition for the product can be used. In particular, Ref. 46 uses

s(XY) = (-1)NWg(X)Y + Xs(Y). (A.16)

Then, to verify the nilpotency of s, we must reverse the sign in Eq. (A.13).
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To prove the invariance of Lgp4Ghost, we use the BRST technique. This is best
explained for a simple group. We have

1 COF 1.,
ﬁGF+Ghost = _iFiQ + 77G'CJ 60;0 = —EFZ-Q + CJS(FJ‘), (A]_?)

where the last step follows from Eq. (A.11). Now, because of the nilpotency of the
Slavnov operator, to ensure the invariance of Eq. (A.17) under BRST transforma-
tions, it is enough to require that

s(e?) :WG%Fj~ (A.18)

If the gauge fixing is nonlinear, some subtleties arise, as explained in Ref. 46.

Coming back to the SM, we only have to verify that the Slavnov operator is
indeed nilpotent in all the fields. We have verified this explicitly for all the cases.
For completeness, we give here the action of the Slavnov operator in all of the SM
fields, in a way consistent with our notation. We just give the electroweak part,
because, for QCD, they can be read from Egs. (A.13) and (A.14). We start with
the gauge fields

s(Ay) = —0uca — inee(ch* — W;c*) ;
$(Z,) = —0ucz —innzgcosOw(W,re™ =W ceh),

S(le‘) = —9,ct —ing [C+(772Zp cos Oy + g A, sin Oyy)

(A.19)
— (nzcz cos Oy + ngca sin Oy )W,
s(W,) = —0uc™ +ing (™ (nzZy cos Oy + my A, sin Oy )
— (nzcz cos Oy + ngca sin OW)WJ] .
For the Higgs we get
s(pz) = l779(C‘s0+ +eteT) — ng—tr—nzez (v + H)
Z 2 2cosly 22 ’
n g . 4+, . gcos 20w n . n
s(¢T) =ins(v+ H+ipz)c" +ins ———¢ nzez +ineepca,
2 2 cos by
(A.20)
20
s(p7) = —in%(v +H —ipz)c” — ingcf; HVZV PNzCz —iNeepTca,
s(H) = —in2(ct o™ — ¢ o) + ns—rr—nzez9z
2 2 cos Oy ’
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and for the fermions,

s(r) = [m%wﬁ o) 4 ineeQen

+i77 g <T—3 —QSiH2 9W>WZCZ:| 'LZJL y (A21)

cosby \ 2

s(Yr) = [WleeQCA - “7 QSIH 9W77202:| VR .

Finally, we need the rules for the ghost fields. These are obtained from Eq. (A.13).

We get
s(ca) = ineecte,
s(cz) = inmzgcosOwcte
’ (A.22)
s(ct) = innzgcosOwezct +inececac™
s(e¢™) = —inmzg cosOweze™ — ineecac™
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