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We construct lists of supersymmetric models with extended gauge groups at intermediate steps, all of

which are inspired by SOð10Þ unification. We consider three different kinds of setups: (i) the model has

exactly one additional intermediate scalewith a left-right (LR) symmetric group; (ii) SOð10Þ is broken to the
LR group via an intermediate Pati-Salam scale; and (iii) the LR group is broken into SUð3Þc � SUð2ÞL �
Uð1ÞR �Uð1ÞB�L, before breaking to the standard model (SM) group. We use sets of conditions, which we

call the ‘‘slidingmechanism,’’ which yield unification with the extended gauge group(s) allowed at arbitrary

intermediate energy scales. All models thus can have new gauge bosons within the reach of the LHC, in

principle. We apply additional conditions, such as perturbative unification, renormalizability and anomaly

cancellation and find that, despite these requirements, for the ansatz (i) with only one additional scale still

around 50 different variants exist that can have a LR symmetry below 10 TeV. For the more complicated

schemes (ii) and (iii) literally thousands of possible variants exist, and for scheme (ii) we have also found

variants with very low Pati-Salam scales. We also discuss possible experimental tests of the models from

measurements of supersymmetry masses. Assuming mSugra boundary conditions we calculate certain

combinations of soft terms, called ‘‘invariants,’’ for the different classes of models. Values for all the

invariants can be classified into a small number of sets, which contain information about the class of models

and, in principle, the scale of beyond-minimal supersymmetric extension of the Standard Model physics,

even in case the extended gauge group is broken at an energy beyond the reach of the LHC.

DOI: 10.1103/PhysRevD.87.075010 PACS numbers: 14.60.Pq, 12.60.Jv

I. INTRODUCTION

In the minimal supersymmetric extension of the
Standard Model (MSSM) gauge couplings unify at an
energy scale of about mG ’ 2� 1016 GeV. Adding parti-
cles arbitrarily to the MSSM easily destroys this attractive
feature. Thus, relatively few supersymmetry (SUSY) mod-
els have been discussed in the literature which have a larger
than MSSM particle content at experimentally accessible
energies. Neutrino oscillation experiments [1–3], however,
have shown that at least one neutrino must have a mass
mAtm � 0:05 eV.1 A (Majorana) neutrino mass of this
order indicates the existence of a new energy scale below
mG. For models with renormalizable interactions and
perturbative couplings, as for example in the classical
seesaw models [5–8], this new scale should lie below
approximately �LNV & 1015 GeV.

From the theoretical point of view grand unified theory
(GUT) models based on the group SOð10Þ [9] offer a
number of advantages compared to the simpler models
based on SUð5Þ. For example, several of the chains

through which SOð10Þ can be broken to the SM gauge
group contain the left-right (LR) symmetric group
SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L as an intermedi-
ate step [10], thus potentially explaining the observed
left-handedness of the weak interactions. However, proba-
bly the most interesting aspect of SOð10Þ is that it auto-
matically contains the necessary ingredients to generate a
seesaw mechanism [8]: (i) the right-handed neutrino is
included in the 16-plet which forms a fermion family;
and (ii) ðB� LÞ is one of the generators of SOð10Þ.
SOð10Þ based models with an intermediate LR symme-

try usually break the LR symmetry at a rather large energy
scale,mR. For example, Refs. [11,12] use 210 and a pair of

126 and 126 to break SOð10Þ and conclude that, under
certain assumptions about the supersymmetry breaking
scale, mR has to be larger than roughly 1010 GeV.
Similar conclusions were reached in Ref. [13,14], where

45, 54 and a pair of 126 and 126 were used to break
SOð10Þ. Also in SUSY LR models inspired by these
SOð10Þ constructions usually mR is assumed to be quite
large. For example, if LR is broken in the SUSY LR model
by the vacuum expectation value (VEV) of ðB� LÞ ¼ 2
triplets [15,16] or by a combination of ðB� LÞ ¼ 2
and ðB� LÞ ¼ 0 triplets [17,18], mR ’ 1015 GeV is the
typical scale consistent with gauge coupling unification
(GCU). The authors of Ref. [19] find a lower limit of
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1For the latest fits of oscillation data, see for example Ref. [4].
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mR * 109 GeV from GCU for models where the LR sym-
metry is broken by triplets, even if one allows additional
nonrenormalizable operators or sizable GUT-scale thresh-
olds to be present. On the other hand, in models with an
extended gauge group it is possible to formulate sets of
conditions on the � coefficients for the gauge couplings,
which allow us to enforce GCU independent of the
energy scale at which the extended gauge group is broken.
This was called the ‘‘sliding mechanism’’ in Ref. [20].2

However, [20] was not the first to present examples of
‘‘sliding scale’’ models in the literature. In Ref. [22] it
was shown that, if the left-right group is broken to
SUð2ÞL �Uð1ÞR �Uð1ÞB�L by the vacuum expectation
value of a scalar field �1;1;3;0 then

3 the resulting Uð1ÞR �
Uð1ÞB�L can be broken to Uð1ÞY of the SM in agreement
with experimental data at any energy scale. In Ref. [19] the
authors demonstrated that in fact a complete LR group can
be lowered to the TeV scale, if certain carefully chosen
fields are added and the LR symmetry is broken by right
doublets. A particularly simple model of this kind was
discussed in Ref. [23]. Finally, the authors of Ref. [20]
discussed also an alternative way of constructing a sliding
LR scale by relating it to an intermediate Pati-Salam stage.
We note in passing that these papers are not in contra-
diction with the earlier work [15–18], which all have to
have large mR. As discussed briefly in the next section it is
not possible to construct a sliding scale variant for a LR
model including pairs of �1;1;3;�2 and �1;3;1;�2.

Three different constructions, based on different SOð10Þ
breaking chains, were considered in Ref. [20]. In chain I
SOð10Þ is broken in exactly one intermediate (LR sym-
metric) step to the standard model group:

SOð10Þ ! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! MSSM: (1)

In chain II SOð10Þ is broken first to the Pati-Salam
group [24]:

SOð10Þ ! SUð4Þ � SUð2ÞL � SUð2ÞR
! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! MSSM: (2)

And finally, in chain III,

SOð10Þ ! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! SUð3Þc � SUð2ÞL �Uð1ÞR �Uð1ÞB�L

! MSSM: (3)

In all cases the last symmetry breaking scale before reach-
ing the SM group can be as low as Oð1Þ TeV maintaining

nevertheless GCU.4 The papers discussed above
[19,20,22,23] give at most one or two example models
for each chain, i.e., they present a ‘‘proof of principle’’
that models with the stipulated conditions indeed can be
constructed in agreement with experimental constraints. It
is then perhaps natural to ask: How unique are the models
discussed in these papers? The answer we find for this
question is, perhaps unsurprisingly, that a huge number of
variants exist in each class. Even in the simplest class
(chain I) we have found a total of 53 variants (up to 5324
configurations; see next section) which can have perturba-
tive GCU and a LR scale below 10 TeV, consistent with
experimental data. For the two other classes, chain II and
chain III, we have found literally thousands of variants.
With such a huge number of variants of essentially

‘‘equivalent’’ constructions one immediate concern is
whether there is any way of distinguishing among all of
these constructions experimentally. Tests could be either
direct or indirect. Direct tests are possible, because of the
sliding scale feature of the classes of models we discuss;
see Sec. II. Different variants predict different additional
(s)particles, some of which (being colored) could give rise
to spectacular resonances at the LHC. However, even if the
new gauge symmetry and all additional fields are outside
the reach of the LHC, all variants have different � coef-
ficients and thus different running of MSSM parameters,
both gauge couplings and SUSY soft masses. Thus, if one
assumes the validity of a certain SUSY breaking scheme,
such as for example mSugra, indirect traces of the different
variants remain in the SUSY spectrum, potentially mea-
surable at the LHC and a future ILC/CLIC. This was
discussed earlier in the context of indirect tests for the
SUSY seesaw mechanism in Refs. [25–27] and for
extended gauge models in Ref. [20]. We generalize the
discussion of Ref. [20] and show how the ‘‘invariants,’’ i.e.,
certain combinations of soft SUSY breaking parameters,
can themselves be organized into a few classes, which in
principle allow us to distinguish class-II models from
class I or class III and, if sufficient precision could be
reached experimentally, even select specific variants within
a class and give indirect information about the new energy
scale(s).
The rest of this paper is organized as follows: in the next

section we first lay out the general conditions for the
construction of the models we are interested in, before
discussing variants and example configurations for all of
the three classes we consider. Section III then discusses
invariants, i.e., SUSY soft parameters in the different
model classes. We then close with a short summary and
discussion. Several technical aspects of our work are pre-
sented in the Appendix.

2A different (but related) approach to enforcing GCU is taken
by the authors of Ref. [21] with what they call ‘‘magic fields.’’

3The indices are the transformation properties under the LR
group; see the next section and the Appendix for notation.

4In fact, the sliding mechanism would work also at even
lower energy scales. This possibility is, however, excluded
phenomenologically.
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II. MODELS

A. Supersymmetric SOð10Þ models:
General considerations

Before entering into the details of the different model
classes, we will first list some general requirements which
we use in all constructions. These requirements are the
basic conditions any model has to fulfill to guarantee at
least in principle that a phenomenologically realistic model
will result.

We use the following conditions:
(i) Perturbative SOð10Þ unification. That is, gauge cou-

plings unify (at least) as well as in the MSSM and the
value of �G is in the perturbative regime.

(ii) The GUT scale should lie above (roughly)
1016 GeV. This bound is motivated by the limit on
the proton decay half-life.

(iii) Sliding mechanism. This requirement is a set
of conditions (different conditions for different
classes of models) on the allowed � coefficients
of the gauge couplings, which ensure the additional
gauge group structure can be broken at any energy
scale consistent with GCU.

(iv) Renormalizable symmetry breaking. This implies
that at each intermediate step we assume there
are (at least) the minimal number of Higgs fields,
which the corresponding symmetry breaking
scheme requires.

(v) Fermion masses and in particular neutrino masses.
This condition implies that the field content of the
extended gauge groups is rich enough to fit experi-
mental data, although we will not attempt detailed
fits of all data. In particular, we require the fields to
generate Majorana neutrino masses through seesaw,
either ordinary seesaw or inverse/linear seesaw, to
be present.5

(vi) Anomaly cancellation. We accept as valid models
only field configurations which are anomaly free.

(vii) SOð10Þ completable. All fields used in a lower
energy stage must be parts of a multiplet present
at the next higher symmetry stage. In particular, all
fields should come from the decomposition of one
of the SOð10Þ multiplets we consider (multiplets
up to 126).

(viii) Correct MSSM limit. All models must be rich
enough in particle content that at low energies
the MSSM can emerge.

A few more words on our naming convention and nota-
tions might be necessary. We consider the three different
SOð10Þ breaking chains, Eqs. (1)–(3), and will call these
model ‘‘classes.’’ In each class there are fixed sets of �
coefficients, which all lead to GCU but with different

values of �G and different values of �R and �B�L at low
energies. These different sets are called ‘‘variants’’ in the
following. And finally, (nearly) all of the variants can be
created by more than one possible set of superfields. We
will call such a set of superfields a ‘‘configuration.’’
Configurations are what usually is called ‘‘model’’ by
model builders, although we prefer to think of these as
‘‘protomodels,’’ i.e., constructions fulfilling all our basic
requirements. These are only protomodels (and not
full-fledged models), since we do not check for each con-
figuration in a detailed calculation that all the fields
required in that configuration can remain light. We believe
that for many, but probably not all, of the configurations
one can find conditions for the required field combinations
being ‘‘light,’’ following similar conditions as discussed in
the prototype class-I model of Ref. [23].
All superfields are named as �3c;2L;2R;1B�L

(in the left-

right symmetric stage), �4;2L;2R (in the Pati-Salam regime)

and �0
3c;2L;1R;1B�L

[in the Uð1ÞR �Uð1ÞB�L regime], with

the indices giving the transformation properties under the
group. A conjugate of a field is denoted by, for example,
��3c;2L;2R;1B�L

, however, without putting a corresponding

‘‘bar’’ (or minus sign) in the index. We list all fields we
use, together with their transformation properties and their
origin from SOð10Þ multiplets, complete up to the 126 of
SOð10Þ in the Appendix.

B. Model class I: One intermediate (left-right) scale

We start our discussion with the simplest class of models
with only one new intermediate scale (LR):

SOð10Þ ! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! MSSM: (4)

We do not discuss the first symmetry breaking step in
detail, since it is not relevant for the following discussion
and only mention that SOð10Þ can be broken to the LR
group either via the interplay of VEVs from a 45 and a
54, as done for example in Ref. [23], or via a 45 and a
210, an approach followed in Ref. [22]. In the left-right
symmetric stage we consider all irreducible representa-
tions, which can be constructed from SOð10Þ multiplets
up to dimension 126. This allows for a total of 24 differ-
ent representations (plus conjugates); their transformation
properties under the LR group and their SOð10Þ origin
are summarized in Table IV (and Table V) of the
Appendix.
Consider gauge coupling unification first. If we take the

MSSM particle content as a starting point, the � coeffi-
cients in the different regimes are given as6

5For SOð10Þ based models including fit to fermion masses
(also neutrinos) see, for example, Refs. [28,29].

6For bSM1 and bSM2 we use the SM particle content plus one
additional Higgs doublet.
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ðbSM3 ; bSM2 ; bSM1 Þ ¼ ð�7;�3; 21=5Þ
ðbMSSM

3 ; bMSSM
2 ; bMSSM

1 Þ ¼ ð�3; 1; 33=5Þ
ðbLR3 ; bLR2 ; bLRR ; bLRB�LÞ ¼ ð�3; 1; 1; 6Þ

þ ð�bLR3 ;�bLR2 ;�bLRR ;�bLRB�LÞ;
(5)

where we have used the canonical normalization
for ðB� LÞ related to the physical one by ðB�LÞc¼ffiffi
3
8

q
ðB�LÞp. Here, �bLRi stands for the contributions from

additional superfields, not accounted for in the MSSM.
As is well known, while the MSSM unifies, putting an

additional LR scale below the GUT scale with8�bLRi ¼ 0
destroys unification. Nevertheless GCU can be maintained,
if some simple conditions on the �bLRi are fulfilled. First,
since in the MSSM �3 ¼ �2 at roughly 2� 1016 GeV one
has that �bLR2 ¼ �bLR3 � �b in order to preserve this

situation for an arbitrary LR scale (sliding condition).
Next, recall the matching condition

��1
1 ðmRÞ ¼ 3

5
��1
R ðmRÞ þ 2

5
��1
B�LðmRÞ; (6)

which, by substitution of the LR scale by an arbitrary one
above mR, allows us to define an artificial continuation of
the hypercharge coupling constant �1 into the LR stage.
The � coefficient of this dummy coupling constant for
E>mR is 3

5b
LR
R þ 2

5b
LR
B�L and it should be compared

with bMSSM
1 (E<mR); the difference is 3

5 �b
LR
R þ

2
5 �b

LR
B�L � 18

5 and it must be equal to �b in order for the

difference between this �1 coupling and �3 ¼ �2 at the
GUT to be independent of the scale mR. These are the two
conditions imposed by the sliding requirement of the LR
scale on the � coefficients [see Eq. (7)]. Note, however,
that we did not require (approximate) unification of �R and
�B�L with �3 and �2; it was sufficient to require that
��1
2 ¼ ��1

3 � 3
5�

�1
R þ 2

5�
�1
B�L. In any case, we can always

achieve the desired unification because the splitting be-
tween�R and�B�L at themR scale is a free parameter, so it
can be used to force �R ¼ �B�L at the scale where �3 and
�2 unify, which leads to an almost perfect unification of the
four couplings. Also, we require that unification is pertur-
bative, i.e., the value of the common coupling constant at
the GUT scale is ��1

G � 0. From the experimental value of

�SðmZÞ [30] one can easily calculate the maximal allowed
value of �b as a function of the scale, where the LR group
is broken to the SM group. This is shown in Fig. 1 for three
different values of ��1

G . The smallestMaxð�bÞ is obtained
for the smallest value of mR (and the largest value of ��1

G ).

For ��1
G in the interval ½0; 3� one obtains Maxð�bÞ in

the range [4.7, 5.7], i.e., we will study cases up to a
Maxð�bÞ ¼ 5 (see, however, the discussion below).
All together these considerations result in the following

constraints on the allowed values for the �bLRi :

�bLR2 ¼ �bLR3 ¼ �b � 5;

�bLRB�L þ 3

2
�bLRR � 9 ¼ 5

2
�b � 25

2
:

(7)

Given Eq. (7) one can calculate all allowed variants of sets
of�bLRi guaranteed to give GCU. Two examples are shown
in Fig. 2. The figure shows the running of the inverse gauge

FIG. 1 (color online). Maximum value of �b allowed by
perturbativity as function of the scale mR in GeV. The three
different lines have been calculated for three different values for
the unified coupling ��1

G , namely ��1
G ¼ 0, 3, 10. A LR scale

below 10 TeV (1 TeV) requires Maxð�b3Þ & 5:7 (5.2) if the
extreme value of ��1

G ¼ 0 is chosen and Maxð�b3Þ & 5:1 (4.7)

for ��1
G ¼ 3.

FIG. 2 (color online). Gauge coupling unification in LR models for mR ¼ 104 GeV. The left panel is for
ð�bLR3 ;�bLR2 ;�bLRR ;�bLRB�LÞ ¼ ð0; 0; 1; 15=2Þ and the right panel is for (4, 4, 10, 4).
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couplings as a function of the energy scale, for an assumed
value of mR ¼ 10 TeV and a SUSY scale of 1 TeV,
for ð�bLR3 ;�bLR2 ;�bLRR ;�bLRB�LÞ ¼ ð0; 0; 1; 15=2Þ (left)

and ¼ ð4; 4; 10; 4Þ (right). The example on the left has
��1
G ’ 25 as in the MSSM, while the example on the right

has ��1
G ’ 6. Note that while both examples lead by con-

struction to the same value of �1ðmZÞ, they have very
different values for�RðmRÞ and�B�LðmRÞ and thus predict
different couplings for the gauge bosons WR and Z0 of the
extended gauge group.

With the constraints from Eq. (7), we find that a total of
65 different variants can be constructed. However, after
imposing that at least one of the fields that breaks correctly

the SUð2ÞR �Uð1ÞB�L symmetry to Uð1ÞY is present,
either a �1;1;3;�2 or a �1;1;2;�1 (and/or their conjugates),

the number of variants is reduced to 53. We list them in
Tables I and II, together with one example of field con-
figurations which give the corresponding �bLRi .
We give only one example for each configuration in

Tables I and II, although we went through the exercise of
finding all possible configurations for the 53 variants with
the field content of Table IV. In total there are 5324
anomaly-free configurations [31]. Only the variants
(0, 1), (0, 2), (0, 4) and (0, 5) have only one configuration,
while larger numbers of configurations are usually found
for larger values of �bLR3 .

TABLE I. List of the 53 variants with a single LR scale. Shown are the 29 variants with �b3 < 4. In each case, the fields shown are
the extra ones which are needed besides the ones contained in the MSSM representations (the two-Higgs doublets are assumed to come
from one bidoublet �1;2;2;0). The �b3, �b2, �bR, �bB�L values can be obtained from the first column through Eqs. (7).

ð�b;�bRÞ Sample field combination

(0, 1) ��1;1;2;�1 þ 2 ��1;1;1;2 þ�1;1;2;�1 þ 2�1;1;1;2

(0, 2) 2 ��1;1;2;�1 þ ��1;1;1;2 þ 2�1;1;2;�1 þ�1;1;1;2

(0, 3) ��1;1;2;�1 þ ��1;1;1;2 þ�1;1;2;�1 þ�1;1;3;0 þ�1;1;1;2

(0, 4) 2 ��1;1;2;�1 þ 2�1;1;2;�1 þ�1;1;3;0

(0, 5) ��1;1;2;�1 þ�1;1;2;�1 þ 2�1;1;3;0

(1, 1) ��1;2;1;1 þ ��1;1;2;�1 þ 2 ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;2;1;1 þ�1;1;2;�1 þ 2�1;1;1;2 þ�3;1;1;�2

3

(1, 2) ��1;1;2;�1 þ 2 ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;2;2;0 þ 2�1;1;1;2 þ�3;1;1;�2

3

(1, 3) 2 ��1;1;2;�1 þ ��1;1;1;2 þ ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;2;2;0 þ�1;1;1;2 þ�3;1;1;�2

3

(1, 4) ��1;1;2;�1 þ ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;1;3;0 þ�1;2;2;0 þ�1;1;1;2 þ�3;1;1;�2

3

(1, 5) 2 ��1;1;2;�1 þ ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;1;3;0 þ�1;2;2;0 þ�3;1;1;�2

3

(1, 6) ��1;1;2;�1 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;1;3;0 þ�1;2;2;0 þ�3;1;1;�2

3

(2, 1) ��1;1;2;�1 þ 3 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;3;1;0 þ 3�1;1;1;2 þ 2�3;1;1;�2

3

(2, 2) 2 ��1;1;2;�1 þ 2 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;3;1;0 þ 2�1;1;1;2 þ 2�3;1;1;�2

3

(2, 3) ��1;1;2;�1 þ 2 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;2;2;0 þ 2�1;1;1;2 þ 2�3;1;1;�2

3

(2, 4) 2 ��1;1;2;�1 þ ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ 2�1;2;2;0 þ�1;1;1;2 þ 2�3;1;1;�2

3

(2, 5) ��1;1;2;�1 þ ��1;1;1�2 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;1;3;0 þ 2�1;2;2;0 þ�1;1;1;2 þ 2�3;1;1;�2

3

(2, 6) 2 ��1;1;2;�1 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;1;3;0 þ 2�1;2;2;0 þ 2�3;1;1;�2

3

(2, 7) ��1;1;2;�1 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;1;3;0 þ 2�1;2;2;0 þ 2�3;1;1;�2

3

(2, 8) ��1;1;2;�1 þ ��3;1;2;13
þ�1;1;2;�1 þ�1;1;3;0 þ 2�1;2;2;0 þ�3;1;2;13

(3, 1) ��1;2;1;1 þ ��1;1;2;�1 þ 4 ��1;1;1;2 þ�1;2;1;1 þ�1;1;2;�1 þ�1;3;1;0 þ�8;1;1;0 þ 4�1;1;1;2

(3, 2) ��1;1;2;�1 þ 4 ��1;1;1;2 þ�1;1;2;�1 þ�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ 4�1;1;1;2

(3, 3) 2 ��1;1;2;�1 þ 3 ��1;1;1;2 þ 2�1;1;2;�1 þ�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ 3�1;1;1;2

(3, 4) ��1;2;1;1 þ ��1;1;3;�2 þ�1;2;1;1 þ�1;3;1;0 þ�8;1;1;0 þ�1;1;3;�2

(3, 5) ��1;1;3;�2 þ�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ�1;1;3;�2

(3, 6) ��1;1;2;�1 þ 2 ��1;1;1;2 þ�1;1;2;�1 þ�1;1;3;0 þ 3�1;2;2;0 þ�8;1;1;0 þ 2�1;1;1;2

(3, 7) 2 ��1;1;2;�1 þ ��1;1;1�2 þ 2�1;1;2;�1 þ�1;1;3;0 þ 3�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2

(3, 8) ��1;1;2;�1 þ ��1;1;1;2 þ�1;1;2;�1 þ 2�1;1;3;0 þ 3�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2

(3, 9) 2 ��1;1;2;�1 þ 2�1;1;2;�1 þ 2�1;1;3;0 þ 3�1;2;2;0 þ�8;1;1;0

(3, 10) ��1;1;2;�1 þ�1;1;2;�1 þ 3�1;1;3;0 þ 3�1;2;2;0 þ�8;1;1;0
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Not all the fields in Table IV can lead to valid configu-
rations. The fields which never give an anomaly-free
configuration are �8;2;2;0, �3;2;2;43

, �3;3;1;�2
3
, �3;1;3;�2

3
,

�6;3;1;23
, �6;1;3;23

and �1;3;3;0. Also the field �3;2;2;�2
3
appears

only exactly once in the variant (5, 5) in the configura-
tion 4�1;2;1;1þ�3;1;1;�2

3
þ�3;2;2;�2

3
þ4�1;1;2;1þ2�1;1;1;2þ

5�3;1;1;�2
3
. Note that the example configurations we give

for the variants (1, 3) and (1, 4) are not the model II and
model I discussed in Ref. [20].

Many of the 53 variants have only configurations with
�1;1;2;�1 (and conjugate) for the breaking of the LR sym-

metry. These variants need either the presence of �1;3;1;0

[as for example in the configuration shown for variant
(2, 1)] or �1;1;3;0 [see, for example, (1, 4)] or an additional

singlet �1;1;1;0 (not shown, since it has no contribution to

any �bLRi ) to generate seesaw neutrino masses. Using the
�1;1;1;0 one could construct either an inverse [32] or a linear

[33,34] seesaw mechanism, while with �1;3;1;0 a seesaw

type III [35] is a possibility and, finally, a�1;1;3;0 allows for

an inverse seesaw type III [20]. The first example where a

valid configuration with �1;1;3;�2 appears is the variant

(3, 4). The simplest configuration is �1;2;1;1 þ�1;3;1;0 þ
�8;1;1;0 þ�1;1;3;�2 þ ��1;2;1;1 þ ��1;1;3;�2 (not the example

given in Table I). The VEV of the �1;1;3;�2 does not only

break the LR symmetry, it can also generate a Majorana
mass term for the right-handed neutrino fields, i.e., con-
figurations with �1;1;3;�2 can generate a seesaw type I, in

principle. Finally, the simplest possibility with a valid
configuration including �1;3;1;�2 is found in variant (4, 1)

with �1;1;2;�1 þ�8;1;1;0 þ�1;1;1;2 þ�3;1;1;43
þ�1;3;1;�2 þ

��1;1;2;�1 þ ��1;1;1;2 þ ��3;1;1;43
þ ��1;3;1;�2. The presence of

�1;3;1;�2 allows us to generate a seesaw type II for the

neutrinos.
As mentioned in the introduction, it is not possible to

construct a sliding scale model in which the LR symmetry

is broken by two pairs of triplets: �1;3;1;�2 þ ��1;3;1;�2 þ
�1;1;3;�2 þ ��1;1;3;�2. The sum of the �b’s for these fields

adds up to ð�bLR3 ; bLRL ;�bLRR ;�bLRB�LÞ ¼ ð0; 4; 4; 18Þ. This
leaves only the possibilities (4, 4), (5, 4), (5, 5), etc. from
Table II. However, the largest �bLRB�L of these models is

TABLE II. List of the 53 variants with a single LR scale. Shown are the remaining 24 variants, with �b3 � 4.

ð�b;�bRÞ Sample field combination

(4, 1) ��1;1;2;�1 þ 5 ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;3;1;0 þ�8;1;1;0 þ 5�1;1;1;2 þ�3;1;1;�2

3

(4, 2) 2 ��1;1;2;�1 þ 4 ��1;1;1;2 þ ��3;1;1;�2
3
þ 2�1;1;2;�1 þ 2�1;3;1;0 þ�8;1;1;0 þ 4�1;1;1;2 þ�3;1;1;�2

3

(4, 3) ��1;1;2;�1 þ 4 ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;3;1;0 þ 2�1;2;2;0 þ�8;1;1;0 þ 4�1;1;1;2 þ�3;1;1;�2

3

(4, 4) ��1;1;1;2 þ ��3;1;1;�2
3
þ ��1;1;3;�2 þ 2�1;3;1;0 þ�8;1;1;0 þ�1;1;1;2 þ�3;1;1;�2

3
þ�1;1;3;�2

(4, 5) ��1;1;2;�1 þ ��3;1;1;�2
3
þ ��1;1;3;�2 þ�1;1;2;�1 þ 2�1;3;1;0 þ�8;1;1;0 þ�3;1;1;�2

3
þ�1;1;3;�2

(4, 6) ��3;1;1;�2
3
þ ��1;1;3;�2 þ�1;3;1;0 þ 2�1;2;2;0 þ�8;1;1;0 þ�3;1;1;�2

3
þ�1;1;3;�2

(4, 7) ��1;1;2;�1 þ 2 ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ�1;1;3;0 þ 4�1;2;2;0 þ�8;1;1;0 þ 2�1;1;1;2 þ�3;1;1;�2

3

(4, 8) 2 ��1;1;2;�1 þ ��1;1;1;2 þ ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;1;3;0 þ 4�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2 þ�3;1;1;�2

3

(4, 9) ��1;1;2;�1 þ ��1;1;1;2 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;1;3;0 þ 4�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2 þ�3;1;1;�2

3

(4, 10) 2 ��1;1;2;�1 þ ��3;1;1;�2
3
þ 2�1;1;2;�1 þ 2�1;1;3;0 þ 4�1;2;2;0 þ�8;1;1;0 þ�3;1;1;�2

3

(4, 11) ��1;1;2;�1 þ ��3;1;1;�2
3
þ�1;1;2;�1 þ 3�1;1;3;0 þ 4�1;2;2;0 þ�8;1;1;0 þ�3;1;1;�2

3

(5, 1) ��1;2;1;1 þ ��1;1;2;�1 þ 5 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ�1;2;1;1 þ�1;1;2;�1 þ 2�1;3;1;0 þ�8;1;1;0 þ 5�1;1;1;2 þ 2�3;1;1;�2

3

(5, 2) ��1;1;2;�1 þ 5 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ 5�1;1;1;2 þ 2�3;1;1;�2

3

(5, 3) 2 ��1;1;2;�1 þ 4 ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ 2�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ 4�1;1;1;2 þ 2�3;1;1;�2

3

(5, 4) ��1;2;1;1 þ ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ ��1;1;3;�2 þ�1;2;1;1 þ 2�1;3;1;0 þ�8;1;1;0 þ�1;1;1;2 þ 2�3;1;1;�2

3
þ�1;1;3;�2

(5, 5) ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ ��1;1;3;�2 þ 2�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2 þ 2�3;1;1;�2

3
þ�1;1;3;�2

(5, 6) ��1;1;2;�1 þ 2 ��3;1;1;�2
3
þ ��1;1;3;�2 þ�1;1;2;�1 þ 2�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ 2�3;1;1;�2

3
þ�1;1;3;�2

(5, 7) 2 ��3;1;1;�2
3
þ ��1;1;3;�2 þ�1;3;1;0 þ 3�1;2;2;0 þ�8;1;1;0 þ 2�3;1;1;�2

3
þ�1;1;3;�2

(5, 8) ��3;1;2;13
þ ��1;1;3;�2 þ 2�1;3;1;0 þ�1;2;2;0 þ�8;1;1;0 þ�3;1;2;13

þ�1;1;3;�2

(5, 9) 2 ��1;1;2;�1 þ ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ�1;1;3;0 þ 5�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2 þ 2�3;1;1;�2

3

(5, 10) ��1;1;2;�1 þ ��1;1;1;2 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ 2�1;1;3;0 þ 5�1;2;2;0 þ�8;1;1;0 þ�1;1;1;2 þ 2�3;1;1;�2

3

(5, 11) 2 ��1;1;2;�1 þ 2 ��3;1;1;�2
3
þ 2�1;1;2;�1 þ 2�1;1;3;0 þ 5�1;2;2;0 þ�8;1;1;0 þ 2�3;1;1;�2

3

(5, 12) ��1;1;2;�1 þ 2 ��3;1;1;�2
3
þ�1;1;2;�1 þ 3�1;1;3;0 þ 5�1;2;2;0 þ�8;1;1;0 þ 2�3;1;1;�2

3

(5, 13) ��1;1;2;�1 þ ��3;1;2;13
þ�1;1;2;�1 þ 2�1;1;3;0 þ 5�1;2;2;0 þ�8;1;1;0 þ�3;1;2;13
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(5, 4) which allows for �bLRB�L ¼ 31=2, smaller than the
required 18. This observation is consistent with the analy-
sis done in Ref. [19], where the authors have shown that a
supersymmetric LR-symmetric model, where the LR sym-
metry is broken by two pairs of triplets, requires a minimal
LR scale of at least 109 GeV (and, actually, a much larger
scale in minimal renormalizable models, if GUT-scale
thresholds are small).

A few final comments on the variants with �bLR2 ¼
�bLR3 ¼ 0. Strictly speaking, none of these variants is

guaranteed to give a valid model in the sense defined in
Sec. II A, since they contain only one �1;2;2;0 ! ðHu;HdÞ
and no vectorlike quarks (no�3;1;1;43

or�3;1;1;�2
3
). With such

a minimal configuration the Cabbibo-Kobayashi-Maskawa
(CKM) matrix is trivial at the energy scale where the LR
symmetry is broken. We nevertheless list these variants,
since in principle a CKMmatrix for quarks consistent with
experimental data could be generated at 1-loop level from
flavor violating soft terms, as discussed in Ref. [36].

Before we end this section let us mention that variants
with �bLR3 ¼ 5 will not be testable at LHC by measure-

ments of soft SUSY breaking mass terms (‘‘invariants’’).
This is discussed below in Sec. III A.

C. Model class II: Additional intermediate
Pati-Salam scale

In the second class of supersymmetric SOð10Þ-inspired
models we consider, SOð10Þ is broken first to the Pati-
Salam (PS) group. The complete breaking chain thus is

SOð10Þ ! SUð4Þ � SUð2ÞL � SUð2ÞR
! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! MSSM: (8)

The representations available from the decomposition of
SOð10Þ multiplets up to 126 are listed in Table V in the
Appendix, together with their possible SOð10Þ origin.
Breaking SOð10Þ to the PS group requires that �1;1;1

from the 54 takes a VEV. The subsequent breaking of the
PS group to the LR group requires that the singlet in
�15;1;1, originally from the 45 of SOð10Þ, acquires a

VEV. And, finally, as before in the LR class, the breaking
of LR to SUð3Þc � SUð2ÞL �Uð1ÞY can be done either via
�1;1;2;�1 or �1;1;3;�2 (and/or conjugates).

The additional bi coefficients for the regime
½mPS; mGUT� are given by

ðbPS4 ; bPS2 ; bPSR Þ ¼ ð�6; 1; 1Þ þ ð�bPS4 ;�bPS2 ;�bPSR Þ; (9)

where, as before, the �bPSi include contributions from
superfields not part of the MSSM field content.

In this class of models, the unification scale is indepen-
dent of the LR one if the following condition is satisfied:

0 ¼
�
�bLR3 � �bLR2 ;

3

5
�bLRR þ 2

5
�bLRB�L � �bLR2 � 18

5

�

� 2 3

�5 0

 !
� �bPS4 ��bPS2 � 3

�bPSR ��bPS2 � 12

 !
: (10)

It is worth noting that requiring also that mPS is indepen-
dent of the LR scale would lead to the conditions in Eq. (7),
which are the sliding conditions for LR models. We can see
that this must be so in the following way: for some starting
values at mPS of the three gauge couplings, the scales mPS

and mG can be adjusted such that the two splittings be-
tween the three gauge couplings are reduced to zero at mG.
This fixes these scales, which must not change even ifmR is
varied. As such ��1

3 ðmPSÞ � ��1
2 ðmPSÞ and ��1

3 ðmPSÞ �
��1
R ðmPSÞ are also fixed and they can be determined by

running the MSSM up to mPS. The situation is therefore
equal to the one that lead to the equalities in Eq. (7),
namely the splittings between the gauge couplings at
some fixed scale must be independent of mR.
Since there are now two unknown scales involved in the

problem, the maximum �bXi allowed by perturbativity in
one regime do not only depend on the new scale X, but also
on the �bYi in the other regime as well. As an example, in
Fig. 3 we show the Maxð�bPS4 Þ allowed by ��1

G � 0 for

different values of �bLR3 and for the choices mR ¼ 1 TeV
and mG ¼ 1016 GeV. The dependence of Maxð�bPS4 Þ on
mR is rather weak, as long as mR does not approach the
GUT scale.
If we impose the limits mR ¼ 103 GeV, mPS �

106 GeV and take mG ¼ 1016 GeV, the bounds for the
different �b0s can be written as7

�bPS2 þ 3

10
�bLR2 < 7:2; (11)

�bPS4 þ 3

10
�bLR3 < 10; (12)

2

5
�bPS4 þ 3

5
�bPSR þ 3

10

�
2

5
�bLRB�L þ 3

5
�bLRR

�
< 17: (13)

However, as Fig. 3 shows, Maxð�bPS4 Þ is a rather strong

function of the choice of �bLR3 . Note that if mPS is low,

say below 1010 GeV, larger �bLR3 ’s are possible, up to

�bLR3 ¼ 7; see Fig. 3. The large values of Maxð�bLRÞ
and Maxð�bPSÞ allow, in principle, a huge number of
variants to be constructed in class II. This is demonstrated
in Fig. 4, where we show the number of variants for an

7In fact, the bounds shown here exclude a few variants with
mPS < 106 GeV. This is because of the following: while in most
cases the most conservative assumption is to assume that mPS is
as large as possible (¼106 GeV; this leads to a smaller running
in the PS regime) in deriving these bounds, there are some cases
where this is not true. This is a minor complication which
nonetheless was taken into account in our computations.
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assumed mR 	 1 TeV as a function of the scale mPS.
Up to mPS ¼ 1015 GeV the list is exhaustive. For larger
values of mPS we have only scanned a finite (though large)
set of possible variants. Note that these are variants, not
configurations. As in the case of class I practically any
variant can be made by several possible anomaly-free
configurations. The exhaustive list of variants (mPS ¼
1015 GeV) contains a total of 105909 possibilities and
can be found in Ref. [31].

With such a huge number of possible variants, we can
discuss only some general features here. First of all, within
the exhaustive set up to mPS ¼ 1015 GeV, there are a total
of 1570 different sets of �bLRi , each of which can be

completed by more than one set of �bPSi . Variants with

the same set of �bLRi but different completion of �bPSi
have, of course, the same configuration in the LR regime,
but come with a different value formPS for fixedmR. Thus,
they have in general different values for �B�L and �R at
the LR scale and (see next section) different values of the
invariants. For example, for the smallest values of �bLRi
that are possible in principle [�bLRi ¼ ð0; 0; 1; 3=2Þ], there
are 342 different completing sets of �bPSi .

The very simplest set of �bLRi possible, �bLRi ¼
ð0; 0; 1; 3=2Þ, corresponds to the configuration �1;1;2;�1 þ
��1;1;2;�1. These fields are necessary to break SUð2ÞR �
Uð1ÞB�L ! Uð1ÞY . Their presence in the LR regime
requires that in the PS regime we have at least one set of

copies of �4;1;2 þ ��4;1;2. In addition, for breaking the PS

group to the LR group, we need at least one copy of�15;1;1.

However, the set of �4;1;2 þ ��4;1;2 þ�15;1;1 is not

sufficient to generate a sliding scale mechanism and the
simplest configuration that can do so, consistent with

�bLRi ¼ ð0; 0; 1; 3=2Þ, is 3�1;2;2 þ 4�1;1;3 þ�4;1;2 þ
��4;1;2 þ�15;1;1, leading to �bPSi ¼ ð6; 3; 15Þ and a very

low possible value of mPS of mPS ¼ 8:2 TeV for mR ¼
1 TeV (see, however, the discussion on leptoquarks

below). The next possible completion for �1;1;2;�1 þ
��1;1;2;�1 is 3�1;2;2 þ 5�1;1;3 þ�4;1;2 þ ��4;1;2 þ�15;1;1,

with �bPSi ¼ ð6; 3; 17Þ and mPS ¼ 1:3� 108 GeV (for
mR ¼ 1 TeV), etc.
As noted already in Sec. II B, one copy of �1;2;2;0 is

not sufficient to produce a realistic CKM matrix at tree

level. Thus, the minimal configuration of �1;1;2;�1 þ
��1;1;2;�1 relies on the possibility of generating all

of the departure of the CKM matrix from unity by
flavor violating soft masses [36]. There are at least two
possibilities to generate a nontrivial CKM at tree level,
either by adding (a) another �1;2;2;0 plus (at least) one

copy of �1;1;3;0 or via (b) one copy of ‘‘vectorlike

quarks’’ �3;1;1;43
or �3;1;1;�2

3
. Consider the configuration

�1;1;2;�1 þ ��1;1;2;�1 þ�1;2;2;0 þ�1;1;3;0 first. It leads to

�bLRi ¼ ð0; 1; 4; 3=2Þ. Since �1;2;2;0 and �1;1;3;0 must

come from �1;2;2 (or �15;2;2) and �1;1;3, respectively,

the simplest completion for this set of �bLRi is again

3�1;2;2 þ 4�1;1;3 þ�4;1;2 þ ��4;1;2 þ�15;1;1, leading to

�bPSi ¼ ð6; 3; 15Þ and value of mPS of, in this case,
mPS ¼ 5:4 TeV for mR ¼ 1 TeV. Again, many comple-
tions with different �bPSi ’s exist for this set of �bLRi .
The other possibility for generating CKM at tree level,

adding for example a pair of �3;1;1;�2
3
þ ��3;1;1;�2

3
, has

FIG. 4 (color online). The number of possible variants in model class II, assuming mR is of order mR ’ 1 TeV as a function of mPS.
Up to mPS ¼ 1015 GeV the list is exhaustive. For larger values of mPS we have only scanned a finite (though large) set of possible
variants.

FIG. 3 (color online). Maximum value of �bPS4 ��bLR3
allowed by perturbativity as function of the scale mPS in GeV.
The different lines have been calculated for six different values
of �bLR3 . The plot assumes that mR ¼ 1 TeV. The line near the

bottom corresponds to �bLR3 ¼ 7.
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�bLRi ¼ ð1; 0; 1; 5=2Þ and its simplest PS completion is

4�1;2;2þ4�1;1;3þ�4;1;2þ ��4;1;2þ�6;1;1þ�15;1;1, with

�bPSi ¼ ð7; 4; 16Þ and a mPS ¼ 4:6� 106 TeV for mR ¼
1 TeV. Also in this case one can find sets with very low
values of mPS. For example, adding a �1;2;2;0 to this LR

configuration [for a �bLRi ¼ ð1; 1; 2; 5=2Þ], one finds
that with the same �bPSi now a value of mPS as low as
mPS ¼ 8:3 TeV for mR ¼ 1 TeV is possible.

We note in passing that the original PS-class model
of Ref. [20] in our notation corresponds to �bLRi ¼
ð1; 2; 10; 4Þ and �1;1;2;�1 þ ��1;1;2;�1 þ�1;2;1;1 þ ��1;2;1;1þ
�1;2;2;0 þ 4�1;1;3;0 þ�3;1;1;�2

3
þ ��3;1;1;�2

3
, completed by

�bPSi ¼ ð9; 5; 13Þ with �4;1;2 þ ��4;1;2 þ�4;2;1 þ�4;2;1 þ
�1;2;2 þ 4�1;1;3 þ�6;1;1 þ�15;1;1. The lowest possible

mPS for a mR ¼ 1 TeV is mPS ¼ 2:4� 108 GeV.
Obviously this example is not the simplest construction
in class II. We also mention that while for the �
coefficients it does not make any difference, the super-
field �1;1;3;0 can be either interpreted as ‘‘Higgs’’ or

as ‘‘matter.’’ In the original construction [20] this
‘‘arbitrariness’’ was used to assign the four copies of
�1;1;3;0 to one copy of �c ¼ �1;1;3;0,

8 i.e., Higgs and three

copies of �c ¼ �1;1;3;0, i.e., matter. In this way �c can be

used to generate the CKM matrix at tree level (together
with the extra bidoublet �1;2;2;0), while the �

c can be used

to generate an inverse seesaw type III for neutrino masses.
As Fig. 4 shows, there are more than 600 variants in

which mPS can, in principle, be lower than mPS ¼
103 TeV. Such low PS scales, however, are already con-
strained by searches for rare decays, such as Bs ! �þ��.
This is because the�15;1;1, which must be present in all our

constructions for the breaking of the PS group, contains
two leptoquark states. We will not study in detail lepto-
quark phenomenology [37] here, but mention that in the
recent paper [38] absolute lower bounds on leptoquarks
within PS models of the order of mPS ’ 40 TeV have been
derived. There are 426 variants for which we find mPS

lower than this bound, if we put mR to 1 TeV. Due to the
sliding scale nature of our construction this, of course, does
not mean that these models are ruled out by the lower limit
found in Ref. [38]. Instead, for these models one can
calculate a lower limit on mR from the requirement that
mPS ¼ 40 TeV. Depending on the model, lower limits on
mR between mR ¼ ½1:3; 27:7� TeV are found for the 426
variants from this requirement.
Two example solutions can be seen in Fig. 5. We have

chosen one example with a very low mPS (left) and one
with an intermediate mPS (right). Note that different from
the class-I models, in the class-II models the GUT scale is
no longer fixed to the MSSM value mG � 2� 1016 GeV.
Our samples are restricted to variants which havemG in the
interval ½1016; 1018� GeV.

D. Models with an Uð1ÞR �Uð1ÞB�L intermediate scale

Finally, we consider models where there is an additional
intermediate symmetry Uð1ÞR �Uð1ÞB�L that follows the
stage SUð2ÞR �Uð1ÞB�L. The field content relevant to this
model is specified in Table VI of the Appendix. In this case
the original SOð10Þ is broken down to the MSSM in three
steps,

SOð10Þ ! SUð3Þc � SUð2ÞL � SUð2ÞR �Uð1ÞB�L

! SUð3Þc � SUð2ÞL �Uð1ÞR �Uð1ÞB�L

! MSSM: (14)

The first step is achieved in the same way as in class-I
models. The subsequent breaking SUð2ÞR �Uð1ÞB�L !
Uð1ÞR �Uð1ÞB�L is triggered by �5 ¼ �1;1;3;0 and the

last one requires �0
4 ¼ �0

1;1;12;�1
, �0

20 ¼ �0
1;1;1;�2 or their

conjugates.
In theories with more that one Uð1Þ gauge factor, the

1-loop evolution of the gauge couplings and soft SUSY
breaking terms are affected by the extra kinetic mixing
terms. The couplings are defined by the matrix

G ¼ gRR gRX

gXR gXX

 !
(15)

FIG. 5 (color online). Gauge coupling unification for PS models with mR ¼ 103 GeV. In the plot to the left
ð�bLR3 ;�bLRL ;�bLRR ;�bLRB�L;�b

PS
4 ;�bPSL ;�bPSR Þ ¼ ð3; 5; 10; 3=2; 8; 5; 17Þ, while the plot to the right corresponds to �b0s ¼

ð3; 4; 12; 6; 8; 4; 12Þ.

8The original paper [20] called this field �. However, in our
notation it would be natural to call � ¼ �1;3;1;0.
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and AðtÞ¼ðGGTÞ=ð4�Þ¼ðA�1ðt0Þ��ðt�t0ÞÞ�1, where
t ¼ 1

2� log ð��0
Þ [20]. Here, � and �0 stand for the energy

scale and its normalization point and A is the generaliza-
tion of � to matrix form. The matrix of anomalous dimen-
sion, �, is defined by the charges of each chiral superfield f
under Uð1ÞR and Uð1ÞB�L:

� ¼ X
f

QfQ
T
f ; (16)

whereQf denotes a column vector of those charges. Taking

the MSSM’s field content we find

� ¼ 7 0

0 6

 !
: (17)

To ensure the canonical normalization of the B� L charge
within the SOð10Þ framework, � should be normalized as

�can ¼ N�physN, where N ¼ diagð1; ffiffiffiffiffiffiffiffi
3=8

p Þ.
Then, the additional � coefficients for the running step

½mB�L;mR� are given by

ðbB�L
3 ;bB�L

2 ;�B�L
RR ;�B�L

XR ;�B�L
XX Þ

¼ ð�3;1;6;0;7Þþð�bB�L
3 ;�bB�L

2 ;��RR;��XR;��XXÞ:
(18)

As in the previous PS case, we consider mB�L ¼
103 GeV, mG � 1016 GeV and mR � 106 GeV. Taking
into account the matching condition

pT
Y � A�1ðmB�LÞ � pY ¼ ��1

1 ðmB�LÞ (19)

and pT
Y ¼ ð

ffiffi
3
5

q
;
ffiffi
2
5

q
Þ, the bounds on the �b are

�bLR2 þ 3

10
�bB�L

2 < 7:1; �bLR3 þ 3

10
�bB�L

3 < 6:9;

3

5
�bLRR þ 2

5
�bLRB�L þ 3

10
pT
Y ��� � pY < 10:8: (20)

Even with this restriction in the scales we found 15610
solutions, more than in the PS case, due to the fact that
there are more �b’s that can be varied to obtain solutions.

The qualitative features of the running of the gauge cou-
plings are shown for two examples in Fig. 6. In those
two examples the ð�bLR3 ;�bLRL ;�bLRR ;�bLRB�L;�b

B�L
3 ;

�bB�L
L ;��RR;��XR;��XXÞ have been chosen as

ð0; 1; 3; 3; 0; 0; 1=2;� ffiffiffiffiffiffiffiffi
3=8

p
; 3=4Þ (left) and ð2; 2; 4; 8; 2;

2; 1=2;� ffiffiffiffiffiffiffiffi
3=8

p
; 11=4Þ (right). The former corresponds to

the minimal configuration �0
1;1;1=2;�1 þ ��0

1;1;1=2;�1 in

the lower regime and �1;1;2;�1 þ ��1;1;2;�1 þ�1;1;3;0 þ
�1;2;1;1 þ ��1;2;1;1 in the higher (LR-symmetric regime).

The latter corresponds to �0
1;1;1=2;�1 þ ��0

1;1;1=2;�1 þ
�0

1;3;0;0 þ 2�0
3;1;1;�2=3 þ 2 ��0

3;1;1;�2=3 and 2ð�1;1;2;�1 þ
��1;1;2;�1Þ þ �1;1;3;0 þ �1;3;1;0 þ �1;1;1;2 þ ��1;1;1;2 þ
2ð�3;1;1;�2=3 þ ��3;1;1;�2=3Þ, respectively.
For models in this class, the sliding condition requires

that the unification scale is independent of mB�L and this
happens when

0¼ ð�bB�L
3 ��bB�L

2 ;pT
Y ��� �pY ��bB�L

2 Þ � 0 1

�1 0

 !

� �bLR3 ��bLR2
3
5�b

LR
R þ 2

5�b
LR
B�L ��bLR2 � 18

5

 !
: (21)

Similarly to PS models, in this class of models the higher
intermediate scale (mR) depends, in general, on the lower
one (mB�L). However, there is also here a special condition
which makes bothmR andmG simultaneously independent
of mB�L, which is

�bLR3 ¼ �bLR2 ¼ pT
Y ��� � pY: (22)

Models of this kind are, for example, those with �b3 ¼ 0
and mR large, namely mR � 1013 GeV. One case is given
by the model in Ref. [20], where mR ’ 4� 1015 GeV.

III. INVARIANTS

A. Leading-log RGE invariants

In this section we briefly recall the basic definitions [20]
for the calculation of the invariants [25–27]. In mSugra

FIG. 6 (color online). Gauge coupling unification in models with an Uð1ÞR �Uð1ÞB�L intermediate scale, for mR ¼ 103 GeV. Left:

ð�bLR3 ;�bLRL ;�bLRR ;�bLRB�L;�b
B�L
3 ;�bB�L

L ;��RR;��XR;��XXÞ¼ð0;1;3;3;0;0;1=2;� ffiffiffiffiffiffiffiffi
3=8

p
;3=4Þ. Right: ð2;2;4;8;2;2;1=2;� ffiffiffiffiffiffiffiffi

3=8
p

;11=4Þ.
The line, which appears close to zero in theUð1ÞR �Uð1ÞB�L regime, is the running of the off-diagonal element of the matrix A�1; i.e.,
it measures the size of the Uð1Þ mixing in the model.
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there are four continuous and one discrete parameters: the
common gaugino massM1=2, the common scalar mass m0,

the trilinear coupling A0 and the choice of the sign of the�
parameter, sgnð�Þ. In addition, the ratio of vacuum expec-
tation values ofHd andHu, tan� ¼ vu

vd
, is a free parameter.

The latter is the only one defined at the weak scale, while
all the others are assigned a value at the GUT scale.

Gaugino masses scale as gauge couplings do and so the
requirement of GCU fixes the gaugino masses at the low
scale

MiðmSUSYÞ ¼ �iðmSUSYÞ
�G

M1=2: (23)

Neglecting the Yukawa and soft trilinear couplings for
the soft mass parameters of the first two generations of
sfermions one can write

m2
~f
�m2

0¼
M2

1=2

2��2
G

X
Rj

XN
i¼1

c
f;Rj

i �
Rj

i��
Rj

iþð�Rj

i�þ�
Rj

iþÞlog
m

Rj

þ
m

Rj�
:

(24)

Here, the sum over ‘‘Rj’’ runs over the different regimes in

the models under consideration, while the sum over i runs

over all gauge groups in a given regime. m
Rj

þ and m
Rj� are

the upper and lower boundaries of the Rj regime and �
Rj

iþ,
�
Rj

i� are the values of the gauge coupling of group i, �i, at
these scales. As for the coefficients ci, they can be calcu-
lated from the quadratic Casimir of representations of each
field under each gauge group i and are given for example in
Ref. [20]. In the presence of multiple Uð1Þ gauge groups
the renormalization group equations (RGEs) are different
(see for instance Ref. [39] and references contained
therein) and this leads to a generalization of Eq. (24) for
the Uð1Þ mixing phase [20]. Here we just quote the end
result (with a minor correction to the one shown in this last
reference) ignoring the non-Uð1Þ groups:

~m2
~f�� ~m2

~fþ¼M2
1=2

��2
G

QT
fA�ðA�þAþÞAþQf log

mþ
m�

; (25)

where mþ and m� are the boundary scales of the Uð1Þ
mixing regime and Aþ, A� are the A matrix defined in the
previous section (which generalizes �) evaluated in these
two limits. Likewise, ~m2

~fþ and ~m2
~f� are the values of the

soft mass parameter of the sfermion ~f at these two energy
scales. The equation above is a good approximation to the
result obtained by integration of the following 1-loop RGE
for the soft masses which assumes unification of gaugino
masses and gauge coupling constants:

d

dt
~m2
f ¼ � 4M2

1=2

�2
G

QT
fA

3Qf: (26)

Note that in the limit where the Uð1Þmixing phase extends
all the way up to mG, the A matrix measured at different

energy scales will always commute and therefore Eq. (25)
presented here matches the one in Ref. [20] and in fact both
are exact integrations of (26). However, if this is not the
case, it is expected that there will be a small discrepancy
between the two approximations, which nevertheless is
numerically small and therefore negligible.
From the five soft sfermion mass parameters of the

MSSM and one of the gaugino masses it is possible to
form four different combinations that, at 1-loop level in the
leading-log approximation, do not depend on the values of
m0 and M1=2 and are therefore called invariants:

LE¼ðm2
~L
�m2

~E
Þ=M2

1; QE¼ðm2
~Q
�m2

~E
Þ=M2

1;

DL¼ðm2
~D
�m2

~L
Þ=M2

1; QU¼ðm2
~Q
�m2

~U
Þ=M2

1:
(27)

While being pure numbers in theMSSM, invariants depend
on the particle content and gauge group in the intermediate
stages, as shown by Eq. (24).
We will not discuss errors in the calculation of the

invariants in detail; we refer the interested reader to
Ref. [20] and for classical SUð5Þ based SUSY seesaw
models to Refs. [26,27].
We close this subsection by discussing that not all model

variants which we presented in Sec. II will be testable by
measurements involving invariants at the LHC. According
to Baer et al. [40] the LHC at

ffiffiffi
s

p ¼ 14 TeV will be able to
explore SUSY masses up to m~g 	 3:2 TeV (3.6 TeV) for

m~q ’ m~g and of m~g 	 1:8 TeV (2.3 TeV) for m~q 
 m~g

with 300 fb�1 (3000 fb�1). The LEP limit on the chargino,
m� > 105 GeV [30], translates into a lower bound for

M1=2, with the value depending on the �b. For the class-

I models with �b ¼ 5 this leads toM1=2 * 1:06 TeV. One
can assume conservatively m0 ¼ 0 GeV and calculate
from this lower bound on M1=2 a lower limit on the

expected squark masses in the different variants. All vari-
ants with squark masses above the expected reach of the
LHC-14 will then not be testable via measurements of
the invariants. This discards all models with �b ¼ 5 as
untestable unfortunately.
For completeness we mention that if we take the present

LHC limit on the gluino, m~g * 1:1 TeV [41], this will

translate into a lower limit M1=2*4:31TeV for �b ¼ 5.
We have also checked that models with �b ¼ 4 can still
have squarks with masses testable at LHC, even for the
more recent LHC bound on the gluino mass.

B. Classification for invariants

For a given model, the invariants defined in Eq. (27)
differ from the mSugra values, and the deviations can be
either positive or negative once new superfields (and/or
gauge groups) are added to theMSSM. The mSugra limit is
reached in our models when the intermediate scales
are equal to mG, but it should be noted that, in general,
when there are two intermediate scales, the smallest one
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(henceforth called m�) cannot be pushed all the way up to
the unification scale. Therefore, in those cases, the invar-
iants measured at the highest possible m� are slightly
different from the mSugra invariants.

With this in mind, for each variant of our models, we
considered whether the invariants for min m�ð¼ mSUSYÞ
are larger or smaller than for max m�, which tends to be
within 1 or 2 orders of magnitude of mG. With four
invariants there are a priori 24 ¼ 16 possibilities, and in
Table III each of them is assigned a number.

However, it is easy to demonstrate that not all of the
16-plet sets can be realized in the three classes of models
we consider. This can be understood as follows. If all
sfermions have a common m0 at the GUT scale, then one
can show that

m2
~E
�m2

~L
þm2

~D
� 2m2

~U
þm2

~Q
¼ 0 (28)

holds independent of the energy scale, at which soft masses
are evaluated. This relation is general, regardless of the
combination of intermediate scales that we may consider
and for all gauge groups we consider. It is a straightforward
consequence of the charge assignments of the standard
model fermions and can be easily checked by calculating
the Dynkin coefficients of the E, L, D, U and Q represen-
tations in the different regimes. In terms of the invariants,
this relation becomes

QE ¼ DLþ 2QU; (29)

i.e., only three of the four invariants are independent. From
Eq. (29) it is clear that if �DL and �QU are both positive
(negative), then �QE must be also positive (negative).
This immediately excludes the sets 4, 5, 12 and 13.

Within the MSSM group Eq. (28) allows one relation
among the invariants. However, one can calculate the
relations among the Dynkin indices of the MSSM
sfermions within the extended gauge groups we are con-
sidering and in these there is one additional relation:

QU ¼ LE: (30)

Since Eq. (30) is valid only in the regime(s) with extended
gauge group(s), it is not exact, once the running within the
MSSM regime is included. However, taking into account
the running within the MSSM group one can write

QU ¼ LEþ fðmRÞ; (31)

with

fðmRÞ ¼ 2

33

��
33

10�
�MSSM
1 log

�
mR

mSUSY

�
� 1

��2 � 1

�
:

(32)

Here, �MSSM
1 is the value of �1 at mSUSY. It is easy to see

that fðmRÞ is always small (< 0:3) and positive and van-
ishes ifmR approachesmSUSY. Note that heremR stands for
the scale where the MSSM group is extended; in the class-
III models it is therefore mB�L.
Equation (31) allows us to eliminate three more cases

from Table III. Since fðmRÞ is positive, �QU � �LE
always, so it is not possible to have �LE ¼ � and
�QU ¼ þ. This excludes three additional sets from
Table III: 9, 11 and 15, leaving a total of nine possible sets.
Finally, in class-I models it is possible to eliminate four

more sets, namely all of those with �DL< 0. It is easy to
see, with the help of Eq. (24), that this is the case. It follows
from the fact that in the LR case, the cLi are nonzero for
Uð1ÞB�L and SUð2ÞL with the values 3=4 and 3=2, respec-
tively. Since also the sum is smaller than the cD3 (and �3 is

larger than the other couplings,Dmust run faster than L in
the LR regime.
By the above reasoning set 6 seems to be, in principle,

possible in class I, but is not realized in our complete scan.
We found a few examples in class II; see below. Due to the
(approximate) relation QU ¼ LE it seems to be a particu-
larly fine-tuned situation. We also note in passing, that in
the high-scale seesaw models of type II [26] and seesaw
type III [27] with running only within the MSSM group, all
invariants run always towards larger values, i.e., only set 1
is realized in this case.
The above discussion serves only as a general classifi-

cation of the types of sets of invariants that can be realized

TABLE III. The 16-plet different combinations of signs for four invariants. We assign a ‘‘þ’’ if the corresponding invariant, when
the lowest intermediate scale is set to mSUSY, is larger than its value when this scale is maximized, and ‘‘�’’ otherwise. As discussed in
the text, only 9 of the 16-plet different sign combinations can be realized in the models we consider. Moreover, for class I only the sets
1, 2, 10 and 14 can be realized; see discussion. For class III we also have found only sets 1, 2, 3, 6, 7, 8, 10 and 14, but here our search
was not exhaustive.

Set # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

�LE þ þ þ þ þ þ þ þ � � � � � � � �
�QE þ þ þ � þ � � � þ þ þ � þ � � �
�DL þ þ � þ � þ � � þ þ � þ � þ � �
�QU þ � þ þ � � þ � þ � þ þ � � þ �
Class I? ! ! ! !
Class II? ! ! ! ! ! ! ! ! !
Class III? ! ! ! ! ! ! ! !
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in the different model classes. The numerical values of the
invariants, however, depend on both the variant of the
model class and the scale of the symmetry breaking.
We will discuss one example for each possible set next.

C. Invariants in model class I

Figure 7 shows examples of the mR dependence of the
invariants corresponding to the four cases: sets 1, 2, 10 and
14 of Table III. Note that we have scaled down the invar-
iants QE and DL for practical reasons. Note also the
different scales in the different plots.

In all cases QU ’ LE, if the LR scale extends to very
low energies. As explained above, this is a general feature
of the extended gauge groups we consider and thus, mea-
suring a nonzero QU� LE allows us in our setups, in
principle, to derive a lower limit on the scale at which
the extended gauge group is broken.

Sets 1 and 2 show a quite similar overall behavior in
these examples. Set 1, however, can also be found in
variants of class I with larger � coefficients, i.e., larger
quantitative changes with respect to the mSugra values. It
is possible to find variants within class I which fall into set
2, but again due to the required similarity of QU and LE,
this set can be realized only if both QU and LE are
numerically very close to their mSugra values. Set 14 in
class I, finally, is possible only with QE and DL close to
their mSugra values, as can be understood from Eq. (29).

In general, for variants with large �bLR3 , changes in the

invariants can be huge; see for example the plot shown for

set 10. The large change is mainly due to the rapid running
of the gaugino masses in these variants, but also the
sfermion spectrum is very ‘‘deformed’’ with respect to
mSugra expectations. For example, a negative LE means
of course that left sleptons are lighter than right sleptons, a
feature that can never be found in the ‘‘pure’’ mSugra
model. Recall that for solutions with �bLR3 ¼ 5, the

value of the squark masses lies beyond the reach of
the LHC.

D. Model class II

Figure 8 shows examples of the invariants for class-II
models for those cases of sets, which cannot be covered in
class I. Again, QU and DL are scaled and different plots
show differently scaled axes.
The example for set 3 shown in Fig. 8 is similar to the

one of the original prototype model constructed in
Ref. [20]. For set 6 we have found only a few examples;
all of them show invariants which hardly change with
respect to the mSugra values of the invariants. The example
for set 7 shows that also QE can decrease considerably in
some variants with respect to its mSugra value. Set 8 is
quantitatively similar to set 2 and set 16 is quite similar
numerically to set 14. To distinguish these, highly accurate
SUSY mass measurements would be necessary.
Again we note that larger values of �bLR, especially

large �bLR3 , usually lead to numerically larger changes

in the invariants, making these models in principle easier
to test.

FIG. 7 (color online). mR dependence of the invariants in model class I. The examples of�bLRi ¼ ð�bLR3 ; bLRL ;�bLRR ;�bLRBLÞ for these
sets are as follows. Set 1: ð2; 2; 9; 1=2Þ. Set 2: (1, 1, 7, 1). Set 10: ð4; 4; 3; 29=2Þ. Set 14: (0, 0, 2, 6). For a discussion see text.
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E. Model class III

Here, the invariants depend on mB�L with a milder or
stronger dependence, depending on the value of �b3. For
almost all the solutions with �b3 ¼ 0, the values QU, DL,
QE are constants and only in LE a mild variation with
mB�L is found. This fact was already pointed out in
Ref. [20]. However, we have found that class-III models
can be made with �b3 > 0 and these, in general, lead to
invariants which are qualitatively similar to the case of
class I discussed above. In Fig. 9 we show two examples of
invariants for class III, one with �b3 ¼ 0 and one with
�b3 ¼ 2.

The solutions with �b3 � 0 fall in two kinds: First, the
minimum value of mR is very large. Then, the invariants
have the same behavior than those in which�b3 ¼ 0. And,
second, the minimum value ofmR is low. The invariants are
not constants and look similar to the ones in the class-I

models. The generally mild dependence on mB�L can be
understood, since it enters into the soft masses only
through the changes in the Abelian gauge couplings.
Class-III models are therefore the hardest to ‘‘test’’ using
invariants.

F. Comparison of model classes

The classification of variants that we have discussed in
Sec. III B only takes into account what happens when the
lowest intermediate scale is very low, OðmSUSYÞ. When
one varies continuously the lowest intermediate scale (mR

in the LR- and PS-class models or mB�L in the BL-class
models), each variant draws a line in the four-dimensional
space ðLE;QU;DL;QEÞ. The dimensionality of such a
plot can be lowered if we use the (approximate) relations
between the invariants shown above, namely QU � LE
and QE ¼ DLþ 2QU. We can then choose two

FIG. 8 (color online). The mR dependence of the invariants in model class II. The examples shown correspond to the choices of
�b ¼ ð�bLR3 ;�bLRL ;�bLRR ;�bLRBL;�b

PS
4 ;�bPSL ;�bPSR Þ. Set 3: ð0; 1; 10; 3=2; 14; 9; 13Þ. Set 6: ð0; 0; 1; 9=2; 63; 60; 114Þ. Set 7:

ð0; 3; 12; 3=2; 6; 3; 15Þ. Set 8: ð0; 0; 9; 3=2; 11; 8; 12Þ. Set 16: ð0; 0; 7; 3=2; 11; 8; 10Þ.
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independent ones, for example LE andQE, so that the only
nontrivial information between the four invariants is
encoded in a ðLE;QEÞ plot. In this way, it is possible to
simultaneously display the predictions of different vari-
ants. This was done in Fig. 10, where LR, PS and BL
variants are drawn together. The plot is exhaustive in the
sense that it includes all LR variants, as well as all PS and
BL variants which can have the highest intermediate scale
below 106 GeV. In all cases, we required that ��1 at
unification is larger than 1=2 when the lowest intermediate
scale is equal to mSUSY.

There is a dot in the middle of the figure—the mSugra
point—which corresponds to the prediction of mSugra
models, in the approximation used. It is expected that every
model will draw a line with one end close to this point. This
end point corresponds to the limit where the intermediate
scales are close to the GUT scale and therefore the running
in the LR, PS and BL phases is small so the invariants
should be similar to those in mSugra models. So the

general picture is that lines tend to start (when the lowest
intermediate scale is of the order of 103 GeV) outside or at
the periphery of the plot, away from the mSugra point and,
as the intermediate scales increase, they converge towards
the region of the mSugra point, in the middle of the plot. In
fact, note that all the lines of LR-class models do touch this
point, because we can slide the LR scale all the way tomG.
But in PS and BL models there are two intermediate scales
and often the lowest one cannot be increased all the way up
to mG, either because that would make the highest inter-
mediate scale bigger thanmG or because it would invert the
natural ordering of the two intermediate scales.
It is interesting to note that the BL class with lowmR can

produce the same imprint in the sparticle masses as LR
models. This is to be expected because with mR close to
mB�L the running in the Uð1Þ-mixing phase is small,
leading to predictions similar to LR models. The equiva-
lent limit for PS-class models is reached for very highmPS,
close to the GUT scale (see below). On the other hand,
from Fig. 10 we can see that a low mPS actually leads to a
very different signal on the soft sparticle masses. For
example, a measurement of LE � 10 and QE � 15,
together with compatible values for the other two invari-
ants (QU � 10 and DL � �5) would immediately
exclude all classes of models except PS models, and
in addition it would strongly suggest low PS and LR
scales.
Figure 11 illustrates the general behavior of PS models

as we increase the separation between the mLR and mPS

scales. The filled region in the ðLE;QEÞ plot tends to rotate
anticlockwise until it reaches, for very high mPS, the same
region of points which is predicted by LR models.
Curiously, we also see in Fig. 11 that some of these models
actually predict different invariant values from the ones of
LR models. What happens in these cases is that since the
PS phase is very short, it is possible to have many active
fields in it which decouple at lower energies. So even
though the running is short, the values of the different
gauge couplings actually get very large corrections in

FIG. 10 (color online). Parametric ðLE;QEÞ plot for the differ-
ent variants (see text). The thicker lines labeled with I, II, III and
IV indicate the results for the four prototype models presented
in Ref. [20].

FIG. 9 (color online). The mB�L dependence of the invariants in class III. To the left the example chooses

ð�bLR3 ;�bLRL ;�bLRR ;�bLRBL;�b
BL
3 ;�bBLL ;��RR;��XR;��XXÞ ¼ ð0; 1; 3; 3; 0; 0; 1=2;� ffiffiffiffiffiffiffiffi

3=8
p

; 3=4Þ. To the right: ð2; 2; 4; 8; 2; 2; 1=2;
� ffiffiffiffiffiffiffiffi

3=8
p

; 11=4Þ.
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this regime and these are uncommon in other settings.
For example, it is possible in this special subclass of
PS models for �R to get bigger than �3=�4 before
unifying.

One can see from Fig. 11 that many, although not all PS
models, can lead to large values of LE. This can happen for
both low and high values of mPS and is a rather particular
feature of the class II, which cannot be found in the other
classes.

IV. SUMMARYAND CONCLUSIONS

We have discussed SOð10Þ-inspired supersymmetric
models with extended gauge group near the electroweak
scale, consistent with gauge coupling unification thanks to
a sliding scale mechanism. We have discussed three differ-
ent setups, which we call classes of models. The first and
simplest chain we use breaks SOð10Þ through a left-right
symmetric stage to the SM group, and class II uses an
additional intermediate Pati-Salam stage, while in class III
we discuss models which break the LR-symmetric group
first into aUð1ÞR �Uð1ÞB�L group before reaching the SM
group. We have shown that in each case many different

variants and many configurations (or protomodels) for each
variant can be constructed.
We have discussed that one cannot only construct sliding

models in which an inverse or linear seesaw is consistent

with GCU, as done in earlier work [20,22,23], but also all

other known types of seesaws can, in principle, be found.

We found example configurations for seesaw type I, type II

and type III and even inverse type III (for which one

example limited to class II was previously discussed

in Ref. [20]).
Due to the sliding scale property the different configu-

rations predict potentially rich phenomenology at the LHC,
although by the same reasoning the discovery of any of the
additional particles the models predict is of course not
guaranteed. However, even if all the new particles—
including the gauge bosons of the extended gauge
group—lie outside of the reach of the LHC, indirect tests
of the models are possible from measurements of SUSY
particle masses. We have discussed certain combinations
of soft parameters, called invariants, and shown that the
invariants themselves can be classified into a few sets. Just
determining to which set the experimental data belong

FIG. 11 (color online). Parametric ðLE;QEÞ plots for different PS variants showing the effect of the PS scale.
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would allow us to distinguish, at least in some cases, class-I
from class-II models and also in all but one case our classes
of models are different from the ordinary high-scale
seesaw (type-II and type-III) models. Depending on the
accuracy with which supersymmetric masses can be mea-
sured in the future, the invariants could be used to gain
indirect information not only on the class of model and its
variant realized in nature, but also give hints on the scale of
beyond-MSSM physics, i.e., the energy scale at which the
extended gauge group is broken.

We add a few words of caution. First of all, our analysis
is done completely at the 1-loop level. It is known from
numerical calculations for seesaw type II [26] and seesaw
type III [27] that the invariants receive numerically impor-
tant shifts at 2-loop level. In addition, there are also
uncertainties in the calculation from GUT-scale thresholds
and from uncertainties in the input parameters. For the
latter the most important is most likely the error on �S

[20]. With the huge number of models we have considered,
taking into account all of these effects is impractical and,
thus, our numerical results should be taken as approximate.
However, should any signs of supersymmetry be found in
the future, improvements in the calculations along these
lines could be easily made, should it become necessary.
More important for the calculation of the invariants is, of
course, the assumption that SUSY breaking indeed is
mSugra-like. Tests of the validity of this assumption can
be made also only indirectly. Many of the spectra we find,
especially in the class-II models, are actually quite differ-
ent from standard mSugra expectations and thus a pure
MSSM-mSugra would give a bad fit to experimental data,
if one of these models is realized in nature. However, all of
our variants still fulfill (by construction) a certain sum rule;
see the discussion in Sec. III B.

Of course, so far no signs of supersymmetry have been
seen at the LHC, but with the planned increase of

ffiffiffi
s

p
for the

next run of the accelerator there is still quite a lot of
parameter space to be explored. We note in this respect
that we are not overly concerned about the Higgs mass,
mh 	 ð125–126Þ GeV, if the new resonance found by the
ATLAS [42] and CMS [43] collaborations turns out to be
indeed the lightest Higgs boson. While for a pure MSSM
with mSugra boundary conditions it is well known [44–47]
that such a hefty Higgs requires multi-TeV scalars,9 all our
models have an extended gauge symmetry. Thus, there
are new D-terms contributing to the Higgs mass [49,50],
alleviating the need for large soft SUSY breaking terms,
as has been explicitly shown in Refs. [51,52] for one
particular realization of a class-III model [20,22].

Finally, many of the configurations (or protomodels)
which we have discussed contain exotic superfields, which

might show up in the LHC. It might therefore be interesting
to do a more detailed study of the phenomenology of at
least some particular examples of the models we have
constructed.
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APPENDIX: LISTS OF SUPERFIELDS

We have considered SOð10Þ-inspired models which
may contain any irreducible representation up to dimension

126 (1, 10, 16, 16, 45, 54, 120, 126, 126). Once the gauge
group breaks down to SUð4Þ � SUð2ÞL � SUð2ÞR or
SUð3ÞC � SUð2ÞL � SUð2ÞR �Uð1ÞB�L these SOð10Þ
fields divide into a multitude of different irreducible
representation of these groups. In addition, if SUð2ÞR is
broken down further to Uð1ÞR the following branching
rules apply: 3 ! �1; 0;þ1; 2 ! � 1

2 ; 1 ! 0. The standard

model’s hypercharge, in the canonical normalization,

is then equal to the combination
ffiffi
3
5

q
½Uð1ÞR hypercharge� þffiffi

2
5

q
½Uð1ÞB�L hypercharge�. In Tables IV, V, and VI we

present the list of relevant fields respecting the conditions
above. In these tables we used an ordered naming of the
fields. Sometimes it is also useful, like in Table I, to indicate
explicitly the quantum numbers under the various groups.
In order for a group G to break into a subgroup H � G,

there must be a field transforming nontrivially under G
which contains a singlet of H that acquires vacuum expec-
tation value. From this observation alone we know that
certain fields must be present in a fundamental model if we
are to achieve a given breaking sequence:
(i) The breaking PS ! LR is possible only with the

ð15; 1; 1Þwhile PS ! 3211 requires the combination
ð15; 1; 1Þ þ ð1; 1; 3Þ. For the direct breaking PS !
321 there are two choices: ð4; 1; 2Þ, ð10; 1; 3Þ or their
conjugates;

(ii) The breaking LR ! 3211 requires the ð1; 1; 3; 0Þ
representation while the direct route LR ! 321
is possible with the presence of ð1; 1; 2;�1Þ,
ð1; 1; 3;�2Þ or their conjugates;

(iii) The group 3211 can be broken down to 321 with
the representations ð1; 1; 12 ;�1Þ, ð1; 1; 1;�2Þ or

their conjugates.

9Multi-TeV scalars are also required, if the MSSM with
mSugra boundary conditions is extended to include a high-scale
seesaw mechanism [48].
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