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Preface

This is a text for an Advanced Quantum Field Theory course that I have been teaching
for many years at Instituto Superior Técnico, in Lisbon. This course was first written in
Portuguese. Then, at a latter stage, I added some text in one-loop techniques in English.
Then, I realized that this text could be more useful if it was all in English. The process
took some years but the text it is now almost all in English. An effort has been made to
correct known misprints. However, I am certain that many more still remain. If you find
errors or misprints, please send me an email.

IST, December 2016
Jorge C. Romao

jorge.romao@tecnico.ulisboa.pt
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Chapter 1

Free Field Quantization

1.1 General formalism

1.1.1 Canonical quantization for particles

Before we study the canonical quantization of systems with an infinite number of degrees
of freedom, as it is the case with fields, we will review briefly the quantization of systems
with a finite number of degrees of freedom, like a system of particles.

Let us start with a system that consists of one particle with just one degree of freedom,
like a particle moving in one space dimension. The classical equations of motion are
obtained from the action,

s— [ atrq . (1.1)

t1

The condition for the minimization of the action, §S = 0, gives the Euler-Lagrange equa-
tions,

doL oL

which are the equations of motion.

Before proceeding to the quantization, it is convenient to change to the Hamiltonian
formulation. We start by defining the conjugate momentum p, to the coordinate ¢, by

)

= 1.3
P= 5 (1.3)

Then we introduce the Hamiltonian using the Legendre transform
H(p,q) = pq — L(g.4) (1.4)

In terms of H the equations of motion are,

13



14 CHAPTER 1. FREE FIELD QUANTIZATION

oOH .
{H,qtrs = o q (1.5)
oH .

{H,ptre = _8—q =D (1.6)

where the Poisson Bracket (PB) is defined by

_0fog _9f9g
{f(p.9),9(p.q)}rB = 9030 Bap (1.7)
obviously satisfying

{p,a}pe=1. (1.8)

The quantization is done by promoting p and ¢ to hermitian operators that instead of
Eq. (L8) will satisfy the commutation relation (7 = 1),

[p.q = —i (1.9)

which is trivially satisfied in the coordinate representation where p = —za—. The dynamics
q

is the given by the Schrodinger equation

0

H(p,a) [Ws(t)) = i [Ps(t)) (1.10)

If we know the state of the system in ¢t = 0,|¥g(0)), then Eq. (LI0) completely
determines the state |¥4(¢)) and therefore the value of any physical observable. This
description, where the states are time dependent and the operators, on the contrary, do not
depend on time, is known as the Schrodinger representation. There exits and alternative
description, where the time dependence goes to the operators and the states are time
independent. This is called the Heisenberg representation. To define this representation,
we formally integrate Eq. (II0) to obtain

[Ws(t)) = e [Ws(0)) = e M [Wy) (1.11)
The state in the Heisenberg representation, |¥ ), is defined as the state in the Schrédinger

representation for ¢ = 0. The unitary operator et allows us to go from one representa-
tion to the other. If we define the operators in the Heisenberg representation as,

Op(t) = eftOge~tH? (1.12)

then the matrix elements are representation independent. In fact,

<\Ifs(t)‘03‘\lls(t)> = <\Ifs(0) ]ethOSe_th]\IIS(O)> (1.13)
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= (YylOu(®)|¥u) . (1.14)
The time evolution of the operator Og(t) is then given by the equation
dOg (t) 00y
dt ot

which can easily be obtained from Eq. (LI2]). The last term in Eq. (I.I5) is only present
if Og explicitly depends on time.

= i[H,0x(t)] + (1.15)

In the non-relativistic theory the difference between the two representations is very
small if we work with energy eigenfunctions. If v, (q,t) = e ™“ntu,(q) is a Schrodinger
wave function, then the Heisenberg wave function is simply u,(q). For the relativistic
theory, the Heisenberg representation is more convenient, because it is easier to describe
the time evolution of operators than that of states. Also, Lorentz covariance is more
easily handled in the Heisenberg representation, because time and spatial coordinates are
together in the field operators.

In the Heisenberg representation the fundamental commutation relation is now

[p(t),q(t)] = —i (1.16)
The dynamics is now given by
dp(t) dq(t)
dt dt
Notice that in this representation the fundamental equations are similar to the classical
equations with the substitution,

= i[H,p(t)] ; = i[H, q(t)] (1.17)

RN (1.18)
In the case of a system with n degrees of freedom Eqs. (ILT6]) and (II7)) are generalized
to

[pi(t), q;(t)] = —idy; (1.19)
[pi(t),p;(t)] =0 (1.20)
[qi(t), q;(t)] = 0 (1.21)

and
pi(t) = i[H,pi(t)] 5 ¢i(t) = i[H,q(t)] (1.22)

Because it is an important example let us look at the harmonic oscillator. The Hamil-
tonian is

1
H =5 (0" + wid’) (1.23)

The equations of motion are

p=i[H,p] = —wiq (1.24)
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Q—i[137Q]—P:>d+WgQ—O~ (1.25)
It is convenient to introduce the operators
/—1 ( p) f L ( — ip) (1.26)
a= woq +1ip) ; a' = w 7 .
%0 0q T tp 0 0q — tp

The equations of motion for a and a' are very simple:

a(t) = —iwea(t) e ' (t) = iwoa' (t) . (1.27)
They have the solution
at) = age™ ™0t ; af(t) = aée’wot (1.28)
and obey the commutation relations
[a,al] = [ag,a}] =1 (1.29)
la,a] = [ag,ap] =0 (1.30)
[al,a'] = [ag,ag] =0 (1.31)

In terms of a,a’ the Hamiltonian reads

1 1
H = 3 wo(aTa + aal) = 3 wo(agao + aoag) (1.32)
1 1
= woajap + 5 @0 (1.33)
where we have used
[H,ap] = —woag, [H, ag] = woag (1.34)

We see that ag decreases the energy of a state by the quantity wg while ag increases
the energy by the same amount. As the Hamiltonian is a sum of squares the eigenvalues
must be positive. Then it should exist a ground state (state with the lowest energy), |0),
defined by the condition

ap|0) =0 (1.35)

The state |n) is obtained by the application of (ag)n. If we define

= == (a5)"10) (1.36)

then
(m|n) = omn (1.37)

and
Hn) = (n + %) wo |n) (1.38)

We will see that, in the quantum field theory, the equivalent of ay and ag are the
creation and annihilation operators.
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1.1.2 Canonical quantization for fields

Let us move now to field theory, that is, systems with an infinite number of degrees of
freedom. To specify the state of the system, we must give for all space-time points one
number (or more if we are not dealing with a scalar field). The equivalent of the coordinates
qi(t) and velocities, ¢;, are here the fields ¢(#,t) and their derivatives, O*¢(Z,t). The action
is now

S = /d4x£(<p, ) (1.39)

where the Lagrangian density £, is a functional of the fields ¢ and their derivatives 0* .
Let us consider closed systems for which £ does not depend explicitly on the coordinates
M (energy and linear momentum are therefore conserved). For simplicity let us consider
systems described by n scalar fields ¢, (z),r = 1,2,---n. The stationarity of the action,
4S5 = 0, implies the equations of motion, the so-called Euler-Lagrange equations,

5 oL oL

——=0 r=1,---n 1.40
F 3 0pr) D (1.40)

For the case of real scalar fields with no interactions that we are considering, we can
easily see that the Lagrangian density should be,

1
L= Z [ 8”@? uwPr — §m290r90r (1.41)

in order to obtain the Klein-Gordon equations as the equations of motion,
O+m?)p, =0 ; r=1,---n (1.42)

To define the canonical quantization rules we have to change to the Hamiltonian for-
malism, in particular we need to define the conjugate momentum = (z) for the field ¢(z).
To make an analogy with systems with n degrees of freedom, we divide the 3-dimensional
space in cells with elementary volume AV;. Then we introduce the coordinate ¢;(t) as the
average of ¢(Z,t) in the volume element AV}, that is,

1 3 .
wi(t) = d’xp(L,t 1.43
= AV iy AT (1.43)
and also .
¢i(t) = / Brp(T,t) . 1.44
V=5V Jawy Y (144)
Then
L= / Pzl =Y AVIL; . (1.45)
Therefore the canonical momentum is now
oL oL,
pi(t) = = = AV, — = AVim;(t 1.46
O =55~ Viagm - AV 149
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and the Hamiltonian

Going now into the limit of the continuum, we define the conjugate momentum,
. IL(p, $)
t) = ——F—= 1.4
D= 5@ A

in such a way that its average value in AVj is m;(¢t) defined in Eq. (L46). Eq. (L47)
suggests the introduction of an Hamiltonian density such that

H = / d>xH (1.49)
H = np—L. (1.50)

To define the rules of the canonical quantization we start with the coordinates ¢;(t)
and conjugate momenta p;(t). We have

[pi(t), 5 ()] = —idi;

[i(t), 3 ()] = 0

[pi(t), p;(t)] =0 (1.51)
In terms of momentum 7;(¢) we have
0y

1),y (0) = =i (1.52)

Going into the continuum limit, AV; — 0, we obtain
[p(Z,1), (&, t)] =0 (1.53)
[r(Z,t),7(z,1)] =0 (1.54)
[ﬂ—(‘fa t)a 90(‘%/7 t)] = _Zé(f - f/) (155)

These relations are the basis of the canonical quantization. For the case of n scalar
fields, the generalization is:

[or(Z,1), 0s(2',1)] = 0 (1.56)
[7 (2, t),ﬂs(f’,t)] =0 (1.57)
(7 (Z,1), s (T, 1)] = —i6,50(T — T') (1.58)
where or
and the Hamiltonian is
H= /d%% (1.60)
with .
H=> mp—L. (1.61)
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1.1.3 Symmetries and conservation laws

The Lagrangian formalism gives us a powerful method to relate symmetries and conser-
vation laws. At the classical level the fundamental result is the following theorem.

Noether’s Theorem

To each continuous symmetry transformation that leaves L and the equations of
motion invariant, corresponds one conservation law.

Proof:

We will make a generic proof for the most general case, and then consider particular
cases. We take a general change of inertial frame, including Lorentz transformations
and translations. For infinitesimal transformations we have

o't =gk et Wt a” =t + ot St = et + wh o (1.62)

where e* and WM are infinitesimal constant parameters. For the fields, under such
a transformation we have two types of variations.

dior () = () — or(2) (1.63)
drer(z) = ¢(2) — r(2) (1.64)
They are related because (we neglect second order terms)
repr(z) = [¢h(2") — @r(a)] + [r(2) — r ()]

Oy Opr
/ r

—_/ L.
iy (33 ) + 5:175 0y (:17) + 5:175 ( 65)

Now the invariance of the Lagrangian
L(¢p(2'),0a¢'(2")) = L(r(2), 0ap(x)) (1.66)
can be written as

0 =L(¢L("), Datp' (') — L{pr (@), ato(@))
oL

=L + W&xﬁ (1.67)

Now we calculate §L (using the equations of motion)

oL oL

L =—"9p, + —————
90 " 0(Ounpr)

A
024 | 0(0ar)

6(Oater)

5%}

0 oL oL Oy,

[ L — R B
D4 b(aasor)éw’“ o) 9P (1.68)
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where we have used Eq. (L63). Introducing now Eq. (I1.68) in Eq. (I.67) we obtain

_ 9 ] oL (9L Opr  Lap) s 8
' =on. [ama«pr)w" <a<aasor>awﬁ £y >5}
0 oL
- |___7= _maBs,.B
axa |:8(8a907’)5T(pr s 5‘T:|
—0J° (1.69)

We have defined the conserved current J*and the tensor TP by

oL Oy
af ro_ af
T ~ 0(0npr) 0P £ (1.70)
oL
*=—"""§rp, — T 1.71
J a(aa%)éﬂp dxs (1.71)

This ends the proof of Noether’s theorem.

Before we apply it to particular cases let us also introduce some useful notation. We
define for infinitesimal transformations

1 1
op(x') = Srs(a)ps(z),  Sps(w) = drs + 5“)0‘52?5 — o7 () = 5“0‘52?35905 (1.72)

1) Translations
First we consider the case of translations. For this case we have
oror =0, ozt =€t (1.73)
From the above and using the fact that e# is arbitrary and constant we get from Eq. (I.71))
OtV =0—0,1" =0 (1.74)
where TH" is the energy-momentum tensor defined above in Eq. (LT0),

oL
9(Opspr)

T = —g" L+ " o, (1.75)

Using these relations we can define the conserved quantities

dpPH

—_— = 1.
— =0 (1.76)

PH = /d3ajT0“ =

Noticing that T% = H, it is easy to realize that P* should be the 4-momentum vector.
Therefore we conclude that invariance for translations leads to the conservation of energy
and momentum.
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2) Lorentz transformations

Consider the infinitesimal Lorentz transformations
1
ot =gt +wt, 2, Orpr(z) = §wa527‘3‘f¢s (1.77)

where we have indicated the total variation of the fiels using the conventions of Eq. (IL72]).
For instance for scalar fields we have dp¢,(z) = 0 and for spinors

160 (2) = o ol s 5 (0) (1.78)

Inserting these variations in the conserved current, Eq. (IL7I]), and factoring out the con-
stant parameters w,3 we obtain

oL
OuMHMP =0 with MHP = goTrh — gPre 4 =yl (1.79)
a(au@r)
The conserved angular momentum is then
108 /d%Moaﬁ _ /d% 2°T% — 2P0 13" 1, 308, (1.80)
r,s
with P
dM*

=0 1.81
y (1.81)

3) Internal Symmetries

Let us consider that the Lagrangian is invariant for an infinitesimal internal symmetry
transformation
oror(r) = —ieAsps(z), oxt =0 (1.82)

where we explicitely indicate that there are no chnage in the coordinates, only in the fields.
Then substituting in the current we easily obtain

oL

O JH =0 where JH=—i———N\sps 1.83
1 8(8u()0r) ( )
This leads to the conserved charge
d
Q) = —i/d?’:mw/\rsgos ; d_cf =0 (1.84)

These relations between symmetries and conservation laws were derived for the classical
theory. Let us see now what happens when we quantize the theory. In the quantum theory
the fields ¢, (x) become operators acting on the Hilbert space of the states. The physical
observables are related with the matrix elements of these operators. We have therefore
to require Lorentz covariance for those matrix elements. This in turn requires that the
operators have to fulfill certain conditions.
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This means that the classical fields relation

(") = Srs(a)ps(z) (1.85)
should be in the quantum theor
(@Ller ()| @) = Srs(a) (Palps(@)|®s) (1.86)
It should exist an unitary transformation U (a, b) that should relate the two inertial frames
|®") = U(a,b) |®) (1.87)
where a#,, e b* are defined by
2t =at,a” + b (1.88)
Using Eq. (IL.87) in Eq. (I86]) we get that the field operators should transform as
Ula,b)r (@)U (a,0) = ST (a)ps(az + ) (1.89)

Let us look at the consequences of this relation for translations and Lorentz transfor-
mations. We consider first the translations. Eq. (I.89) is then

U(b)pr()U"(b) = @p(z +b) (1.90)
For infinitesimal translations we can write
Ule) = ev™" ~ 1 +ig, P! (1.91)

where P* is an hermitian operator. Then Eq. (L90) gives
i[P", or(2)] = 0y () (1.92)

The correspondence with classical mechanics and non relativistic quantum theory sug-
gests that we identify PH* with the 4-momentum, that is, P# = P* where P has been
defined in Eq. (L70).

As we have an explicit expression for P* and we know the commutation relations of
the quantum theory, the Eq. (I.92) becomes an additional requirement that the theory
has to verify in order to be invariant under translations. We will see explicitly that this is
indeed the case for the theories in which we are interested.

For Lorentz transformations z’# = a*, z", we write for an infinitesimal transformation

at, = gt + wh, + O(w?) (1.93)
and therefore )
Uw)=1- %wwj/\/l“” (1.94)
We then obtain from Eq. (L.89]) the requirement
iMoo (x)] = a0 pr — 20" o + T s () (1.95)

Once more the classical correspondence lead us to identify M* = M"” where the
angular momentum M* is defined in Eq. (I.80)). For each theory we will have to verify
Eq. (L95) for the theory to be invariant under Lorentz transformations. We will see that
this is true for the cases of interest.

!This is a definition not a derivation from Eq. (L85). Seel[l 2]
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1.2 Quantization of scalar fields

1.2.1 Real scalar field

The real scalar field described by the Lagrangian density

1 1
L= 58“908u<,0 — §m2<p<,0 (1.96)
to which corresponds the Klein-Gordon equation
(O+m?)p=0 (1.97)

is the simplest example, and in fact was already used to introduce the general formalism.
As we have seen the conjugate momentum is

oL

™

and the commutation relations are

[o(&,1), (@, 1)] = [x (&, 1), n(&, )] = 0

[ﬂ(fa t)a 90(‘%/7 t)] = _Zég(f - ‘f/) (199)
The Hamiltonian is given by,

H = PO:/d3x7-L

1 1 = 1
= /d% —71? 4+ V| + =m?p? (1.100)
2 2 2
and the linear momentum is
P= —/d?’;mﬁgp (1.101)
Using Eqgs. (LI00) and (LI0T]) it is easy to verify that
i[PH, o] = 0Py (1.102)

showing the invariance of the theory for the translations. In the same way we can verify
the invariance under Lorentz transformations, Eq. (L95)), with ¥y = 0 (spin zero).

In order to define the states of the theory it is convenient to have eigenstates of energy
and momentum. To build these states we start by making a spectral Fourier decomposition
of p(Z,t) in plane waves:

o(T,1) = / dk [a(k)e‘““'l‘ —i—aT(k:)eik'x] (1.103)

~ >k -
dk = @2 ; wr = +\/ k|2 +m? (1.104)

where
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is the Lorentz invariant integration measure. As in the quantum theory ¢ is an operator,
also a(k) e a'(k) should be operators. As ¢ is real, then a'(k) should be the hermitian
conjugate to a(k). In order to determine their commutation relations we start by solving
Eq. (LI03) in order to a(k) and af(k). Using the properties of the delta function, we get

a(k) = i/dgzneik'xgogo(:n)

al (k) = —i/d?’xe_’ “0op(x) (1.105)
where we have introduced the notation
< ob  Oa
b=a— — —b 1.1
ad vily (1.106)

The second member of Eq. (ILI05) is time independent as can be checked explicitly
(see Problem [L.3]). This observation is important in order to be able to choose equal times
in the commutation relations. We get

0090060 = [ @ [ @y [ Gopt . SBuetin

=(27)% 2w, 0% (k — k) (1.107)

and

[a(k),a(k)] = [a' (k),al (K)] =0 (1.108)

We then see that, except for a small difference in the normalization, a(k) e af(k) should
be interpreted as annihilation and creation operators of states with momentum k*. To
show this, we observe that

H - % / dk wi [af (K)a(k) + a(k)a (k)] (1.109)
P - % @k & [l (a(k) + a(k)af ()] (1.110)

Using these explicit forms we can then obtain

[P, al (k)] = k*a' (k) (1.111)
[P*, a(k)] = —k"a(k) (1.112)

showing that af(k) adds momentum k* and that a(k) destroys momentum k*. That the
quantization procedure has produced an infinity number of oscillators should come as no

surprise. In fact a(k),a’(k) correspond to the quantization of the normal modes of the
classical Klein-Gordon field.

By analogy with the harmonic oscillator, we are now in position of finding the eigen-
states of H. We start by defining the base state, that in quantum field theory is called
the vacuum. We have

a(k)|0), =0 ; Vg (1.113)
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Then the vacuum, that we will denote by |0), will be formally given by
0) = T 0), (1.114)

and we will assume that it is normalized, that is (0[0) = 1. If now we calculate the
vacuum energy, we find immediately the first problem with infinities in Quantum Field
Theory (QFT). In fact

(O[H|0) = % / @k i (0] [af (K)a(k) + a(k)al ()] [0)

= 3 [ (ol [atw.al )] o)

1 d3k 30 <3

= %/di”k wr3(0) = oo (1.115)

This infinity can be understood as the the (infinite) sum of the zero point energy of all
quantum oscillators. In the discrete case we would have, >, %wk = 00. This infinity can
be easily removed. We start by noticing that we only measure energies as differences with
respect to the vacuum energy, and those will be finite. We will then define the energy of
the vacuum as being zero. Technically this is done as follows. We define a new operator
P o as

PL = % / dk K [af (R)a(k) + a(k)a (k)|

_% / ks k(0] |af (kF)a(k) + a(k)a’ (k)] 0)
_ / dk kat (k)a(k) (1.116)

Now <0|P1l\l/.o.|0> = 0. The ordering of operators where the annihilation operators appear
on the right of the creation operators is called normal ordering and the usual notation is

: %(cﬁ(k)a(k) +a(k)at (k) = af (k)a(k) (1.117)

Therefore to remove the infinity of the energy and momentum corresponds to choose the
normal ordering to our operators. We will adopt this convention in the following dropping
the subscript ” N.O.” to simplify the notation. This should not appear as an ad hoc
procedure. In fact, in going from the classical theory where we have products of fields
into the quantum theory where the fields are operators, we should have a prescription for
the correct ordering of such products. We have just seen that this should be the normal
ordering.

Once we have the vacuum we can build the states by applying the the creation operators
af (k). As in the case of the harmonic oscillator, we can define the number operator,

N = /&E at(k)a(k) (1.118)
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It is easy to see that N commutes with H and therefore the eigenstates of H are also
eigenstates of N. The state with one particle of momentum k* is obtained as af(k)[0). In
fact we have

Prat(k)[0) = / & Kat (1 )a(k Yl (k) 0)
= / B K163 (k= Kal (k) |0)
= ktal(k)|0) (1.119)

and
Na'(k)|0) = a' (k) |0) (1.120)

In a similar way, the state af(k;)...af(k, ) |0) would be a state with n particles. However,
the sates that we have just defined have a problem. They are not normalizable and
therefore they can not form a basis for the Hilbert space of the quantum field theory, the
so-called Fock space. The origin of the problem is related to the use of plane waves and
states with exact momentum. This can be solved forming states that are superpositions
of plane waves

1) = A / deC(k)at (k) |0) (1.121)
Then

apy = X2 / k1 ko (k) O (k) {Ola(ka )a (k2)0)

= AZ/EIE|C(1<:)|2 =1 (1.122)

and therefore 12
A= (/% \C(k)]2> (1.123)

with the condition that [ dk |C(k)|> < oo. If k is only different from zero in a neighborhood
of a given 4-momentum k*, then the state will have a well defined momentum (within some
experimental error).

A Dbasis for the Fock space can then be constructed from the n—particle normalized
states

- . —1/2
In) = (n!/dk’l"'dkn|c(kla"'kn)|2>

dky - - dknC (k1 - kn)a (k1) - - af (k) |0) (1.124)

that satisfy
(nln) =1 (1.125)
N|n) =n|n) (1.126)



1.2. QUANTIZATION OF SCALAR FIELDS 27

Due to the commutation relations of the operators af(k) in Eq. (LI24]), the functions
C(ky -+ - ky) are symmetric, that is,

C(-kiy-kjy ) =C(kjo ki) (1.127)

This shows that the quanta that appear in the canonical quantization of real scalar fields
obey the Bose-Einstein statistics. This interpretation in terms of particles, with creation
and annihilation operators, that results from the canonical quantization, is usually called
second quantization, as opposed to the description in terms of wave functions (the first
quantization.

1.2.2 Microscopic causality

Classically, the fields can be measured with an arbitrary precision. In a relativistic quan-
tum theory we have several problems. The first, results from the fact that the fields are
now operators. This means that the observables should be connected with the matrix
elements of the operators and not with the operators. Besides this question, we can only
speak of measuring ¢ in two space-time points z and y if [p(z), p(y)] vanishes. Let us
look at the conditions needed for this to occur.

[p(2), e(y)] = /%121\]52 { [a(k‘l),aT(kg)} e hratikey [GT(kl),a(kig)} eiklr—ikz-y}
— /&%1 (e—ikl-(x—y) _ eikl-(x—y))
= Az -y) (1.128)

The function A(xz — y) is Lorentz invariant and satisfies the relations

(Op + mH)A(z —y) =0 (1.129)
Alx —y)=—-Ay —x) (1.130)
A(Z —7,0) =0 (1.131)

The last relation ensures that the equal time commutator of two fields vanishes.
Lorentz invariance implies then,

Alz—y)=0 ; Y(r—y)*<0 (1.132)
This means that for two points that can not be physically connected, that is for which
(r — y)? < 0, the fields interpreted as physical observables, can then be independently
measured. This result is known as Microscopic Causality. We note that

Az — y)|o—y = —0°(Z — 7)) (1.133)

which ensures the canonical commutation relation, Eq. ([.99]).
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1.2.3 Vacuum fluctuations

It is well known from Quantum Mechanics that, in an harmonic oscillator, the coordinate
is not well defined for the energy eigenstates, that is

(nlg®ln) > ((nlgln))* =0 (1.134)
In Quantum Field Theory, we deal with an infinite set of oscillators, and therefore we will
have the same behavior, that is,

(Op(z)p(y)|0) #0 (1.135)

although
(Ofep(z)[0) =0 (1.136)

We can calculate Eq. (LI35). We have
Op@e)0) = [ drdiae e (0fain)al (k2)0)
= /(f%le—ik'(m_y) =Ai(x—vy) (1.137)

The function A (x —y) corresponds to the positive frequency part of A(z —y). When
y — x this expression diverges quadratically,

(0l¢?(2)[0) = /dk1 / @y (1.138)

2w 32wk1

This divergence can not be eliminated in the way we did with the energy of the vacuum.
In fact these vacuum fluctuations, as they are known, do have observable consequences
like, for instance, the Lamb shift. We will be less worried with the result of Eq. (LI38]),
if we notice that for measuring the square of the operator ¢ at x we need frequencies
arbitrarily large, that is, an infinite amount of energy. Physically only averages over a
finite space-time region have meaning.

1.2.4 Charged scalar field

The description in terms of real fields does not allow the distinction between particles
and anti-particles. It applies only the those cases were the particle and anti-particle
are identical, like the 7°. For the more usual case where particles and anti-particles are
distinct, it is necessary to have some charge (electric or other) that allows us to distinguish
them. For this we need complex fields.

The theory for the scalar complex field can be easily obtained from two real scalar
fields 1 and @9 with the same mass. If we denote the complex field ¢ by,

_$ + 12

7 (1.139)

then
L= L(p1) + L(p2) = o8, — mpTp: (1.140)
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which leads to the equations of motion
@O+m?)e=0; @+m?pl =0 (1.141)

The classical theory given in Eq. (I.I40) has, at the classical level, a conserved current,
Oy J# = 0, with
oH
JH =ipld" o (1.142)

Therefore we expect, at the quantum level, the charge @
Q= /d3:17 LT — olp) (1.143)

to be conserved, that is, [H,Q] = 0. To show this we need to know the commutation
relations for the field ¢. The definition Eq. (I.I39]), and the commutation relations for ¢
and ¢, allow us to obtain the following relations for ¢ and ¢':

[o(x), o(y)] = [¢"(2), " (y)] = 0 (1.144)
[o(2), " ()] = iA(z — y) (1.145)

For equal times we can get from Eq. (I.145)
(w7, 1), (@, D] = 71 (7, 1), 0 (7,1)] = —i6% (7 — ) (1.146)

where
r=¢ ; wl=¢ (1.147)

The plane waves expansion is then
o(z) = /Zl\/; [a+(k)e_ik'$ + ai(k)eik'm}

ol () = /ZZ\IE [a_(k:)e_ik'm + al(k‘)eik'm} (1.148)
where the definition of ay (k) is

as (k) = ar (k) + ias (k) al (k) T iad (k)
. vz V2

The algebra of the operators a4 it is easily obtained from the algebra of the operators
ays. We get the following non-vanishing commutators:

al = (1.149)

[ay (), al (k)] = [a_(k), al (k)] = (27)32w3,0% (K — ) (1.150)

therefore allowing us to interpret a4 and ai as annihilation and creation operators of
quanta of type +, and similarly for the quanta of type —. We can construct the number
operators for those quanta:

Ny = /EJE ak (k)a (k) (1.151)
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One can easily verify that
N+—|—N_ :N1+N2 (1152)

where

N = / dk ol (K)as(k) (1.153)

The energy-momentum operator can be written in terms of the + and — operators,
pr— / ak K [l (B)as (k) + ol (k)a_ (k)] (1.154)

where we have already considered the normal ordering. Using the decomposition in
Eq. (LI4]])), we obtain for the charge Q:

Q = /d?’x:zw—@w):

_ / dk [l (B (k) — al (k)a_(k)
= N.—N_ (1.155)
Using the commutation relation in Eq. (ILI50]) one can easily verify that
[H,Q]=0 (1.156)

showing that the charge @ is conserved. The Eq. (ILI55]) allows us to interpret the 4+ quanta
as having charge £1. However, before introducing interactions, the theory is symmetric,

and we can not distinguish between the two types of quanta. From the commutation
relations (LI50) we obtain,

[P¥,al (k)] = K*al (k)
Q. al, (k)] = +al, (k) (1.157)

showing that al(k‘) creates a quanta with 4-momentum k* and charge +1. In a similar
.I>

way we can show that a' creates a quanta with charge —1 and that ay(k) annihilate
quanta of charge +1, respectively.

1.2.5 Time ordered product and the Feynman propagator

The operator ¢! creates a particle with charge +1 or annihilates a particle with charge —1.
In both cases it adds a total charge +1. In a similar way ¢ annihilates one unit of charge.
Let us construct a state of one particle (not normalized) with charge +1 by application of
¢! in the vacuum:

W, (Z,1)) = ¢ (7,1) |0) (1.158)

The amplitude to propagate the state |¥,) into the future to the point (#,¢') with ¢’ > ¢
is given by

Ot —t) (W, (7, )04 (T,1)) = O — 1) <oy<p(a:~”, )l (@, t)yo> (1.159)



1.2. QUANTIZATION OF SCALAR FIELDS 31

In o'(Z,t)]0) only the operator ai(kz) is active, while in (0] ¢(#,t’) the same happens to

a4+ (k). Therefore Eq. (LI59) is the matrix element that creates a quanta of charge +1 in
(#,t) and annihilates it in (Z',¢') with ¢/ > ¢.

There exists another way of increasing the charge by +1 unit in (Z,t) and decreasing
it by —1in (2,¢'). This is achieved if we create a quanta of charge —1 in Z’ at time ¢’ and
let it propagate to & where it is absorbed at time ¢ > t/. The amplitude is then,

0t — ) (U_(Z,)|_ (7)) = <0|ng(3?, (T, t’)|0> ot —t) (1.160)

Since we can not distinguish the two paths we must sum of the two amplitudes in
Eqs. (LI59) and (LI60). This is the so-called Feynman propagator. It can be written in
a more compact way if we introduce the time ordered product. Given two operators a(x)
and b(z’) we define the time ordered product T by,

Ta(z)b(z") = 0(t — ta(x)b(2") + 0(t' — t)b(z")a(x) (1.161)

In this prescription the older times are always to the right of the more recent times. It
can be applied to an arbitrary number of operators. With this definition, the Feynman
propagator reads,

Ap(a' =) = (0]Te(@)' (@)]0) (1.162)

Using the ¢ and ¢! decomposition we can calculate Ap (for free fields, of course)

Ap(a —z) = /&E [G(t’ — e F @ =T) gt — )tk () (1.163)
d4k7 i —ik- (2 —x
- / 2m)* k2 —m? + ie” o (1.164)

d4k —ik-(z'—x
= [ Gtre e

where .
i
Apk) = —F—— 1.165
w(k) k2 —m?2 +ie ( )
Ap(k) is the propagator in momenta space (Fourier transform). The equivalence be-
tween Eq. (LI64) and Eq. (II63]) is done using integration in the complex plane of the
time component k°, with the help of the residue theorem. The contour is defined by the
ie prescription, as indicated in Fig. (II)). Applying the operator (00, + m?) to Ap (2’ — )
in any of the forms of Eq. (ILIG3) one can show that

(@, +mH)Ap(z' — x) = —is*(2/ — z) (1.166)

that is, Ap(2’ — x) is the Green’s function for the Klein-Gordon equation with Feynman
boundary conditions.

In the presence of interactions, Feynman propagator looses the simple form of Eq. (I.163)).
However, as we will see, the free propagator plays a key role in perturbation theory.
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A Tm kY

Re k°

Figure 1.1: Integration in the complex k" plane.

1.3 Second quantization of the Dirac field

Let us now apply the formalism of second quantization to the Dirac field. As we will
see, something has to be changed, otherwise we would be led to a theory obeying Bose
statistics, while we know that electrons have spin 1/2 and obey Fermi statistics.

1.3.1 Canonical formalism for the Dirac field
The Lagrangian density that leads to the Dirac equation is
L = ipy"d,p — mapyp (1.167)

The conjugate momentum to v, is

_ 9L

= 0" il (1.168)

Ta o

while the conjugate momentum to ¢L vanishes. The Hamiltonian density is then
H=m— L=yl (—iad -V + Bm) (1.169)

The requirement of translational and Lorentz invariance for £ leads to the tensors TH¥
and M**. Using the obvious generalizations of Eqgs. (IL75) and (L79) we get

TH = iy 0" — g™ L (1.170)
and
MHA — Z'E,Yu(wuaA _ 20+ EV)‘)Ib _ (ngW\ _ x”g”)‘) L (1.171)
where 1
2 =20 (1.172)

The 4-momentum P* and the angular momentum tensor M** are then given by,

pro= / &>z T
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M = / d3x MO (1.173)

or

H = /dga:l/}T(—i&’ -V + Bm)y
P = / Byt (—iV)y (1.174)
If we define the angular momentum vector .J = (M, M3 M%) we get
- 1o 14
J= /d%w (Fx -V + 52) 0 (1.175)
i

which has the familiar aspect J=L+S. We can also identify a conserved current,
Oug* = 0, with j# = 1pyH1), which will give the conserved charge

Q= / Byt (1.176)

All that we have done so far is at the classical level. To apply the canonical formalism
we have to enforce commutation relations and verify the Lorentz invariance of the theory.
This will lead us into problems. To see what are the problems and how to solve them, we
will introduce the plane wave expansions,

Y(x) = /El; > [b(p, s)u(p, s)e” P + di (p, s)v(p, s)eip'x] (1.177)

o) = [do 3 [l (9)e 7 4 dp ol pos)e ] (La7s)

where u(p,s) and v(p, s) are the spinors for positive and negative energy, respectively,
introduced in the study of the Dirac equation and b,b',d and d' are operators. To see
what are the problems with the canonical quantization of fermions, let us calculate P*.
We get

pr = / i k3 [61 (k. )bk, ) — d(k, ) (k. ) (1.179)
S

where we have used the orthogonality and closure relations for the spinors u(p,s) and
v(p, s). From Eq. (I.I79) we realize that if we define the vacuum as b(k, s) |0) = d(k, s) |0) =
0 and if we quantize with commutators then particles b and particles d will contribute with
opposite signs to the energy and the theory will not have a stable ground state. In fact,
this was the problem already encountered in the study of the negative energy solutions of
the Dirac equation, and this is the reason for the negative sign in Eq. (LI79)). Dirac’s hole
theory required Fermi statistics for the electrons and we will see how spin and statistics
are related.

To discover what are the relations that b, bf,d and df should obey, we recall that at
the quantum level it is always necessary to verify Lorentz invariance. This gives,

i[Pu, ¥(x)] = 040 5 i[Py,(a)] = Ot (1.180)
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Instead of imposing canonical quantization commutators and, as a consequence, verifying
Eq. (IIR0) we will do the other way around. We start with Eq. (ILI80) and we will
discover the appropriate relations for the operators. Using the expansions Eqs. ([LI77])

and (LI78]) we can show that Eq. (IIS0) leads to
[Plh b(ka S)] = _kﬂb(k7 S) ) [P/M bT(k7 S)] = kﬂbT(ka S) (1181)
[Pan (i, )] =~y ) 3 [P, (e, )] = k(. 5) (1.182)

Using Eq. (ILI79) for P, we get

3 [(bT(p, $\b(p, s') — d(p, s')d' (p, s')) bk, s)} — —(2n)32k°83(k — pb(k,s)  (1.183)

S/

and three other similar relations. If we assume that
[d'(p, s")d(p, '), b(k, s)] = 0 (1.184)

the condition from Eq. (LI83)) reads

> [bf(p, s ){b(p,s'), bk, s)} — {b(p, s'), bk, s)}b(p,s)| =

S/

= —(27)%2k°0% (5 — K)b(k, 5) (1.185)

where the parenthesis {, } denote anti-commutators. It is easy to see that Eq. (IISE]) is
verified if we impose the canonical commutation relations. We should have

{bT(p, s),b(k,s)} = (27)>2k°6% (5 — k)b,
k)y (1.186)

{d'(p,s), d(k, s)} = (2m)*2k°6° (7 —

and all the other anti-commutators vanish. Note that as b anti-commutes with d and d',
then it commutes with d'd and therefore Eq. (LI84) is verified.

With the anti-commutator relations both contributions to P* in Eq. (II79) are posi-
tive. As in boson case we have to subtract the zero point energy. This is done, as usual,
by taking all quantities normal ordered. Therefore we have for P,

pro= /EJE Y (b*(k:,s)b(k;,s) —d(k, s)dT(k‘,s)> :

S

_ /Ei/% Y (b*(k,s)b(k,s) +df (k, s)d(E, s)) : (1.187)

S

and for the charge
Q = [da i@
_ / k> [bT(k:,s)b(k:,s) — d'(k, s)d(k, s)] (1.188)
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which means that the quanta of b type have charge +1 while those of d type have charge
—1. It is interesting to note that was the second quantization of the Dirac field that
introduced the — sign in Eq. (LI88]), making the charge operator without a definite sign,
while in Dirac theory was the probability density that was positive defined. The reverse
is true for bosons. We can easily show that

[Q,bT(k,5)] = bl(k,s)  [Q,d(k,s)] = d(k,s)
[Q,b(k,s)] = —b(k,s)  [Q,d(k,s)] = —d'(k,s)
and then

Q,¢] = —¢; [Q,¥] = (1.189)

In QED the charge is given by e@ (e < 0). Therefore we see that ¢ creates positrons and
annihilates electrons and the opposite happens with .

We can introduce the number operators

NT(p,s) =b'(p,s)b(p,s) ; N~ (p,s) =d (p,s)d(p,s) (1.190)

and we can rewrite

pro— /ZzEMZ(NWk,SHN—(k,s)) (1.191)

Q0 - /Zz% SOk, 5) — N7 (k, 5)) (1.192)

Using the anti-commutator relations in Eq. (LI86]) it is now easy to verify that the theory
is Lorentz invariant, that is (see Problem [LT)),

MM ) = (2h0” — V") + S (1.193)

1.3.2 Microscopic causality

The anti-commutation relations in Eq. (ILI8G) can be used to find the anti-commutation
relations at equal times for the fields. We get

(0o (1), 05 (7, 1)} = 6%(F — §)dap (1.194)
and
{va(@,1),0(7, 1)} = {WL(F 1), v} (7,1} = 0 (1.195)

These relations can be generalized to unequal times
[ [+ mn®],y 7 = [(pt m ], 7]

= [0z +mn°],, iA(z —y) (1.196)

where the A(z — y) function was defined in Eq. (LI28]) for the scalar field. The fact that
7% appears in Eq. (ILI986) is due to the fact that in Eq. (II96]) we took 1 and not v. In
fact, if we multiply on the right by 7° we get

{Ya(@),95(y)} = (ifz +m)apid(z — y) (1.197)

{tha(2), ¥} (1)}
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and B B

{va(2), ¥3(y)} = {Pal2), ¥5(y)} = 0 (1.198)
We can easily verify the covariance of Eq. (LI9T). We use

U(a, b)e(x)U " (a,b) = S™ (a)¢(az +b)

Ula,b)yp(z)U Y (a,b) = ¥(ax + b)S(a)

STIyHS = at,y” (1.199)

to get

U(a, b){ta (@), ¥s(y)}U " (a,b) =
= Sar (a){vr(azx +0),¥5(ay +b)}Sxs(a)
= 507 (@) (idlaz +m)rril(az — ay)Ss(a)
= (i@ + m)apiA(x —y) (1.200)

where we have used the invariance of A(xz — y) and the result S~'i@d.,S = i@,. For
(r — y)? < 0 the anti-commutators vanish, because A(x — y) also vanishes. This result
allows us to show that any two observables built as bilinear products of 1 e ¢ commute
for two spacetime points for which (x — y)? < 0. Therefore

[Ea($)¢5(x)va)\(y)¢7(y)] =
= Ea($){¢ﬁ (x)aax(y)}ﬂh (y) - {Ea(x)vak(y)}qﬁﬁ ($)7;[)T(y)
+x ()o@ {s(2), r ()} — rW){Wr (y), Yo (@) }ebs(2)
=0 (1.201)
for (x —y)? < 0. In this way the microscopic causality is satisfied for the physical observ-
ables, such as the charge density or the momentum density.
1.3.3 Feynman propagator

For the Dirac field, as in the case of the charged scalar field, there are two ways of increasing
the charge by one unit in 2’ and decrease it by one unit in z (note that the electron has
negative charge). These ways are

o' — ) (Ol (2)]0) (1.202)
0(t — t') (Olh, () (a")]0) (1.203)

In Eq. (L202)) an electron of positive energy is created at Z in the instant ¢, propagates
until Z where is annihilated at time ¢ > ¢t. In Eq. (L203)) a positron of positive energy
is created in 2z’ and annihilated at x with ¢ > /. The Feynman propagator is obtained
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summing the two amplitudes. Due the exchange of 13 and 1, there must be a minus sign
between these two amplitudes. Multiplying by 4, in order to get v instead of 1, we get
for the Feynman propagator,

Se(@’ ~ )as = O — 1) (Ol T5(x)]0)
—0(t —t') (O[g(2)1a(2)]0)
= (0|T¢u(z")g(x)|0) (1.204)
where we have defined the time ordered product for fermion fields,
Tn(x)x(y) = 0(” — y")n(a)x(y) — 0(y° — 2°)x(y)n(z) - (1.205)

Inserting in Eq. (L204) the expansions for ¢ and ) we get,

5r ~ 2)ag= [ B [+ mlagbll — D) 4 (ot m)aab( )l ]

:/ d*k Z(% + m)aﬁ e—ik-(m’—w)
(2m)* k2 — m?2 +ie

d4k —ik-(z'—x)

where Sp(k) is the Feynman propagator in momenta space. We can also verify that
Feynman’s propagator is the Green function for the Dirac equation, that is (see Problem

ini)
(i) = M)y Sp(a’ — ¥)ag = 833" (& — ) (1.207)

1.4 Electromagnetic field quantization

1.4.1 Introduction

The free electromagnetic field is described by the classical Lagrangian,
1 v
£=—1FuF (1.208)

where

F, = 0,4, —0,A, (1.209)
The free field Maxwell equations are
OuFP =0 (1.210)
that corresponds to the usual equations in 3-vector notation,

V-E=0 ; ﬁxézég—f (1.211)
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The other Maxwell equations are a consequence of Eq. (I.209]) and can written as,

- - 1
0 FP =0 ; FY¥= 5gaﬁﬂ”FW (1.212)
corresponding to
. . . 0B

Classically, the quantities with physical significance are the fields E e g, and the
potentials A* are auxiliary quantities that are not unique due to the gauge invariance of
the theory. In quantum theory the potentials A, are the ones playing the leading role
as, for instance in the minimal prescription. We have therefore to formulate the quantum
fields theory in terms of A* and not of E and B.

When we try to apply the canonical quantization to the potentials A* we immediately
run into difficulties. For instance, if we define the conjugate momentum as,

oo 95 (1.214)
a(Au)
we get
wo_ooL . 0AY
T = — = —A" —
o o= 9L (1.215)
dAo

Therefore the conjugate momentum to the coordinate A° vanishes and does not allow
us to use directly the canonical formalism. The problem has its origin in the fact that the
photon, that we want to describe, has only two degrees of freedom (positive or negative
helicity) but we are using a field A* with four degrees of freedom. In fact, we have to
impose constraints on A* in such a way that it describes the photon. This problem can
be addressed in three different ways:

i) Radiation Gauge

Historically, this was the first method to be used. It is based in the fact that it is
always possible to choose a gauge, called the radiation gauge, where

A'=0 ; V-A=0 (1.216)

that is, the potential A is transverse. The conditions in Eq. (L2I6]) reduce the num-
ber of degrees of freedom to two, the transverse components of A. Tt is then possible
to apply the canonical formalism to these transverse components and quantize the
electromagnetic field in this way. The problem with this method is that we loose
explicit Lorentz covariance. It is then necessary to show that this is recovered in the

final result. This method is followed in many text books, for instance in Bjorken
and Drell [3].
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ii) Quantization of systems with constraints

It can be shown that the electromagnetism is an example of an Hamilton generalized
system, that is a system where there are constraints among the variables. The way
to quantize these systems was developed by Dirac for systems of particles with n
degrees of freedom. The generalization to quantum field theories is done using the
formalism of path integrals. We will study this method in Chapter 6, where it will
be shown, this is the only method that can be applied to non-abelian gauge theories,
like the Standard Model.

ili) Undefined metric formalism

There is another method that works for the electromagnetism, called the formalism
of the undefined metric, developed by Gupta and Bleuler [4, 5]. In this formalism,
that we will study below, Lorentz covariance is kept, that is we will always work
with the 4-vector A, but the price to pay is the appearance of states with negative
norm. We have then to define the Hilbert space of the physical states as a sub-space
where the norm is positive. We see that in all cases, in order to maintain the explicit
Lorentz covariance, we have to complicate the formalism. We will follow the book
of Silvan Schweber [6].

1.4.2 Undefined metric formalism

To solve the difficulty of the vanishing of 7", we will start by modifying the Maxwell
Lagrangian introducing a new term,

1
—~F, F" — —(9- A)? (1.217)

1
L= 4 26

where £ is a dimensionless parameter. The equations of motion are now,

DA+ — <1 - %) (- A) =0 (1.218)
and the conjugate momenta
oL 1
p— 22 pHO _ Z 0. A 1.219
™ =5, e (0-4) (1.219)

that is 0 .

k= EF

We remark that the Lagrangian of Eq. (I.22I6]) and the equations of motion, Eq. (L218]),
reduce to Maxwell theory in the gauge 0 - A = 0. This why we say that the choice of
Eq. (I.216)) corresponds to a class of Lorenz gauges with parameter . With this abuse of
language (in fact we are not setting 9 - A = 0, otherwise the problems would come back)
the value of £ = 1 is known as the Feynman gauge and & = 0 as the Landau gauge.

From Eq. (L2I8) we get
0(d - A) =0 (1.220)
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implying that (0 - A) is a massless scalar field. Although it would be possible to continue
with a general £, from now on we will take the case of the so-called Feynman gauge, where
& = 1. Then the equation of motion coincide with the Maxwell theory in the Lorenz gauge.
As we do not have anymore 7 = 0, we can impose the canonical commutation relations
at equal times:

(2, 1), Au(F,1)] = —~ig", 6°(F — §)
[Au(fv t)a Au(gv t)] = [WM(La t)a Wu(gv t)] =0 (1221)

Knowing that [A,(%,t),Au(¥,t)] = 0 at equal times, we can conclude that the space
derivatives of A, also commute at equal times. Then, noticing that

7 = — A" + space derivatives (1.222)
we can write instead of Eq. (221
[Au(@,1), A (7,1)] = [Au(Z, 1), Au(7,)] = 0
(A (), A (,6)] = 19,0 (& — §) (1.223)

If we compare these relations with the corresponding ones for the real scalar field, where
the only one non-vanishing is,

[p(Z, 1), (7. 1)] = —id* (T — 7)) (1.224)

we see (g,,, = diag(+, —, —, —) that the relations for space components are equal but they
differ for the time component. This sign will be the source of the difficulties previously
mentioned.

If, for the moment, we do not worry about this sign, we expand A, (x) in plane waves,

3
/ 3 [ (ky Neb (k, e + af (k, \)e (k, el m] (1.225)
=0

where €#(k, \) are a set of four independent 4-vectors that we assume to real, without loss
of generality. We will now make a choice for these 4-vectors. We choose €#(1) and ¢#(2)
orthogonal to k* and n*, such that

E‘u(k},)\)&“u(k},)\/) = —5)\>\/ for )\,)\/ = 1,2 (1.226)
After, we choose ¢#(k,3) in the plane (k*,n*) orthogonal to n* and normalized, that is
et(k,3)n, =0 ; e"(k,3)eu(k,3) =—1 (1.227)

Finally we choose e (k,0) = n*. The vectors e (k,1) and e"(k,2) are called transverse
polarizations, while e#(k,3) and &*(k,0) longitudinal and scalar polarizations, respec-
tively. We can give an example. In the frame where n* = (1,0,0,0) and k is along the z
axis we have

e#(k,0) = (1,0,0,0) ; £*(k,1) = (0,1,0,0)
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e*(k,2) =(0,0,1,0) ; ¢*(k,3) =(0,0,0,1) (1.228)
In general we can show that
ek, \) - e* (b, N) = g™

Zg”‘s“(kz, Ne™ (k,\) = g' (1.229)
A

Inserting the expansion ([.220)) in (T.223]) we get consistency only if
[a(k, ), af (K, \)] = =g 2k0(27)2 8 (k — ') (1.230)

showing, once more, that the quanta associated with A = 0 has a commutation relation
with the wrong sign. Before addressing this problem, we can verify that the generalization
of Eq. (I.223)) for arbitrary times is

[AM(‘T)7AV(y)] = —igu,,A(x,y) (1.231)

showing the covariance of the theory. The function A(z — y) is the same that was intro-
duced before for scalar fields.

Therefore, up to this point, everything is as if we had 4 scalar fields. There is, however,
the problem of the sign difference in one of the commutators. Let us now see what are
the consequences of this sign. For that we introduce the vacuum state defined by

a(k,A)[0)=0 A=0,1,2,3 (1.232)

To see the problem with the sign we construct the one-particle state with scalar polariza-
tion, that is

m:/%fwammm (1.233)

and calculate its norm

{1

[ s ()£ k2) (0lain, 0)al (2, 0)0)

~ —(0)0) / ak | (k)P (1.234)

where we have used Eq. (L230) for A = 0. The state |1) has a negative norm. The
same calculation for the other polarization would give well behaved positive norms. We
therefore conclude that the Fock space of the theory has indefinite metric. What happens
then to the probabilistic interpretation of quantum mechanics?

To solve this problem we note that we are not working anymore with the classical
Maxwell theory because we modified the Lagrangian. What we would like to do is to
impose the condition J - A = 0, but that is impossible as an equation for operators, as
that would bring us back to the initial problems with 7% = 0. We can, however, require
that condition on a weaker form, as a condition only to be verified by the physical states.
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More specifically, we require that the part of - A that contains the annihilation operator
(positive frequencies) annihilates the physical states,

+ _
OMA/S )y =0 (1.235)
The states |1)) can be written in the form

V) = |¥r) |9) (1.236)

where |t¢7) is obtained from the vacuum with creation operators with transverse polar-
ization and |¢) with scalar and longitudinal polarization. This decomposition depends,
of course, on the choice of polarization vectors. To understand the consequences of
Eq. (I235)) is enough to analyze the states |¢) as E?“A,(f) contains only scalar and longi-
tudinal polarizations,

i0- A = /EJE e TN " a(k,A) e(k,A) -k (1.237)
A=0,3

and therefore Eq. (L.235)) becomes

> k-e(k, ) a(k,\)|¢) =0 (1.238)

A=0,3

Condition (IT.238)) does not determine completely |¢). In fact, there is much arbitrari-
ness in the choice of the transverse polarization vectors, to which we can always add a
term proportional to k* because k - k = 0. This arbitrariness must reflect itself on the
choice of |¢). Condition (I:238]) is equivalent to,

[a(k,0) —a(k,3)]|¢) =0 . (1.239)

We can construct |¢) as a linear combination of states |¢,,) with n scalar or longitudinal
photons:

|9) = Colgo) + C1|p1) + -+ Cp |pn) + -

[¢0) = [0) (1.240)

The states |¢,,) are eigenstates of the operator number for scalar or longitudinal pho-
tons,

N'|¢n) = nldn) (1.241)
where
N = / dk [a (k. 3)a(k,3) — ' (k. 0)a(k, 0)] (1.242)
Then
1 (nldn) = (¢nlN'|¢n) =0 (1.243)

where we have used Eq. (.239). This means that

(&nlén) = bno (1.244)
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that is, for n # 0, the state |¢,) has zero norm. We have then for the general state |¢),
(¢l¢) =Col* = 0 (1.245)

and the coefficients C;,i = 1,---n--- are arbitrary. We have to show that this arbitrariness
does not affect the physical observables. The Hamiltonian is

H = /dga::ﬂ”Au—ﬁz
1 3
_ 3. . A2 FTAN2| A2 (& 2.
= 5/daz.ig_l [Ai—l—(VAZ) Af— (VA :

3
- /% K0 [Z al(k, Na(k,\) — aT(k,O)a(k,O)] (1.246)

A=1

It is easy to check that if |¢) is a physical state we have

witpg)  (Orl ] dk R 3 af (B Nalk Mlr ) .
() (Yr[vr) '
and the arbitrariness on the physical states completely disappears when we take average
values. Besides that, only the physical transverse polarizations contribute to the result.
One can show (see Problem [[LI0) that the arbitrariness in |¢) is related with a gauge
transformation within the class of Lorenz gauges.

It is important to note that although for the average values of the physical observables
only the transverse polarizations contribute, the scalar and longitudinal polarizations are
necessary for the consistency of the theory. In particular they show up when we consider
complete sums over the intermediate states.

Invariance for translations is readily verified. For that we write,

3
pr = / a1 S (=)l (b, Aa(k, A (1.248)
A=0
Then
iPr,AY] = / i dk ik 30 (~g™) { [af (k. Nalk, 2), alk', N)| 2 (], N)e 0
AN

- [af(x,A)a(k‘,/\),aT(k’,)\’)] 6*"(1{:’,>\’)eik"~’c}

= /El\l; ikH Z [a(k‘, Ne (k, )\)e—ik-x _ aT(/ﬁ, Ne (k, )\)eik-m}
A

= gAY (1.249)

showing the invariance under translations. In a similar way, it can be shown the invariance
for Lorentz transformations (see Problem [[.T1]). For that we have to show that

Mk = /d3:17 : [:L'jTOk — 2P0  FIAF — EkAj] : (1.250)
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MOi — /d3$ . [IIJ‘OTOi _ IIJ‘iTOO _ (a . A)Az _ EZAO} . (1251)
where (£ = 1)
T = —(8-A)9"A° — EFolAF
3 . — . —
T = 32+ (V42| - 43 - (VAP (1.252)
=1

Using these expressions one can show that the photon has helicity 41, corresponding
therefore to spin one. For that we start by choosing the direction of k along the axis 3
(z axis) and take the polarization vector with the choice of Eq. (I228]). A one-photon
physical state will then be (not normalized),

ke, A) =al(k,A\)]0)  A=1,2 (1.253)
Let us now calculate the angular momentum along the axis 3. This is given by
M2 kA = M2a(k,))|0)
= [M™,d"(k,N)]]0) (1.254)

where we have used the fact that the vacuum state satisfies M'2|0) = 0. The operator M2
has one part corresponding the orbital angular momenta and another corresponding to the
spin. The contribution of the orbital angular momenta vanishes (angular momenta in the
direction of motion) as one can see calculating the commutator. In fact the commutator
with the orbital angular momenta is proportional to k! or k2, which are zero by hypothesis.
Let us then calculate the spin part. Using the notation,

AP = AMH) 4 An() (1.255)
where AM()(A#)) correspond to the positive (negative) frequencies, we get
CBUAT AL i L) A2 4 L) 4200 4 4200 gL 4 B1O) 4200 (1 65 ) (1.256)
Then
[: E'A? — E?A': af(k, )\)] =
= B0 [42(+),al (b, 0)] + [B'G),al (k, 1)] 42
FEY(-) [A2(+),cﬁ(k, A)} + A2 [E1<+>,cﬁ(k;, A)} —(142)
— E! [A2(+),aT(/<;, A)] + A2 [E1<+>,aT(k,A)} (12 (1.257)

Now (recall that A = 1,2)

[A265) T (e, )] = / 0 Y22 ) [alk, N af (k)] e
~
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=% (k, N)e *?
(Y ot (k, V)] = / dk 3" (KOO K, N) + ik (R X)) [a(k/, XY, al (k, A)] e~ik'@
)\l
=ikOe! (k, \)eF® (1.258)
Therefore
/ & [: B'A? — E?A' ol (k, A)]
_ / Bre 7 [B1e2(k, \) + A2k (k, ) — B2 (k, ) + AVikO<2(k, \)]
- / Bre—ite [El(k‘, N8 A% (x) — 2 (k, A)?OAl(g;)] (1.259)

where we have used the fact that F* = —A', i = 1,2, for our choice of frame and
polarization vectors. On the other hand

a(k, \) = —i / Bae® T (kA (2)

al(k,\) = i/dga:e_ik'x 30 el (k, M)A () (1.260)
For our choice we get
al(k,1) = —i/dga:e_ik'x 30 Al(z)
al(k,2) = —i/d?’a:e_ik'm 30 A?(z) (1.261)
and therefore
(M2, aT(k,\)] = iel (k, Nal (k,2) —ic?(k, N)a' (k, 1) (1.262)

We find that the state af(k,A)|0),\ = 1,2 is not an eigenstate of the operator M12.
However the linear combinations,

[af(k, 1) + ial (&, 2)}

- g\,ﬂ
[\

S
~—t
—~

Sy
~—

I

= [aT(k‘, 1) — ial (k, 2)} (1.263)

which correspond to right and left circular polarization, verify
(M2, aly(k)] = aly(k) 5 [M'2,a], (k)] = —a] (k) (1.264)

showing that the photon has spin 1 with right or left circular polarization (negative or
positive helicity).
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1.4.3 Feynman propagator

The Feynman propagator is defined as the vacuum expectation value of the time ordered
product of the fields, that is

Gu(z,y) = (0[TAu(x)A,(y)|0)

= 0(2° — ) (014, (2) A, ()|0) + 65" — 2°) (0] A, () Au(2)[0)  (1.265)

Inserting the expansions for A,(z) and A,(y) we get
Gu(r—y) = —Gu / dk [e_ik'(m_y)O(xo — 0+ ei’f'(m—y)(’(yo—wo)]

dik i k(e
_‘”W/@mwhmf

d'k ik (a—y)

where G, (k) is the Feynman propagator on the momentum space

_ig v
Gyu(k) = 12 —|—HZ'€ (1267)

It is easy to verify that G, (x —y) is the Green’s function of the equation of motion, that
for £ =1 is the wave equation, that is

0p Gl (x — y) = g0 (x — y) (1.268)

These expressions for G, (x—y) and G, (k) correspond to the particular case of £ = 1,
the so-called Feynman gauge. For the general case where £ # 0 the equation of motion
reads

[ngg«— (1-_-%> aue¢}14p¢p)::o (1.269)

For this case the equal times commutation relations are more complicated (see Problem
[L12]). Using those relations one can show that the Feynman propagator is still the Green’s
function of the equation of motion, that is

[ngﬁf - <1 - %) 8“8,)] (0|]T AP (z) A" (y)|0) = ig"” 6% (x — y) (1.270)

Using this equation we can then obtain in an arbitrary £ gauge (of the Lorenz type),

Kk
(k2 4 1e)2

Gu(k) = —i—2 4 i(1—¢) (1.271)

k2 4 ie
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1.5 Discrete Symmetries

We know from the study of the Dirac equation the transformations like space inversion
(Parity) and charge conjugation, are symmetries of the Dirac equation. More precisely, if
() is a solution of the Dirac equation, then

W () = (=&, 1) = 700 (%, 1) (1.272)
V(@) = C' (x) (1.273)

are also solutions (if we take the charge —e for ¢¢). Similar operations could also be
defined for scalar and vector fields.

With second quantization the fields are no longer functions, they become operators. We
have therefore to find unitary operators P and C that describe those operations within this
formalism. There is another discrete symmetry, time reversal, that in second quantization
will be described by an anti-unitary operator 7. We will exemplify with the scalar field
how to get these operators. We will leave the Dirac and Maxwell fields as exercises.

1.5.1 Parity

To define the meaning of the Parity operation we have to put the system in interaction
with the measuring system, considered to be classical. This means that we will consider
the system described by

L— L—ju(x)AL,(z) (1.274)

where we have considered that the interaction is electromagnetic. j,(x) is the electromag-
netic current that has the form,

. . H

Ju(x) =ie: ¢ 0 up: scalar field

ju(®) = e ¢yap ¢ Dirac field (1.275)

In a Parity transformation we invert the coordinates of the measuring system, therefore
the classical fields are now

Al = (AL (—,1)), — At (—T, t) = AL (—2, 1) (1.276)

ext — ext

For the dynamics of the new system to be identical to that of the original system, which
should be the case if Parity is conserved, it is necessary that the equations of motion
remain the same. This is true if

PL(F )P~ = L(—T,t) (1.277)
Piju(&, t)P~ = jH(—F,1) (1.278)
Egs. (I277) and (L278]) are the conditions that a theory should obey in order to be
invariant under Parity. Furthermore P should leave the commutation relations unchanged,

so that the quantum dynamics is preserved. For each theory that conserves Parity should
be possible to find an unitary operator P that satisfies these conditions.
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Now we will find such an operator P for the scalar field. It is easy to verify that the
condition

Po(Z, ) P! = £p(—7, t) (1.279)

satisfies all the requirements. The sign + is the intrinsic parity of the particle described
by the field ¢, (+ for scalar and — for pseudo-scalar). In terms of the expansion of the
momentum, Eq. (L279)) requires

Pa(k)P~! = +a(—k) ; Pa'(k)P~! = +al(—k) (1.280)

where —k means that we have changed k into —k (but kY remains intact, that is, k* =

+1/]k|2 +m2). Tt is easier to solve Eq. (I280) in the momentum space. As P should be

unitary, we write ‘
P =l (1.281)

Then
73a(/’<:)73_1 = a(k)+ilPak)]+--+—=[P] -, [Palk)]-- ]+
= —a(—k) (1.282)

where we have chosen the case of the pseudo-scalar field.
Eq. (I.282) suggests the form

[P, a(k)] =

%[a(k;) +ea(—k)] (1.283)

where A and € = £1 are to be determined. We get

2
[P, [P, a(k)]] = %[a(k‘) + ea(—k)] (1.284)
and therefore
Pa(k)P™t = a(k)+ % X+ (Z;\!)z +- % + - | (a(k) + ea(—k))

= —a(—k) (1.285)

We solve Eq. (L283)) if we choose A = 7 and ¢ = +1 (A = 7 and ¢ = —1 for the scalar
case). It is easy to check that

T [~
Pos =3 / dk [aT (k)a(k) + af (k;)a(—k)} — P}, (1.286)
and it is solution of Eq. (L283]) for A = 7 and € = +1. Therefore,

Pps = €xp {—zg / dk [aT(k‘)a(k‘) + af(k)a(—k;)]} (1.287)
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and for the scalar field
Py = exp {—zg / dk [aT(k‘)a(k‘) - af(k)a(—k)]} (1.288)

For the case of the Dirac field, the condition equivalent to Eq. (L279)) is now
P, )P~ = 2" (—F, 1) (1.289)

Repeating the same steps we get
LT -
PDirac = exp{—@g/dp > [bT(p, $)b(p, s) — b' (p, $)b(—p, )

+d'(p,s)d(p, s) +d' (p, s)d(—p, s)} } (1.290)

The case of the Maxwell field is left as an exercise.

1.5.2 Charge conjugation

The conditions for charge conjugation invariance are now
CLx)C =L ; Cj.Ct=—j, (1.291)

where j, is the electromagnetic current. Conditions (.291]) are verified for the charged
scalar fields if
Co(x)C™H =" (x) 5 Co*(x)C7 = () (1.292)

and for the Dirac field if
Cipo(2)C™" = Cup Ys(x)
Cto(x)C™ = —¢hp(2)C (1.293)

where C is the charge conjugation matrix.

Finally from the invariance of j, A" we obtain the condition for the electromagnetic
field,

CAC =-A, (1.294)

By using a method similar to the one used in the case of the Parity we can get the
operator C for the different theories. For instance, for the scalar field we get

Cs = exp {zg /;Z\lg (aT|r —a')(ag — a_)} (1.295)

and for the Dirac field
C =(C1Cy (1.296)
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with
G = e {—z' [dv Y 0tw5) 10 5)000.5) ~ ' (0, s>]}
C2 = ¢eXp {Zg /% Z [bT(p7 S) - dT(pv S):| [b(pv 8) - d(p7 S)]} (1297)
with
o(p,s) = PV ul(p,s)
u(p,s) = €9P) e(p, s) (1.298)

where the phase ¢(p, s) is arbitrary (see [7]).

1.5.3 Time reversal

Classically the meaning of the time reversal invariance it is clear. We change the sign of
the time, the velocities change direction and the system goes from what was the final state
to the initial state. This exchange between the initial and final state has as consequence, in
quantum mechanics, that the corresponding operator must be anti-linear or anti-unitary.
In fact (f|i) = (i|f)" and therefore if we want (T | T;) = (pi|¢s) then T must include
the complex conjugation operation. We can write

T=UK (1.299)

where U is unitary and K is the instruction to tale the complex conjugate of all c-numbers.
Then

(Tef|Tei) = UKppUK i)
= (UpslUpi)"
= (prlei)” = (piles) (1.300)
as we wanted. A theory will be invariant under time reversal if
TLE )T ! = L(F, 1)
T & )T = j*(Z,—t) (1.301)
For the scalar field this condition will be verified if
To(@, )T = +p(Z, —t) (1.302)
and for the electromagnetic field we must have.

TAME )T = A&, —t) (1.303)
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making j#A, invariant. For the case of the Dirac field the transformation is
Toa ()T ' = Tophp(Z, —t) (1.304)
In order that Eq. (IL301)) is satisfied, the 7" matrix must satisfy
Ty T™' =L = (1.305)
with a solution, in the Dirac representation,
T =iyly3 (1.306)

Applying the same type of reasoning already used for P and C we can find 7T, or
equivalently, . For the Dirac field, noticing that

Tu(p,s) = u*(—p,—s)em+(p’s)

Tv(p, s)

v*(—p, —s)e' @ (Ps) (1.307)

we can write U = UiUs and obtain

Uy = exp {—Z/ZZVp Z [ourbT(p, $)b(p, s) — a—_d' (p, s)d(p, S)] } (1.308)

and

Uy = exp {—zg /35 > [bT(p, $)b(p, s) +b' (p, )b(—p — s)
—d'(p,s)d(p, s) — d'(p, s)d(—p, —S)] } (1.309)

1.5.4 The TCP theorem

It is a fundamental theorem in Quantum Field Theory that the product 7CP is an invari-
ance of any theory that satisfies the following general conditions:

e The theory is local and covariant for Lorentz transformations.

e The theory is quantized using the usual relation between spin and statistics, that is,
commutators for bosons and anti-commutators for fermions.

This theorem due to Liidus, Zumino, Pauli e Schwinger has an important consequence
that if one of the discrete symmetries is not preserved then another one must also be
violated to preserve the invariance of the product. For a proof of the theorem see the
books of Bjorken and Drell[3] 1] and Itzykson and Zuber[2].
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Problems for Chapter 1

1.1 Verify, for the scalar field, the covariant relations for translations and Lorentz trans-
formations,

iPr el = 0"
i[MH @] = (xHd” — 20" (1.310)

Hints:

e Consider the theory already normal ordered. Then use

Pt = /% ktal (k)a(k) (1.311)
Eq. (LI03) and Eq. (II07).
e Show that
MY :—i/% a'(k) | k° 0 i 0 a(k) (1.312)
ok* Ok
M = _Z'/ZzE a' (k) Wl 0 a(k) (1.313)
OkJ Okt

and then use again Eq. (LI03) and Eq. (LI07]).

1.2 Show that
A — y)|0=yo = —03(Z — ) (1.314)

1.3 Show that

(2m)4 k2 —m?2 +ic N

- / dk [e(a;o — e * @Y 4 g(y0 — xO)ei’f'W—y)] (1.315)

d3k

where dk = W'
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Hint: Integrate in the complex plane of the variable dk° and use the prescription ie to
define the contours.

1.4 Show that

{ta(@,1), 57, 1)} = das0® (F — 1) (1.316)
Hint: You have to use the anti-commutation relations in Eq. (ILI86]) and the completion
properties of the sum over spins for the u and v spinors [§].

1.5 Show that for the Dirac theory the requirements of Lorentz invariance are satisfied,

M (o)) = (20— a¥O)g £ D s =St (L)

Hint: Use the method of Problem [I1] for the orbital part.
1.6 Show that

Se(x—y)as = 0z —1°) (Oltba(z)P4(y)]0)

—0(y° — 2°) (0[5 (y)a ()|0) (1.318)
corresponds to
d4 J e} —ip-(z—

Hint: Expand ¢, e Eﬁ in plane waves.

1.7 Show that
(i — M)apSE(T = Y)sy = i0ard" (& — y) (1.320)

1.8 Show that is is always possible to choose the electromagnetic potential A* such that

A'=0,V-A=0 (Radiation gauge) (1.321)

1.9 Show that we have
[Au(2), Av(y)] = —igu Az — y) (1.322)

1.10 Consider the indefinite metric formalism for the electromagnetic field.

a) Consider the expectation value of A, in the state |¢). Show that

GlAe) = CiCy / dk e~ (0] [eu(k, B)a(k, 3) + ek, 0)a(k, 0)] [61)
+h.c. (1.323)

b) Choose the state |¢1) in the form

1) = / dk £(k) [al(h,3) — al(k,0)] [0} (1.324)
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Show that

@A) = [ [ulk.3) + 2,0 0] (GO fR) +ce)  (1325)
c) Choose e (k, \) to be real. Show that

kM

et(k,3) 4+ €(k,0) = R (1.326)
d) Show that
($lAul @) = OuA(z) (1.327)
where
OA =0 (1.328)

Comment the result.

1.11 Show the covariance of the electromagnetism for the Lorentz transformations,

MM AN = (210" — 2 OM) AN + S L AT (1.329)

where
SHAT g,u)\gVU _ gﬂog)‘l’ (1330)

1.12 Show that for the general case of £ # 1 we have

[Au(fv t)v AV(ZI’ t)] =0
[Au(fa t), Au(@ t)] = i [1 - (1 - S)QMO] 53(5? — )
[Ai(,1), 4;(F.t)] = [Ao(@,t), Ao (,1)] = 0

[Ao (7, 1), Ai(7,1)] = i(1 — )0;0°(F — ) (1.331)

1.13 Use the results of Problem [LI2]to show that, in the general gauge with £ # 1 we
have

|:Dmg”p _ (1 - %) auap] (01T A?(2) A¥ (3)[0) = ig" 5 (& — ) (1.332)
(o (1- 1) or0) a0 0 s

1.14 Find the operator P for the Dirac and Maxwell fields.
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1.15 Find the operator C for the Dirac and Maxwell fields.

1.16 Show that
Ta(@, )T = Togbs(T, —t) (1.334)

ensures that

TLE )T = L7, —t) (1.335)
if there is a matrix T such that T’yMT_1 = ~v**. Find T in the Dirac representation.
1.17 Find the operator 7 for the Dirac and Maxwell fields.

1.18 Consider the Lagrangian

L = ¢iy* D, Pryp — mipyp (1.336)

where

a

D, = 0.+ z‘Az%

1—
P = 275 (1.337)

Show that the theory is neither invariant under P nor under C but it is invariant for the
product CP.
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Chapter 2

Physical States. S Matrix. LSZ
Reduction.

2.1 Physical states

In the previous chapter we saw, for the case of free fields, how to construct the space of
states, the so-called Fock space of the theory. When we consider the real physical case,
with interactions, we are no longer able to solve the problem exactly. For instance, the
interaction between electrons and photons is given by a set of nonlinear coupled equations,

(i —m)Y = eA
OuFM = e’y (2.1)

that do not have an exact solution. In practice we have to resort to approximation meth-
ods. In the following chapter we will learn how to develop a covariant perturbation theory.
Here we are going just to study the general properties of the theory.

Let us start by the physical states. As we do not know how to solve the problem exactly,
we can not prove the assumptions we are going to make about these states. However, these
are reasonable assumptions, based essentially on Lorentz covariance. We choose our states
to be eigenstates of energy and momentum, and of all the other observables that commute
with P*. Besides that, we will also assume that

i) The eigenvalues of p? are non-negative and p® > 0.

ii) There exists one non-degenerate base state, with the minimum of energy, which is
Lorentz invariant. This state is called the vacuum state |0) and by convention

p|0) =0 (2.2)
iii) There exist one particle states ‘ p(i)>, such that,

o7
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for each stable particle with mass m;.

iv) The vacuum and the one-particle states constitute the discrete spectrum of p”.

2.2 In states

As we are mainly interested in scattering problems, we should construct states that have
a simple interpretation in the limit £ — —oo. At that time, the particles that are going
to participate in the scattering process have not interacted yet (we assume that the in-
teractions are adiabatically switched off when |t| — oo which is appropriate for scattering
problems).

We look for operators that create one particle states with the physical mass. To be
explicit, we start by an hermitian scalar field given by the Lagrangian

L= %8“4,0(%@ - %m2cp2 —V(x) (2.4)

where V(z) is an operator made of more than two interacting fields ¢ at point z. For
instance, those interactions can be self-interactions of the type

A 4

V(z) = ;97 (2) (2.5)
The field ¢ satisfies the following equation of motion
ov
O+ m?)e(x) = — =j(x 2.6
( Jolw) = —5 ) j(x) (2.6)

and the equal time canonical commutation relations,
[p(Z, t)p(¥,1)] = [7(Z,t)7 (¥, t)] = 0
[7(Z,1), (4, )] = =i6° (T — ) (2.7)

where
m(z) = p(x) (2:8)
if we assume that V(z) has no derivatives. We designate by ¢;,(z) the operator that

creates one-particle states. It will be a functional of the fields ¢(x). Its existence will be
shown by explicit construction. We require that ¢;, () must satisfy the conditions:

i) @in(z) and p(z) transform in the same way for translations and Lorentz transforma-
tions. For translations we have then

I[P, pin(x)] = 0" pin(x) (2.9)

ii) The spacetime evolution of y;,(z) corresponds to that of a free particle of mass m,
that is

(O +m?*)@in(z) =0 (2.10)
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From these definitions it follows that o;,(z) creates one-particle states from the vac-
uum. In fact, let us consider a state |n), such that,

P {n) = plt [n) (2.11)
Then

0" (nloin(2)[0) =i (n|[P", pin()] |0)

= ipy, (nlein()|0) (2.12)
and therefore
0 (nlpin(2)[0) = —p}; (n|@in(2)|0) (2.13)
Then
(O + m?) (n|gin(2)|0) = (m* = py) (n]pin(2)|0) = 0 (2.14)

where we have used the fact that g, (x) is a free field, Eq (I?:IIII) Therefore the states
created from the vacuum by ¢;, are those for which p2 = m?, that is, the one-particle
states of mass m.

The Fourier decomposition of ¢;,(x) is then the same as for free fields, that is,
pinla / ks [ain (k)™ + af, (ke (2.15)

where a; (k) and alTn(k‘) satisfy the usual algebra for creation and annihilation operators.
In particular, by repeated use of ajn(k:) we can create one state of n particles.

To express @i, (z) in terms of ¢(x) we start by introducing the retarded Green’s func-
tion of the Klein-Gordon operator,

(Op + M) Aot (z — y;m) = 64z — y) (2.16)

where

Apet(x —y;m) =0 if ¥ <y (2.17)

We can then write

VZpin(a) = / YA er( — i m)i(y) (2.18)

The field @i, (), defined by Eq. ([215]), satisfies the two initial conditions. The constant
V/Z was introduced to normalize ¢;, in such a way that it has amplitude 1 to create
one-particle states from the vacuum. The fact that A,.; = 0 for xg — —o0o, suggests that
VZpin(x) is, in some way, the limit of ¢(x) when zy — —oco. In fact, as ¢ and g;, are
operators, the correct asymptotic condition must be set on the matrix elements of the
operators. Let |a) and |8) be two normalized states. We define the operators

T(t) =i / daf*(2) 00 p(x)

ot —Z/d?’wf )90 pin(x) (2.19)
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where f(z) is a normalized solution of the Klein-Gordon equation. By Green’s theorem,
cplfn does not depend on time (for plane waves f = e ** and gplfn = a;). Then the

asymptotic condition of Lehmann, Symanzik e Zimmermann (LSZ) [9], is

im (ol ¢! (1)18) = VZ (al ¢, 18) (2.20)

2.3 Spectral representation for scalar fields

We saw that Z had a physical meaning as the square of the amplitude for the field ¢(x)
to create one-particle states from the vacuum. Let us now find a formal expression for Z
and show that 0 < Z < 1.

We start by calculating the expectation value in the vacuum of the commutator of two
fields,

i (z,y) = (0] [p(2), ()] [0) (2.21)

As we do not know how to solve the equations for the interacting fields ¢, we can not solve
exactly the problem of finding the A’, in contrast with the free field case. We can, however,
determine its form using general arguments of Lorentz invariance and the assumed spectra
for the physical states. We introduce a complete set of states between the two operators
in Eq. (Z2I)) and we use the invariance under translations in order to obtain,

(nle()lm) = (neT¥p(0)e™ m)
= PPV (nip(0)|m) (2.22)
Therefore we get
N(zy) = —iY 0/p(0)|n) (nfe(0)|0) (¢~ @y — ipna=v)
= Az-y) (2.23)

that is, like in the free field case, A’ is only a function of the difference x —y. Introducing
now

= /d4q 5*(q — pn) (2.24)

we get

AN(x—y) = —i/

4 . )
= =i [ sl ) (2.25)

where we have defined the density p(q) (spectral amplitude),

[ )" 28" on = 0 OlpO)ln) | (¢ — =)

(2m) Z 5*(pn — q)| (0] (0)|n) |2 (2.26)
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This spectral amplitude measures the contribution to A’ of the states with 4-momentum
q*. p(q) is Lorentz invariant (as can be shown using the invariance of ¢(z) and the
properties of the vacuum and of the states |n)) and vanishes when ¢ is not in future light
cone, due the assumed properties of the physical states. Then we can write

p(q) = p(¢*)0(¢") (2.27)
and we get
4
N—y) = =i [ G o)l e ) — o)
_ —i/ (;13;313 /d025(q2 — 02)5(02)0(g°) | e~ (@) _ cia- (@)
= /000 do*p(0®) Az — y; 0) (2.28)
where ‘ dq ) ) 0/ —iq-(z—y) S
A —yi0) = =i [ 55500 = (L) ) (20

is the invariant function defined for the commutator of free fields with mass o.

The Eq. (2.28)) is known as the spectral decomposition of the commutator of two fields.
This expression will allow us to show that 0 < Z < 1. To show that, we separate the states
of one-particle from the sum in Eq. (2.26]). Let |p) be a one-particle state with momentum
p. Then

Ole@) = VZ Olpin(@)lp) + / 'y rer(z — yim) (013(4)lp)

= VZ(0lgim(z)[p) (2.30)

where we have used

01(@+m?)e(y)lp) =
= (@+m?)e Y (0[¢(0)|p)
= (m* —p*)e Y (0/¢(0)p) =0 (2.31)

015 (v)Ip)

On the other hand
d3k —ik-x
Olea@lr) = [ e ™ Do Bl
— i (2.32)

and therefore

P(Q) = (271')3 /&5 54 (p — q)Z <+ contributions from more than one particle
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= Z6(¢* —m»Ho(¢") + - - (2.33)
Therefore
Mo —y)= 28 —yim)+ [ - do*plo*)A ~ o) (234
mi
where my is the mass of the lightest state of two or more particles. Finally noticing that
0 0 S
5202 (@ = Ylao—yo = 55 M@ = y30)|z0-y0 = —0°(T — 7) (2.35)
we get the relation
Z+/ do*p(o (2.36)
which means
0<zZ<1 (2.37)

where this last step results from the assumed positivity of p(c?).

2.4 Out states

In the same way as we reduced the dynamics of t — —oo to the free fields ;,, it is also
possible to define in the limit ¢ — 400 the corresponding free fields, @uu:(z). These free
fields will be the final state of a scattering problem. The formalism is copied from the
case of ¢;,, and therefore we will present the results without going into the details of the
derivations. o (x) obey the following relations:

{ [Pﬂj (Pout] - 8“(‘00ut

(04 m?)pout =0 (2.38)
and has the expansion
Pout(T /dk Aout (K —ikw alut(k’)eik'm] (2.39)
The asymptotic condition is now
lim (o ! (1)18) = VZ (] ¢}, 18) (2.40)
and
Vo) = ola) = [ dyuas(a ~ yim)iy) (241)

where the Green’s functions A, g4, satisfy

(Op +m*) Apay(z — y;m) = 6*(z — y)

Apav(z —y;m) =0 5 20 >¢". (2.42)
For one-particle states we get
(Olo(@)lp) = VZ (0lpout(z)Ip)
= VZ{0lpin(2)lp)

= VZe ¥ (2.43)
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2.5 S matrix

We have now all the formalism needed to study the transition amplitudes from one initial
state to a given final state, the so-called S matrix elements. Let us start by an initial state
with n non-interacting particles (we suppose that initially they are well separated),

|p1 P sin) = | sin) (2.44)

where p1 - - - p,, are the 4-momenta of the n particles. Other quantum numbers are assumed
but not explicitly written. The final state will be, in general, a state with m particles

‘p’l coeph ;out> = |8 ;out) (2.45)
The S matrix element Sg, is defined by the amplitude
Sga = (B ;out|a ;in) (2.46)

The S matrix is an operator that induces an isomorphism between the in and out states,
that by assumption are a complete set of states,

(B ;out| = (B ;in| S
(8 in| = (B ;out| S
(B ;out|a ;in) = (B ;in|S|a ;in) = (B ; out|S|a; out) (2.47)

From the assumed properties for the states we can show the following results for the
S matrix.

i) (0[S|0) = (0|0) = 1 (stability and unicity of the vacuum)

ii) The stability of the one-particle states gives

(p 3in|S|p ;in) = (p ;out|p ;in) = (p yin|p ;out) =1 (2.48)
because |p ;in) = |p ;out).

iii) @in(z) = Spout(x)S™1

This relation results from the fact that we want that the matrix elements of operators
do not depend on the basis in or out. In fact

(a; in|pin (x)| By in) = (o out|pou ()] 8; out)
= (o in|Sout ()5~ B; in) (2.49)

showing the above result.
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iv) The S matrix is unitary. To show this we have

dga = (B ; out|a ;out) = <ﬁ :in|SSTa ;in> (2.50)

and therefore

SST=1 (2.51)

v) The S matrix is Lorentz invariant, or more precisely the S matrix transition elements
are Lorentz invariant. In fact we have

inlaz +b) = Ula,b)pin(2)U " (a,b) = USpyu(z)S™1U!
= USU 'ppui(az +0)US™U!. (2.52)

But
©in(az + b) = Spout(azx + b)S_1 , (2.53)

and therefore we get ﬁnall for the S matrix in the transformed frame

S' = U(a,b)SU (a,b) . (2.54)

ensuring that
(BL15"|®) = (Pa|UT'S'UIPg) = (94| S| ) (2.55)

2.6 Reduction formula for scalar fields

The S matrix elements are the quantities that are directly connected to the experiment.
In fact, |Sga|? represents the transition probability from the initial state |a ;in) to the
final |3 ;out). We are going in this section to use the previous formalism to express these
matrix elements in terms of the so-called Green functions for the interacting fields. In
this way the problem of the calculation of these probabilities is transferred to the problem
of calculating these Green functions. These, of course, can not be evaluated exactly, but
we will learn in the next chapter how to develop a covariant perturbation theory for that
purpose.

Let us then proceed to the derivation of the relation between the S matrix elements
and the the Green functions of the theory. This technique is known as the LSZ reduction
from the names of Lehmann, Symanzik e Zimmermann [9] that have introduced it. By
definition

(pr-++ soutlgr - in) = (1, soutlal,(g)lga, -+ ;i) (2.56)
Using

F ) = —i | dPre= TG 0, 92.57
a;,(q1) i Te 0Pin () (2.57)
t

IThis proof is for scalar fields. For the other cases it is much more complicated to prove [10]
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where the integral is time-independent, and therefore can be calculated for an arbitrary
time t. If we take t — —oo and use the asymptotic condition for the in fields, Eq. (220,
we get

. <>
(p1--- soutlg - ;in) = —tiimooiZ_m/d?’:Ee‘”l'm@o (p1--- s outlp(x)lgz - -~ ;in)
- t
(2.58)

In a similar way one can show that
<p1~- outlab,(a1)lgs - m> =
. e
= —tlim iZz71? /d?’me_’ql'xao (p1--- sout|p(x)|gz - - - yin) . (2.59)
— 00 t

Then, using the result,

(tlg& - g@m> / dof@e) =, lm /t;f dt% / B f(T1)
= / d*z0 f (Z,t) (2.60)
and subtracting Eq. (2.59) from Eq. (2.58) we get
(pr--- ;outlqy - ;m>=<p1~- soutlab,(q1)laz - m>
+2'Z_1/2/d4a; 1) [e_iql'xgo (p1 -+ ;out|p(x)|ge - - ,m>] (2.61)

The first term on the right-hand side of Eq. (Z.6I])) corresponds to a sum of disconnected
terms, in which at least one of the particles is not affected by the interaction (it will vanish
if none of the initial momenta coincides with one of the final momenta). Its form is

<p1-~ soutlal, (q1)]gz - m> =

n
= > @m)* 200 Bk — @) (p1,- - Pry - s outlga, - sin) (2.62)
k=1

where pp means that this momentum was taken out from that state. For the second term
we write,

/d4a: 1)) [e_i‘“mgo (p1--- ;out|p(x)|ge - - ,m>]
— [ @) oy g

_ /d4x [((—A2 + m2) e—iqrx) (- )+ e—iqr:cag (- >]
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= /d4xe_iql'm(D +m?) (p1 -+ ;outlp(x)|qe - - ;in) (2.63)

where we have used (O + m?)e™%'* = 0, and have performed an integration by parts
(whose justification would imply the substitution of plane waves by wave packets).

Therefore, after this first step in the reduction we get,

(P1, - piout|qr - - - qpyin) =

n
= > 2pp(2m)* 5 (B — @) (pro -+ P+~ Dosoutlaz - g2 -+ - e in)
h=1

+iz71/2 /d4xe_iq1m(D +m?) (p1 -+ - pu; out|o(z)|qa - - - g in) (2.64)

We will proceed with the process until all the momenta in the initial and final state are
exchanged by the field operators. To be specific, let us now remove one momentum in
the final state. From now on we will no longer consider the disconnected terms, because

in practice we are only interested in the cases where all the particles interactg. We have
then

(p1- - pnsout|(x1)]g - -~ qes in) = (P2 - - - Pn; out|aou (P1)(21)]g2 - - - o5 in)

. g
= lim iZ_l/2/d3y1 PO o (p2 -+ - pps out|p(y1)p(w1) g2 - - - gz in)

y9—o00
= (pa - - - pn; out|p(x1)ain(p1)|g2 - - - qe; i)

. e
+ lim iZ_l/2/d3?Jl eV o (p2 -+ - pps outlp(yr) (@12 - - - qein)

y9—o00

. g .
_ hm ,l‘Z—l/2 /d3y1 ezpyylay(l) <p2 .. pn’ Out‘(p(xl)gp(yl)’q2 e qé’ Zn>

y9——o0

= (pa - - pn; out|p(x1)ain(p1)]g2 - - - qe; i)

. e
+iz 12 < lim — Tim )/ dPy1 €PN o (p2 - - ps out| Teo(y1) (1) g2 - - - q; in)
y)—oo  y)——o0

(2.65)

where we have used the properties of the time-ordered product, Eq. (LI61)). Applying the
same procedure that lead to Eq. (2.63]) we obtain,

(p1- - Pn,y;outlp(x1)|qe - - - qo;in) = disconnected terms

+iZ_1/2/d4yleip1'yl(Dy1 +m2) (p2 -+ pryout|To(yr)e(x1)|g2 - - qe;in)  (2.66)

20nce we know the cases where all the particles interact, we can always calculate situations where some
of the particles do not participate in the scattering.
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It is not very difficult to generalize this method to obtain the final reduction formula
for scalar fields,

(p1 -+ pn;out|qy - - - qo; in) = disconnected terms

. n+~4
+ <é> /d4y1 R d4ynd4$1 . d4f1}'g€[i ;ka-yk—i2€ q,,«q;,,q]

(Oy, +m?) -+ (Og, +m?) (0T o(y1) - - (yn)p(a1) - - p(24)]0) (2.67)

This last equation is the fundamental equation in quantum field theory. It allows us to
relate the transition amplitudes to the Green functions of the theory. The quantity

OIT (1) - p(xn)]0) = Ga1-- - 2n) (2.68)

is known as the complete green function for r = m + £ particles and we will introduce the
following diagrammatic representation for it,

(2.69)

The factors (0 + m?) in Eq. [2.67) force the external particles to be on-shell. In fact, in
momentum space (0 + m?) — (—p? + m?). Therefore, Eq. (Z.67) will vanish unless the
propagators of the external legs are on-shell, as in that case they will have a pole, pQ+m2.

Eq. (267) will then give the residue of that pole. We conclude that for the transition
amplitudes only the truncated Green functions will contribute, that is the ones with the
external legs removed. In the next chapter we will learn how to evaluate these Green
functions in perturbation theory.

2.7 Reduction formula for fermions

2.7.1 States in and out

The definition of the in and out follows exactly the same steps as in the case of the scalar
fields. We will therefore, for simplicity, just state the results with the details.

The states 1, (x) satisfy the conditions,

(1@ - m)wm(x) =0
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[P;uwm(x)] = _Za;ﬂ/}m(x) . (270)

The states 1, (z) will create one-particle states and they are related with the fields ¥ (z)
by,

VZabin(z) = (x) - / d'ySre(@ — y,m)ji(y) (2.71)

where (x) satisfies the Dirac equation,

(i) —m)y(x) = j(z) (2.72)

and S is the retarded Green function for the Dirac equation,

(1@x — m)Sret(z —y,m) = (54(33 )

Sret(:E - y) =0 ; :EO < yO (273)

The fields 1, (x), as free fields, have the Fourier expansion,
Yin(z) = /EZ\]/) Z [bm(p, s)u(p, s)e % +di (p, s)v(p, s)e?® (2.74)

where the operators b;,, d;;, satisfy exactly the same algebra as in the free field case. The
asymptotic condition is now,

Jim (o] /(1) 18) = /2 (ol ], 1) (2.75)

where ¢/ (t) and Q/JZ-fn have a meaning similar to Eq. (2.19).

For the 1., fields we get essentially the same expressions with ¢, substituted by ¥oyz.
The main difference is in the asymptotic condition that now reads,

lim (al ! (1) 18) = /22 (al ¥, 15) (2.76)
implying the following relation between the fields 1., and ¥,
Vb = 0(a) = [ d'ySuae — yim)i(w) (277)
where

(idy — M) Sag(z — y;m) = 6*(z — )

Sadv(z —y;m) =0 2% >0 (2.78)

2.7.2 Spectral representation fermions

Let us consider the vacuum expectation value of the anti-commutator of two Dirac fields,

Sap(@.y) = i (0[{ta(@), ¥s(y)}10)
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_ 12[ (0] 0 (0) [} (] T5(0) |0) e~ 7=

+ (01 P5(0) [n) (n] a(0) |0) P (*=¥)

= (;B(x —y) (2.79)

where we have introduced a complete set of eigen-states of the 4-momentum. As before
we introduce the spectral amplitude pqs(q),

pesl) = (25)° 320" (n = ) 01a(O) 1) 01 50) ) (2.80)

We will now find the most general form for p,s(q) using Lorentz invariance arguments.
Pap(q) is a 4 x 4 matrix in Dirac space, and can therefore be written as

pas(q) = P(@)6ap + pu(D)Ves + Pu(Q)ohy + (@28 + Pu(0)(77)ap (2.81)

Lorentz invariance arguments restrict the form of the coefficients p(q), p.(q), P (q), p(q)
and p,(¢g). Under Lorentz transformations the fields transform as

U(a)pa(0)U™ (a) = Sz (a)1a(0)
U(a)yo(0)U™ () = ¥(0)Sra(a)
STIyrS = at ¥ (2.82)
Then we can show that the matrix (in Dirac space), pns must obey the relation,
p(a) = S~ (a)p(ga™")S(a) (2.83)

where we have used a matrix notation. This relation gives the properties of the different
coefficients on Eq. (Z8]). For instance,

p'(q) = a",p"(ga™") (2.84)
which means that p* transform as a 4—vector.

Using the fact that p,g is a function of ¢ and vanishes outside the future light cone,
we can finally write

pap(@) = p1(¢*)dap + p2(6*)0as + P1(E) (V" )ap + P2(a°)V2s (2.85)

that is, pag(q) is determined up to four scalar functions of ¢%. Requiring invariance under
parity transformations we get, instead of Eq. (2.83)),

pas (T q0) = Yorrrs(—7,4°)135 (2.86)
and inserting in Eq. (2.85) we obtain,

pr=p2=0 (2.87)
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Therefore for the Dirac theory, that preserves parity, we get,
pas(@) = p1(@°)as + p2(4*)0as (2.88)
Repeating the steps of the scalar case we write,
wa=) = [ o {p(oNSusla o)+
+ [0p1(0%) = p2(0?)] bapA(x — y;0)} (2.89)
where A and S, are the functions defined for free fields. We can then show that

i) p1 e po are real
i) pie®) 20
iii) ap1(0?) = pa(0?) > 0

Using the previous relations we can extract of the one-particle states from Eq. (2.89]). We
get,

Sep(t —y) = ZaSap(x —y;m)

v/ "o {pl<a2>saa<x ~y;0)

mi

o (0”) = pa(0?)] Busr(o i)} (290)

where m; is the threshold for the production of two or more particles. Evaluating
Eq. (290)) at equal times we can obtain

1= 2, +/ do®p1(c?) (2.91)
m2

1

that is
0<Zy <1 (2.92)

2.7.3 Reduction formula fermions

To get the reduction formula for fermions we will proceed as in the scalar case. The only
difficulty has to do with the spinor indices. The creation and annihilation operators can
be expressed in terms of the fields v;, by the relations,

bin(p,s) = / Pu(p, 8)eP T Oin ()

i (p,s) = / a7(p, 5)e POy (2)
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b (pys) = / B2 P u(p, 5)

din(p,5) = / B (10770 (p, 5) (2.93)

with the integrals being time independent. In fact, to be more rigorous we should substi-
tute the plane wave solutions by wave packets, but as in the scalar case, to simplify matter
we will not do it. To establish the reduction formula we start by extracting one electron
from the initial state,

(8: out|(ps)axs in) = { 5 outlbl, (p, ), in)

= (B —(p,s);out|a;in) + <B; out\b;fn(p, s) — biut(p, s)]a;in>

= disconnected terms
+ / &Pz (B; out|th;, (x) — Yo ()| in) y0e P u(p, 5)
= disconnected terms

. . 1 3 i - L 0 —ip-x
—< lim — lim >\/—Z_2/d z (B; out|t)(x)|a; in) 1 e P u(p, s)

t——+00 t——o0

= disconnected terms
—Z;1/2/d4m [<6; out|0pp(x)|e; m> ’yoe_ip'xu(p, s)

+(B; out|ih(x)|as in) 4 9o (e~ P u(p, s))] (2.94)

Using now
(i7°0y + 7' 0; — m) (e P*u(p,s)) =0 (2.95)

we get, after an integration by parts,
<B; out\b;fn(p, s) | m> = disconnected terms
—z'Zz_l/2 / d*z (B; out[yp(z)|cv; in) (—zgw —m)e P Ty(p, s) (2.96)
In a similar way the reduction of an anti-particle from the initial state gives,
<ﬂ; out]djn(p, s) | m> = disconnected terms
+izy 2 / d*ze= P p(p, ) (idy — m) (B; out|ih(z)|oy in) (2.97)

while the reduction of a particle or of an anti-particle from the final state give, respectively,

(B; out|boyt(p, $)|; in) = disconnected terms
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~iz; [ dtaev ulp. )69, — m) (5soutli(w)asin) (2.98)
and

(B; out|doyt (p, 8)|a;in) = disconnected terms
. —1/2 4 — . o ip-w
+iZ, /d x (B; out|)(x)|e; in) (—idy — m)v(p, s)e™ (2.99)

Notice the formal relation between one electron in the initial state and a positron in the
final state. To go from one to the other one just has to do,

u(p,s)e” T — —v(p, s)e’P? (2.100)

The following steps in the reduction are similar, one only has to pay attention to signs
because of the anti-commutation relations for fermions. To write the final expression we
denote the momenta in the state (in| by p; or p;, respectively for particles or anti-particles,
and those in the state (out| by p},p;. We also make the following conventions (needed to
define the global sign),

((p1,51)s -+ (By,51); -+ 5in) = L (p1,s1) -+ -}, (By,51) - - 0) (2.101)

and
<OUt; (p/hsll) e 7(]_)/17§/1) e ‘ = <0’ te 'dOUt(ﬁ/Dg/l)’ e bOUt(pll’Sll) (2102)

Then, if n(n") denotes the total number of particles (anti-particles), we get
(out; (p1,s1) -+, (PL,51) -+ |(p1,$1), -+ - (1, 1), - -+ ;in) = disconnected terms
(—izZy iz A /d4x1 cedryy - dr - dYy
et (i i) =i 30(Biyi) o i 2o (pay) +i (P yy)

H(p/h Sll)(“?m’l - m) - 0(Py, 31)@@3/1 —m)

OIT(D(yr) - (@) (@) - () - [0)

(=i, — m)u(pr,s1) - (—i@y, —m)v(py, ) (2.103)

Eq. (2I03)) is the fundamental expression that allows to relate the elements of the S
matrix with the Green functions of the theory. The operators within the time-ordered
product can be reordered, modulo some minus sign. The sign and ordering shown corre-

spond to the conventions in Egs. (2.10I]) and (2.102). In terms of diagrams, we represent
the Green function,

OIT [ (ypr) -+ (y1)vo (@) - (@) (1) -+ D)t (y1) - P(ym)] |0) (2.104)
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Figure 2.1: Green function for fermions.

by the diagram@ of Fig. (21)).

(_
The operators (id —m) e (—ig — m) force the particles to be on-shell and remove the
propagators from the external lines (truncated Green functions). In the next chapter we
will learn how to determine these functions in perturbation theory.

2.8 Reduction formula for photons

The LSZ formalism for photons, has some difficulties connected with the problems in
quantizing the electromagnetic field. When one adopts a formalism (radiation gauge)
where the only components of the field A* are transverse (as in Ref.[I]), the problems
arise in showing the Lorentz and gauge invariance of the S matrix. In the formalism of
the undefined metric, that we adopted in section [[L4.2] the difficulties are connected with
the states of negative norm, besides the gauge invariance.

Here we are going to ignore these difficultied] and assume that we can define the in
fields by the relation,

VAl (@) = @) - [ dyDL e~ i (2.105)

and in the same way for the out fields,

V@) = 4'(a) - [ dtyDli (o~ i (2.106)

3With lepton number conservation, the number of particles minus anti-particles is conserved, that is
b—m=10 —m
4We will see in chapter[§a more satisfactory procedure to quantize all gauge theories, including Maxwell

theory of the electromagnetic field. We will see that the resulting perturbation theory coincides with the
one we get here. This is our justification to be less precise here.
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where

0AL =0A4%, =0

u
DAk = j

oDk = M (z —y) (2.107)

adv, ret

The fields ¢n and out are free fields, and therefore they have a Fourier expansion in
plane waves and creation and annihilation operators of the form

3
Al (z) = / dk Y [am(k, Nt (k, N)e ™% 4 al (k, \)et (k, \)elF® (2.108)
A=0
and therefore
nkX) = =i [ daeGoer (k0 A (0
af (k) = i / Pre TP 0 (k, ) A (z) (2.109)

where, as usual, a;,(k,\) and a;fn(k:, A) are time independent. In Eq. (ZI08]) all the
polarizations appear, but as the elements of the S matrix are between physical states, we
are sure that the longitudinal and scalar polarizations do not contribute. In this formalism
what is difficult to show is the spectral decomposition. We are not going to enter those
details, just state that we can show that Z3 is gauge independent and satisfies 0 < Z3 < 1.
The reduction formula is easily obtained. We get

(8; out|(k\)as in) = (8 = (k, \); outlasin) + (8; outlal, (k, A) — by (k, Alas in)
= disconnected terms

i / e B 0 (k, N) (B out | AL (x) — AP

out($) |Oé; ’LTL>

= disconnected terms

t——+00 t——o0

—i( lim — lim )Zg_l/2 /dgxe_ik'xgo (B; out| AF ()| in) e, (k, \)
= disconnected terms
—iZg_l/2 /d4xe_ik'x<50 (B; out| A¥ ()| in) e, (k, \)
= disconnected terms
—iZg_l/2 /d4xe_ik'xﬁx (B; out| A¥ ()| s in) €, (k, A) (2.110)
The final formula for photons is then

</<;£ okl out|ky - kg m> = disconnected terms
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Tn

I

Figure 2.2: Green function for photons.

_ s\ ntt o |
+ <\/ZZ—> /d4y1 - d4ynd4$1 L. d4$é e[zz ki'yi_l ZZ kll‘z]
3

e (ky, M) - e (g, M) 1 (K, N - - €% (KL, ALy )
Oy - O OV T (A (y1) -+ Apr, (yn) Apy (1) - -+ Ay, () [0)  (2.111)

and corresponds to the diagram of Fig. (2.2]).

2.9 Cross sections

The reduction formulas, Eqs.(2.67), (ZI03) and (2III), are the fundamental results of
this chapter. They relate the transition amplitudes from the initial to the final state with
the Green functions of the theory. In the next chapter we will show how to evaluate these
Green functions setting up the so-called covariant perturbation theory. Before we close
this chapter, let us indicate how these transition amplitudes

S¢i = (f; out|i;in) (2.112)

are related with the quantities that are experimentally accessible, the cross sections. Then
the path between experiment (cross sections) and theory (Green functions) will be estab-
lished.

As we have seen in the reduction formulas there is always a trivial contribution to the
S matrix, that corresponds to the so-called disconnected terms, when the system goes from
the initial to the final state without interaction. The subtraction of this trivial contribution
leads us to introduce the T" matrix with the relation,

Spi = 1p +i(2m)* 64 (Py — P) T (2.113)

where we have factorized explicitly the delta function expressing the 4-momentum conser-
vation. If we neglect the trivial contribution, the transition probability from the initial to
the final state will be given by

Wiey = |(2m)*6*(P; — P) Ty (2.114)
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To proceed we have to deal with the meaning of a square of a delta function. This
appears because we are using plane waves. To solve this problem we can normalize in a
box of volume V and consider that the interaction has a duration of T". Then

T/2 ,
2m)04(P; — P) = lim / d3x / dzle!Pr=P) (2.115)
V =00 JV =T/2
T — o0
However
s [T o PPy 2 T
— r—Pi)x _ I LI el _ .
F = /vd :E/_T/2d$ 2 V5Pij 1 — ) sin 2(Ef E;) (2.116)
and the square of the last expression can be done, giving,
T
2_y2s. % ofd o
|F|*=V 6Pf,P7j B~ EiP sin” |5 (Ey — E;) (2.117)

If we want the transition rate by unit of volume (and unit of time) we divide by VT'. Then

sin? 2(E; — ;)

Ipy= lim Véz 5 2 2 | T (2.118)
fi V o o0 Pf,PZ %(Ef_Ez)z fi
T — o0
Using now the results
. 353(8 5
Jim Vop 5 = (2m)°6° (P — F)
2
) sin 5(Ef — E;) - s
:F11_13C1>02 %(Ef AT = (2m)0(Ef — E;) (2.119)
we get for the transition rate by unit volume and unit time,
Ty = (2n)*6* (P — P)|Tyi) (2.120)

To get the cross section we have to further divide by the incident flux, and normalize the
particle densities to one particle per unit volume. Finally, we sum (integrate) over all final
states in a certain energy-momentum range. We get,

1 1 o dp;
do = ——T5 [[ 2tz (2.121)
pipe |Ua| T -5 2p;(2)
]_
where
pP1 = 2E1 N P2 = 2E2 (2.122)

An equivalent way of writing this equation is

1 n
do = (2m)**(Py — P)|Tyil* T [ dp; (2.123)
4 [(p; - p2)? — mIm3)"/? =3
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that exhibits well the Lorentz invariance of each part that enters the cross sectionﬁ. The
incident flux and phase space factors are purely kinematics. The physics, with its inter-
actions, is in the matrix element T';.

We note that with our conventions, fermion and boson fields have the same normal-
ization, that is, the one-particle states obey

(plp') = 20°(27)*8° (7 — ) (2.124)

differing in this way from some older books like Ref.[3].

°It is assumed that, in the case of two beams they are in the same line. Then the cross section, being
a transverse area, is invariant for Lorentz transformations along that direction.
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Problems for Chapter 2

2.1 Show that the spectral representation for fermions, pas(q), satisfies,
a) p(q) = S~ (a)p(qa~")S(a)
b) pas(q:4”) = Yoaprs(—7,4°)73s

2.2 Use the results of the previous problem to show that, in a theory that preserves Parity,
like QED, we have

pap(@) = p1(a*)ap + p2(0%)0ap (2.125)

2.3 Show that the functions p; and po defined in problem 2.2 satisfy the following prop-
erties:

i) p1 and pq are real
i) p1(c?) >0
iii) op1(0?) = pa(0?) > 0
2.4 Show that for the Dirac field we have

1=25+ / do? p1(o (2.126)

m

2.5 Show that

(01 [in (), Pout ()] |0) = iA(z — y;m) (2.127)



Chapter 3

Covariant Perturbation Theory

3.1 U matrix

In this chapter we are going to develop a method to evaluate the Green functions of a
given theory. From what we have seen in the two previous chapters, we realize that we
only know how to calculate for free fields, like the in an out fields. However, the Green
functions we are interested in, are given in terms of the physical interacting fields, and we
do not know how to operate with these. We are going to see how to express the physical
fields as perturbative series in terms of free in fields. In this way we will be able to evaluate
the Green functions in perturbation theory.

We start by defining the U matrix. To simplify matters, we will be considering, for
the moment, only scalar fields. In the end we will return to the other cases. The physical
interacting fields ¢(Z, t) and their conjugate momenta (%, t), satisfy the same equal time
commutation relations than the in fields, ¢;,(Z,t) and their m;,(Z,t). Also, both ¢ and
pin form a complete set of operators, in the sense that any state, free or interacting, can
be obtained by application of ¢;, or ¢ in the vacuum. This implies that there should be
an unitary transformation U(t) that relates ¢ with ¢;,, that is,

(P(f7t) = U_l(t)ﬁpin(f7t)U(t)
n(Z,t) = U (t)m(Z, 1)U (1) (3.1)

The dynamics of U can be obtained from the equations of motion for ¢(z) and @, (z).
These are,

2o 0) = ilHon(pim o) i)
6;;”(3:) = i[Hin(Pin, Tin), Tin] (32)
and
P = il
g—:(:n) = i[H(p,7),7] (3.3)

79
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Then from Eqs. (8:2)) and B1]) we get,

fnla) = o U@V ()

= [U(t)U_l(t),sﬁm} +i[H((Pin77Tin)790in(x)]

= Ginl@) + [UU™ +iH1(pins Tin), i (3.4)
where
Hi(ins Tin) = H(Qin, Tin) — Hin(Pin, Tin) = Hr(t) (3.5)
and in a similar way
Tin(®) = 7t + |UU Y + iH (@i, Tin ), Tin (3.6)

From Egs. (84) and (B.6]) we obtain,
iUU™ = Hy(t) + Eo(t) (3.7)

where Ey(t) commutes with ¢;, and 7y, and is therefore a time dependent c-number, not
an operator. Defining
Hi(t) = Hi(t) + Eo(t) (3.8)

we get a differential equation for U(t), that reads,

AU ()

5 — HiOU®) (3.9)

)
The solution of this equation in terms of the in fields, is the basis of the covariant pertur-
bation theory.

To integrate Eq. (8.9) we need an initial condition. For that we introduce the operator
Ut,t)=U®)U ) (3.10)
where t > t/, and that obviously satisfies
U(t,t) =1 (3.11)
It is easy to see that U(¢,t') also satisfies Eq. (3.9), that is,

aU (¢, )

5 = Hi(t)U(t,t) (3.12)

1
and has the initial condition, Eq. (3.11)). To proceed we start by transforming Eq. (3:12])
in an equivalent integral equation, that is,

t
Ut,t')y=1—1 [ dtHy(t1)U(t1,t) (3.13)

tl
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Notice that we have not solved the problem because U(t,t’) appears on both sides of the
equation. However, we can iterate the equation to get the expansion,

t1

t t
Ut,t) = 1—2‘/ dtlH}(t1)+(—z‘)2/ dtlH}(tl)/ dtoHy(ts)
t/ t/ t!
t t1 tn—1
—l—---—i—(—i)"/ dtl/ dt2~~/ dtn,Hi(t1) - Hi(ty)
4 t! t/

L. (3.14)

Of course this expansion can only be useful if H; contains a small parameter and, because
of that, we can truncate the expansion at certain order in that parameter. Coming back
to Eq. B14), as t; >ty >, - - - ty, the product is time-ordered and we can therefore write

& t t1 tn—1
Ut,t')y =1 +Z(—i)"/ dtq dtg---/ dt,T(Hj(t1) - Hi(tn)) (3.15)
—t t t %
Using the symmetry t¢1,ts we can write,
t t1 t t2
/ dtl/ dteT(H(t)Hi(t2)) = / dtz/ dtyT(Hj(t1)Hy(t2))
% t t t

-5 L, / LT HY() (3.16)

which can be seen from the illustration in Fig. Bl

toa

t
t to
[ dte [ dty
t/ t/ ] t t
™ — j;, dtq t,l dts

/ »
¢ v t Tt

Figure 3.1: Integration regions in Eq.(316])

In general, for n integrations, instead of % we will have %, and we get,
[e.e] .
(=)
L+
n=1

=T <exp[—i/tlt dtH}(t)]>

td4$'H[(<pm)]> (3.17)

tl

Ul(t,t)

t t
/ dty - [ dt,T(H) () - Hi(t))
t/ t/

— 7 (expl-i
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where the time-ordered product is to be interpreted expanding the exponential.

The operators U satisfy the following multiplication rule
Ut,t)=Utt"U@"t) (3.18)

which can be seen using the definition, Eq. (3.10)), or from the explicit expression, Eq. (8.17).
From Eq. (318, we can obtain,

Ut t) =U"Y(,t) (3.19)

3.2 Perturbative expansion of Green functions

As we saw in the previous chapter, the LSZ technique reduces the evaluation of the
elements of the S matrix to a basic ingredient, the so-called Green functions of the theory.
These are expectation values of time-ordered products of the Heisenberg fields, ¢(z),

Gy, -+ wn) = (0] To(z1)p(2) - - (2n) [0) (3.20)

The basic idea for the evaluation of the Green functions consists in expressing the fields
©(z) in terms of the fields ¢;,(x), using the operator U. We get

G(r1,--yan) = (O TU (t)pin(21)U (b1, t2) pin(x2)U (t2,t3) - -
 Ultn—1,tn)@in(@n)U (tn)) 0)

= (0T Ut t1)pim (@)U (t1,t2) - -
= Ultn-1,tn)pin(2n)U (tn, —)U (1)) |0) (3.21)

where t is a time that we will let go to co. When t — oo, t is later than all the ¢; and —t is
earlier than all the times ¢;. Therefore we can take U~(t) e U(—t) out of the time-ordered
product. Using the multiplicative property of the operator U we can then write,

G(xz1,- ,xy) = (0 U_l(t)T (cpm(azl) - Oin(xy) exp[—i /_t H}(t')dt']) U(-t)]0) (3.22)

where the time-ordered product T is meant to be applied after expanding the exponential.
If it were not for the presence of the operators U~1(¢) and U(—t), we would have been
successful in expressing the Green function G(x1---x,) completely in terms of the in
fields. Now we are going to show that the vacuum is an eigenstate of the operator U(t).
For that we consider an arbitrary state |ap; in) that contains one particle of momentum p,
all the other quantum numbers being denoted collectively by a. To simplify, we continue
considering the case of the scalar field. We have then,

{ap; in|U(=1)|0) = (a;infain(p)U(=1)[0)

— —
‘ . 0 0 ) R
= —z/d?’xfp (Z, —t’) <@ — @) {ain| Sﬁm(%—t,)U(—t) |0)
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(3.23)

where f,(7,t) = e~?®. We use now Eq. [B.I) to express p;, (¥, —t) in terms of (%, —t).
We get,

(ap;in|U(-1)|0) =
=i / & f2 (7, —1')8 (s in|U(—t')p (&, —t ) UL (—')U (—1)|0)
=i / B fi(F,—t) [ — Dy (azin| U(—t) (&, —t) U~ (—tU(~t) |0)
+ (azin| U (=) (&, —¢)U ™ (=#)U(~1)|0) |
— / i FA@ 1) (e in| U(—t))p(Z, —t UL (~t)U (1) |0)
—i / B fH(Z, ') (azin| U(—t)p(&, ') U~ (~')U(~t) |0) (3.24)
We take now the t = t' — oo limit. Then
(ap; in| U(=t) |0) = VZ (a;in| U(~t)ain(p) [0)
—i / P (T, —t) [<a; in| U(—t)p(Z, —t) + U(—t)p(Z, —) U (=) U(—1) |0)| (3.25)

Now the first term in Eq. ([3.25) vanishes because a;,(p) |0) = 0. The second term also
vanishes because we have (we omit the arguments to simplify the notation),

Up+UpU™ U = UU YU + i, UUTIU
= UU ol — 0inUUT'U
= [UUY, ¢in|U = —i[Hy, 0in]U =0 (3.26)

where we have used Eq. (8.7) and assumed that the interactions have no derivativdll. We
conclude then that,
tli)m (ap;in|U(—t)[0) =0 (3.27)

for all states in that contain at least one particle. This means that,

lim U(—t)]0) = A_ |0) (3.28)

t—00

In a similar way we could show that,

Jim U(1) [0) = A, [0) (3.29)

The study of theories with derivatives was not trivial before the quantization via path integral was
introduced. As we will be viewing this method for gauge theories, we can avoid here the complications of
the derivatives. The quantization via path integral is the only method that is available for non-abelian
gauge theories as we will be discussing in chapter
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Returning now to the expression for the Green function, we can write,

G(x1, - @n) = AN (0| T <<,0m(331) i (@) exp [—i /_ tt H}(t’)dt’D 0y (3.30)

The dependence in the operator U disappeared from the expectation value. To proceed,
let us evaluate the constants A4, or more to the point, the combination A_\* that appears
in Eq. (330). We get (in the limit — o0),

AN = (0[U(=1)[0) (0 U™ (1) [0)

= (0 U(-t)U~(t)[0) = (0| U(~t,)0)

~ T <exp [H /_ tt dt’H;(t')D 10)

t
= (0|T <exp [—z/ dt’H}(t’)D 0y~ (3.31)
—t
Using this result we can write the Green function of Eq. (8:30) in the form,
(01 T (@in(1) - - pin(wn) exp—i [*, dt' H}(#)]) |0)
(0] T(exp[—i [, di’ Hy (")) 0)

when t — oco. Before we write the final expression, we can now introduce the number
Ey(t). For that we recall that,

G(x1,- -+ an) =

(3.32)

H} = H; + Ey (3.33)

and noticing that Fy is not an operator, we get a factor exp[—i fft dt'Eo(t')] both in the
numerator and denominator, canceling out in the final result. The final result can then
be obtained from Eq. (8:32), just substituting H} by H;. We get,

(O] T(0im (1) - - Pin () exp[—i [, dt' Hy(¢')]) |0)
(0] T(exp[—i [*, dt' H;(t')) |0)
3% EOR 2y dPy (O] T(in (1) - - im (@) Hr (31) - - Hi(ym) |0)
320, B 10 gy, by, (O] T(Hi (1) -+ Hi(ym)) [0)

G(l‘l ,xn):

(3.34)

This equation is the fundamental result. The Green functions have been expressed in
terms of the in fields whose algebra we know. It is therefore possible to reduce Eq. ([3:34)
to known quantities. In this reduction plays an important role the Wick’s theorem, to
which we now turn.

3.3 Wick’s theorem

To evaluate the amplitudes that appear in Eq. ([8:34]) we have to move the annihilation
operators to the right until they act on the vacuum. The final result from these manipu-
lations can be stated in the form of a theorem, known as Wick’s theorem, which reads,
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= 1 pin(21) -+ Pin(Tn) + O] T (Pin(z1)pin(22)) |0) : Yin(23) - - - Pin(Tn) * +perm.

+ (0] T(pin(21)pin(22)) [0) (O] T (pin(23)pin(4)) [0) : pin(ws5) - - in(zn) : +perm,

_|_ ..
(O] T(pin(21)Pin(22)) [0) - - - (O] T(Pin(Tn—1)Pin(zn)) |0) + perm.
+ n even
(O] T(pin (1) @in(x2) [0) - - - (O T(@in (Tn—2)Pin(Zn-1)) |0) Yin(zn) + perm.
n odd
(3.35)
Proof:

The proof of the theorem is done by induction. For n = 1 it is certainly true (and
trivial). Also for n = 2 we can shown that

T (pin(21)in(x2)) =: @in(x1)in(x2) : +c-number (3.36)

where the c-number comes from the commutations that are needed to move the annihila-
tion operators to the right. To find this constant, we do not have to do any calculation,
just to notice that

0] :---:10) =0 (3.37)

Then
T(pin(z1)pin(22)) =: Pin(x1)@in(22) : + (O] T(Pin(21)pin(2)) [0) (3.38)
which is in agreement with Eq. (3.35]).

Continuing with the induction, let us assume that Eq. (8.35)) is valid for a given n. We
have to show that it remains valid for n + 1. Let us consider then T'(@in (1) - - - in(Tnt1))
and let us assume that ¢, is the earliest time. Then

T(pin(w1) - Pin(Tny1)) =
= 1 @in(®1)  Pin(Tn) * Pin(Tnt1)

+ Z (O] T(pin(x1)pin(22)) [0) : pin(23) - Pin(Tn)  Pin(Tni1)

perm

p. (3.39)

To write Eq. (3:39) in the form of Eq. (B:35) it is necessary to find the rule showing how
to introduce ;, (,+1) inside the normal product. For that, we introduce the notation,

oin(z) = 93t () + o} () (3.40)
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(=)

n

C@in(T1) + - Pin(Tn) Z ngm (z4) H ©Oin (3.41)

A,BicA JjEB

()

where ¢, (x) contains the annihilation operator and ¢

we can write,

() the creation operator. Then

where the sum runs over all the sets A, B that constitute partitions of the n indices. Then

: szn(xl) te (Pzn(xn) : (Pin(xn—i-l) =

= ST @) TT ei @plehs (@) + 5, (2ns1))

A,BicA jEB

A,B icA jGB

Y TTeh @oes, @ain) TT o8 (@)
A,BicA jEB

Y I @Y. T e @) 0l ol @)el, (@nsn) 0) - (3.42)
A,BicA kEB jeBj#k

we can now write,

015 @)@l (@n41) 10) = (0] @i (@) in (n41) [0)
= (0| T(pin(@1)pin(n+1)) |0) (3.43)

where we have used the fact that ¢,; is the earliest time. We can then write Eq. (3.42)
in the form,

F@in(T1)  Pin(Tn) T Pin(Tnt1) = Qin(®1) -+ Pin(Tnt)

+3 " oin(@1) -+ Pin(Th-1)in (Tra1) -+ Pin(Tn) 2 (0] T(@in (1) @in(Tn41)) 0)
) (3.44)

With this result, Eq. (339) takes the general form of Eq. (B:35]) for the n + 1 case,
ending the proof of the theorem. To fully understand the theorem, it is important to do
in detail the case n = 4, to see how things work. The importance of the Wick’s theorem
for the applications comes from the following two corollaries.

Corollary 1 : If n is odd, then (0| T(@in(1) - - pin(x,))|0) = 0, as results trivially

from Eqs. (335]) and (337) and from,

(0] pin(x)|0) =0 (3.45)

Corollary 2: If n is even

<O‘ T(‘Pin(xl) T Spm(xn)) ’O> =
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= Y 50| T(in(21)@in(x2)) [0) -+ (O] T(in(€n—1)pin(wn)) [0)  (3.46)
perm

where ¢, is the sign of the permutation that is necessary to introduce in case of fermion
fields. This result, that in practice is the most important one, also results from Egs.

B.35), (3.37) and (3.43).

Therefore the vacuum expectation value of the time-ordered product of n operators
that appear in the general formula, Eq. ([8:34]), are obtained considering all the vacuum
expectation values of the fields taken two by two (contractions) in all possible ways. Now
these contractions are nothing else than the Feynman propagators for free fields. For
instance,

(O T (@in (1) in(22)pin (23)pin(24)) |0)
= (O[T (pin(z1)pin(22)) [0) (O] T (pin(23)@in(x4) |0)
+ (0] T'(@in (1) in(3)) [0) (O] T (pin(22) in (24)) 0)
+ (0] T (pin (1) in(24)) |0) (O] T (pin (22)in(x3)) |0)

= AF(azl — xg)AF(xg — $4) + Ap(xl — xg)AF(azg — 1’4)

—I—Ap(l‘l — $4)AF($2 — :Eg) (3.47)
where .
d*k 1 -
Ap(z —y) = —ik(@=y) 4
r@=y) / 2m)4 k2 —m?2 + ic’ (3.48)

is the Feynman propagator for the free field theory in the case of scalar fields.

It is convenient to use a graphical (diagrammatic) representation for these propagators.
We have in configuration space,

Arle =)= [ e e (3.49)
-------- o T F v = (2m)4 k2 — m? + ie .
d'p i(P+1Mm)as _ipa—y)
6 2,) o SF(x - y)aﬁ - / (271')4 p2 — m2 4 iEe (350)
4 iV
AN Y Qv o — ﬁ g —ik-(z—y)
D DF (x y) / (271')4 k2 + Z'Ee (351)

respectively for scalar, spinor and photon (in the Feynman gauge) fields.

As the interaction Hamiltonian is normal ordered, there will be no contractions between
the fields that appear in H;. The fields in H; can only contract with fields outside. In this
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Figure 3.2: Some of the diagrams resulting from Eq (3.53).

way the contractions will connect the points corresponding to Hy, the so-called vertices,
to either external points or points in another Hj, corresponding to another vertex. To
illustrate this point let us consider the A¢* theory where,

Hi(z) = %)\ cpof (2) : (3.52)

Then a contribution of order A% to G(z1, 2,23, 24) comes from the term,

2
(i\w (01 T (@in (1) 0in (x2) Pin (23)pin (1) : @i (y1) 1 O (y2) ¢ [0) (3.53)

and leads to the diagrams in Fig. (38.2]). In these diagrams, the interaction is represented
by four lines coming from one point, y; or y». These lines are contractions between one
field from one H; with other field that might belong either to another H;, or be one
of the external fields in G(x1---x4). To obtain the Feynman rules we are left with a
combinatorial problem. We are not going to find them here, as they are much easier to
express in momentum space, as we will see in the following.

In Fig. (B2) the diagrams a), b) and d) are called connected while the diagram c) is
called disconnected. One diagram is disconnected when there is a part of the diagram that
is not connected in any way to an external line. We will see in the following that these
diagrams do not contribute to the Green functions. Diagram d) is connected but is also
called reducible because it can be obtained by multiplication of simpler Green functions.
As we will see only the irreducible diagrams are important.
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Figure 3.3: Some vacuum—vacuum amplitudes in Eq. (8.54)).

3.4 Vacuum—Vacuum amplitudes

We have seen in the previous section examples of the numerator of Eq. (8.34). Let us
now look at the denominator, the so-called vacuum-vacuum amplitudes. Continuing with
the example of A\p?, some of the diagrams contributing for these amplitudes are shown in
Fig. 33). The diagrams associated with the numerator of Eq. (334)) can be separated
into connected and disconnected parts. For all diagrams that have as connected part a
contribution of order s in the interaction Hy, the numerator of G(z1 - - - z,,) takes the form,

Z % /d4y1 s d4yp O] T(pin(z1) - - - Qin(Tn)Hr(yr) - - - Hi(ys)) |0>C

p=0

p!
e Tr— OIT(H1(Ys+1) -+ Hilyp)) 0) (3.54)
where the subscript ¢ indicates that only the connected parts are included. The combina-
torial factor

p !
p!
- (3.55)
s sl(p — 9)!

is the number of ways in which we can extract s terms H; from a set of p terms. We write
then Eq. (354) in the form (r =p — s),

> Q / d'yy -+ dys (O] T(pin (1) -+ Pin () M1 (11) - H(ys)) |0),
s=0 ’

3 /d421 e dhy (0| T(Hr(21) - Hi(z) [0) (3.56)

|
r.
r=0

This equation has the form of a connected diagram of order s times an infinite series
of vacuum-vacuum amplitudes, that cancels exactly against the denominator. This is true
for all orders, and therefore we can write,

Gy, x) = > Gilwn - xp) (> G5 (1, 2n)) Qo Di)

>k Dk > Dk




90 CHAPTER 3. COVARIANT PERTURBATION THEORY

= Zag(xl ) (3.57)

where Gf are the connected diagrams and Dy, the disconnected ones. This result means
that we can simply ignore completely the disconnected diagrams and consider only the
connected ones when evaluating the Green functions. These are simply the sum of all
connected diagrams, simplifying enormously the structure of Eq. (3.34)).

3.5 Feynman rules for \p?

To understand how the Feynman rules appear, let us consider the case of a real scalar
field with an interaction of the form,

A
Hi= 7y ot =L (3.58)

To be more precise we consider two particles in the initial and final state. Then the S
matrix element is,
Sp = (piph; out|pipa;in)
_ (,04/d4x1d4x2d4x3d4x4e—ip1~:c1—ip2-x2+ip;x3+ip’2-x4

(Qay +m®) -+ (O, +m?) (0| T(p(x1)p(x2)¢(23)9(24)) [0)  (3.59)

For the Green function we use the expressions in Eqs. (3.34]) and ([B.57) and we obtain,

L (—iN)P
G(x1, 22,23, 24) = Z ( p') /d421 dbz,

p=0
4 z 4 z
O] T(pin (1) Pin(22)Pin(T3)Pin(T4) : %"T('l) ERRE: (’DZ"T(!p) 910y, (3.60)

As the case p = 0 is trivial (there is no interaction) we begin by the p =1 case.

ep=1

Then the Green function is,

4 z
G(ry1, w0, 23, 74) = (—M)/d42’ (o|T <<,0m(961)Cﬁm(xz)ﬁﬁm(w?,)sﬁm(u) : (’DZZ,( ) 2> |0)

= (—z)\)j—: /d4zAF(x1 — 2)Ap(ze — 2)Ap(x3 — 2)Ap(zy — 2)
(3.61)

to which corresponds, in the configuration space, the diagram of Fig. (8.4]). To proceed,
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Figure 3.4: Vertex in the A\¢* theory.

we introduce the Fourier transform of the propagators, that is,

d* ,
Ap(x; — 2) = / —(2:)14 e @A L (q)) (3.62)
where
1
Ap(q1) = 7 (3.63)
1
then

4 4
G(gjl $4) — (—i)\) / d4z d*q d*q e—iq1-ac1—iQsz—iQ3x3—iQ4r4+i(Q1+qz+q3+tJ4)~Z
’ (2m)*t  (2m)*

Ar(q1)Ar(q2)Ar(g3)Ar(qs)

4 4
= (—i)\) d"q1 d"qa e 11 T1—iq2 T2 —1q3 T3 —1q4 T4
@m)t (2m)?

2m)*6" (g1 + g2 + a3 + @) Ar(q1) AF(2) Ar(g3) Ap(qs)

(3.64)
If we now introduce the T" matrix transition amplitude, defined by
Sgi =85 +1i(2m)'8(Pr — Pi) Ty (3.65)
we obtain
iTp; = (—iM) (3.66)

for this amplitude we draw the Feynman diagram of Fig. (3.5]), and we associate to the
vertex the number (—i\).

ep=2

Let us consider now a more complicated case, the evaluation of G(z1---x4) in second
order in the coupling A. After this exercise we will be in position to be able to state the
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Figure 3.5: Vertex in momentum space.

Feynman rules in momentum space with all generality. From Eq. (8.60]) we get in second
order in A,

G(ﬂ?l, o 334) =
(—ir)?

4 (= 4 (s
— ——TEr——J/d4z1d4z2<0|Jﬂ<¢%n($1)g%n($2)¢%n(x3)¢%n(x4): %aiﬁ 1) ¢aiﬁ 2):>|0>C

(=N o, 4 [(4x3 4% 3
== T d Zld zZ92 a0 X a0 X 2

{AF(:m — 21)Ap(xe — 21)Ap(21 — 22)Ap(21 — 22)Ap(22 — 3)Ap(22 — 4)

+Ap(x1 — 21)Ap(xe — 22)Ap(21 — 22)Ap(21 — 22)Ap(2z1 — 23)Ap(22 — x4)
+Ap(z1 — 21)Ap(xe — 22)Ap(21 — 22)Ap(21 — 22)Ap(21 — 24)Ap (22 — x3)
+Ap(r1 — 20)Ap(ze — 29)Ap(22 — 21)Ap(22 — 21)Ap(21 — 23)Ap(z1 — 24)
+Ap(r1 — 20)Ap(ze — 21)Ap(21 — 22)Ap(22 — 21)Ap(21 — 23)Ap(22 — 24)

+ Ap(xl - 22)AF(:U2 - Zl)AF(Zl — ZQ)AF(Zl — ZQ)AF(Zl — JZ4)AF(21 — 333)}

—i\)?
- %/d421d422

{
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1 S 1 \ ! \
1 ~ 1 \ ! \
1 Seo 1 \ 1 \
1 S-ao 1 \ 1 \
X1 x2 X1 X2 X1 X2
+ (21 < 2’2)} (3.67)
Let us now go into momentum space, by introducing the Fourier transform of the
propagators. We start by diagram a),
a
G (21,32, w3, 24) =
(—iN)?21
21 2

/d421d422AF(x1 — Zl)AF(xg — Zl)AF(Zl — ZQ)AF(Zl — 2’2)

AF(ZQ — $3)AF(ZQ — :E4)

—iN)?1

diqy d'qy dqs diqs d'qs d'qs

(2m)* (2m)* (2m)* (2m)* (2m)* (27)*

eillar-z1+g2-w2—q3-w3—qa-2a)+21-(¢5—q1 —92+96)+22-(93+91—¢5—40)]

Ar(q1)Ar(q2)Ar(g3)Ar(q4)Ar(g5) Ar(ge)
4 4
5 Cm! [ G it = - an)

~

ei[th X142 T2—q2-T3—q4-24]

Ar(q1)Ar(g2)Ar(q3)Ar (1) Ar(g5)Ar(q1 + g2 — g5)
Now we insert the last equation into the reduction formula. We get

(3.68)
Sf = @1 [ dare el
(Qzy +m?) -+ (Qgy + MG (21, -, 24) (3.69)
The only dependence of G@ in the coordinates, x;(i = 1,---4), is in the exponential,
therefore,
(O, +m?) = (—gf +m?) (3.70)
and using
(—qi +m*)Ap(q;) = —i (3.71)
we get
(@) _ (—M)Ql/d‘l ! /_d4‘h .. Al
5 = g g ) T de | oo

2n)7 2m)'6 (g1 + g2 — a3 — qu)

93
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A Y 4
pll f)‘/pé

pl/x\ka
4 N
Figure 3.6:

e—i[r1-(p1—41)+mz-(pz—qz)—:vs-(p’l—qs)—m4'(p’2—q4)]AF(qs)AF(ql + g2 —q5)
_ (=N?L / d'q d"gs
2t 2 ) @2n)t (2n)

(2m)46% (p2 — q2) (2m) 5 (0) — q3)(2m) 6 (Pl — 41) AF(g5) Ar(q1 + g2 — g5)

_ (=i / d'gs

a3 @ (2m)'6% (p1 + p2 — p) — Po)Ar(gs)Ar(p1 +p2 —g5)  (3.72)

@2m)*6* (a1 + @2 — g3 — 1) (2m)*6* (p1 — 1)

This expression can be written in the form

(—z’)\)21/ d*q

(@) _ 454
Sy = (2m) 0% (p1 + p2 — Py —h) 2/ (2m)t

5T 3 Ap(q)Ar(pr+p2—q)  (3.73)

If we denote by a’) the diagram a) with the interchange 21 <> 2z and redo the calculation
we get exactly the same result as in Eq. (B73]). Therefore,

a+a’ . 1 d*
S = (2m) 5 (pr + p2 — ph — Ph) (—iN)?3 / G A AR Bt —0)  (3TY

or in terms of the T; matrix,

4
.(a+a’) S\ \2 1 d’q
— T, = (—tA) "= A A — 3.75
fi ( ) 2 / (271')4 F(q) F(pl + D2 Q) ( )

To encode this result we draw the Feynman diagram of Fig. ([3.0)), that has the same
topology as a) and a’) but in momentum space. We find that in order to evaluate the —iT'
matrix, we associate to each vertex a factor (—i)\), to each internal line a propagator Ap
and for each loop the integral [ %. Besides that we have 4-momentum conservation at

each vertex. Finally there is a symmetry factor (see below) which takes the value % for
this diagram.

If we repeat the calculations for diagrams b) + ') and ¢) + ) it is easy to see that we
get,

o) a2l [ dYq .
) = in?g [ AR AR+ i) (376)
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\\ , II P :V\V: Pa
Py PP A LN
v L7 S 1,7 SN
l ‘{ \xl 1 ll,q _pl +p/2 \i
2 " Ay AN /A
1 \\ ’/ \ 7 ~ 4 \
’ S=p»-- \ 1 S=p-- \
p1 q hp2 D14 q D2
1 \ 1 \
,I \‘ [I \‘
Figure 3.7:
and 4
(ctc’) 2l q /
Ay = (—iN\)*= A A —p1+ 3.77
17 = x5 [ A @A+ 1) (3.77)

to which correspond the diagrams of Fig. (8.7).

After this exercise we are in position to state the Feynman rules with all generality for
the A\p? theory. These are rules for the —iT matrix, that is, after we factorize (27)46%(---).
These are (for a process with n external legs):

1. Draw all topologically distinct diagrams with n external legs.
2. At each vertex multiply by the factor (—i\).

3. To each internal line associate a propagator Ap(q).

4. For each loop include an integral [ %. The direction of this momentum is irrele-
vant, but we have to respect 4-momentum conservation ate each vertex.

5. Multiply by the symmetry factor of the diagram. This is defined by,
_ # of distinct ways of connecting the vertices to the external legs

S = 3.78
Permutations of each vertex x Permutations of equal vertices ( )

6. Add the contributions of all the topologically distinct diagrams. The result is the
—iT matrix amplitude that enters the formula for the cross section.

3.6 Feynman rules for QED

We now turn to the case of QED. Like \¢?, it is a theory without derivatives and therefore,
Lr=—M;=—e Q" VinAl} (3.79)

where e is the absolute value of the electron charge, or the proton charge. For the electron
the sign enters explicitly in @ = —1. This way of writing in Eq. (8.79), allows for obvious
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Figure 3.8: Kinematics for the Compton scattering.

generalizations for particles with other charges, like for instance the quarks. For QED we
have then,
ED - ;
LEPP = e iy ip AT (3.80)

Due to the electric charge conservation, the Green functions that we have to deal with
have an equal number of ¢ and v fields. In general we have,

G(ml...xn;ljn_"_l...:nzn;yl...yp):

= (O[T (1) - (xn)P(ng1) - - Plwan) A (1) - - - A" (p)) [0)  (3.81)

where, for simplicity, we omit the spinorial indices in the fermion fields. This equation is
written in terms of the physical fields. Following a similar procedure to the scalar field
case, we can obtain an expression for G in terms of the in fields. This will be,

(O Thin (1) - Dy (w2m) ALl (1) - - AL (yp) !/ 2£1G)] o)
(0] T expli [ d*zL1(2)] |0)

G(x1w2n7y1yp) =

= (0| TWin (1) - Dy (m2n) AL (1) - - - ALP () €lt] TE1 BN ()
(3.82)

where the fields in £; are normal ordered, and (0] - - - |0), means that we only consider the
connected diagrams. To get the Feynman rules we will evaluate a few simple processes.

3.6.1 Compton scattering

Compton scattering corresponds to the following process,
e +y—e +7y (3.83)
and we choose the kinematics in Fig. (8.8]). The S matrix element to evaluate is therefore,

Spi = (0, 8"), ks out|(p, ), k; in) (3.84)
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Using the LSZ reduction formula Eq. (2103]), and Eq. (2ZI11]) we can write,
Sy = / dzd*s’ / diydty e Prathy=p"a Ky o () e (1)

—

A, Yoo (19— )00, By (0] T (05 ()P (2) Ay (1) A (5)) [0) (i — ) st (, )
(3.85)
Our task is therefore to evaluate the Green function
G, 2,y,y") = (0| T (g (2" )0 5(2) Au(y) A (y') |0) (3.86)

If we use Eq. (3:82)) and the fact that the interaction has an odd number of fields, we find
that the lowest contribution is quadratic in the interaction@. We get

G(':L'7 ':L'/7 y7 y/) =

- \2 . ' '
= (Zzi!)/dﬁ‘zldﬁ‘zg (0|T(?[)gf(:nl)azﬁn(x)AL"(y)AZﬁ(y')

D (217 Wi (21) AP (21) = T (22)7 ™ (22) A (22) ) |0)

e 2 ; —in i i
= B0 07)ys [ a0 TWHE)TS @47 )AL W)

LY (1)U (21) AP (1) = B (22) U (22) AT (22) ) |0) (3.87)
Now we use Wick’s theorem to write (0] T'(---) |0) in terms of the propagators. We get,
O T (W (') () AL (y) AL )07 (203" (1) AL (1) 51500 (22) 05 (22) AL (2)) ) [0)
= (O[T ()P (1) 0) (O] T (22)0 () 0) (O] T (21)iby (22) [0)
(O] (A (y) AT (1)) [0) (0] TAI (y') AL (25) [0)
+ (0] T (2 (1) [0) (O b3 (22) 5 () [0) (O] T (1) (22)]0
(O TAI () Al (20) [0) (0] T AL (y') AT (1) |0)
+ (0] T (') (22) 10) (O] T3 (21) 5 () 0) (0] T (22)% (1) [0)
(O TAI () Al (21)[0) (0] T AL (y') A" (25) |0)
+ (0] T (Yo (22) 10) (O] T3 (21) 5 () 0) (0] T (22)% (1) [0)
(O TAI () Al (20) [0) (0] T AL (y') A (1) |0)

= Srp (¢ = 21)Srsp(22 — 2)Spsy (21 — 22) DFuo(y — 21) Drw (Y — 22)

2By Wick’s theorem the expectation value of an odd number of fields vanishes.
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x zn oz z x 22 z1 z
a) b)
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x 21 29 x’ T 2 2 T
c) d)

Figure 3.9: Diagrams for Compton scattering in configuration space.

+Srpy (@' — 21)Spsp(z2 — ) Srsy (21 — 22) Drpp(y — 22) Do (y' — 21)
+Spgy (@' — 22)Spsp(z1 — @) Spery(22 — 21) Dy (y — 21) Dpw (Y — 22)

—l—SFB/»Y/(ﬂE/ — ZQ)SF(;B(Zl — :L')SF(;/-Y(ZQ — ZI)DFup(y — ZQ)DFMIJ(y/ — Zl) (3.88)

To better understand Eq. ([B.88)) it is useful to draw the corresponding diagrams in
configuration space. We show them in Fig. (3.9). From this figure it is clear that b) = ¢)
and a) = d) because z; and zy are irrelevant labels. From this we get a factor of 2 that
is going to cancel the % in Eq. . We have then only two distinct diagrams that we
take as c¢) and d). Then, including already the factor of 2, we get for diagrama c)

GOz, 2y, ) = (ie)*(7)rs(7" ) /d421d422 Sppy (2 — 22)Srsp(z1 — )

SF5"Y(22 - Zl)DFuU(y - Zl)DFu’p(y/ — 22) (3.89)

To proceed we could, like in the case of A\p?, introduce the Fourier transform of the
propagators. However, it is easier to get rid of the external legs using the results,

(i@ — M)arSErg(z — y) = 10050 (z — y)

<—
Srax(@ = y)(—idy, — m)g = i6,50" (x — y) (3.90)
and
DxDF;u/(x - y) = iguu(54(x - y) (391)

3In fact this result is general, for n vertices we have n! that cancels against the factor % from the
expansion of the exponential.
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Figure 3.10: Diagrams for Compton scattering.
We get therefore,
SJ(;;) _ (z‘e)2 /d4xd4x/d4yd4y/e—i(p-m+k-y—p’-:v’—k’-y’)Eu(k)gwg*u’(k/)gu,p
()6 (1 )y WP, 8 )ar Oty ta(ps 5) doa
/d4z1d4zQ54(x' — 29)6*(x — 21)0%(y — 21)0* (v — 22) SFry (22 — 21)
— (ie)? /d421d422e—i(p~21+k-zl—p’~zz—k’-zg)gu(k)g*//(kl)

ﬂ(p/, Sl)oa’ (7;/)0/6’ SFé’v(Z2 - Zl)(%t)'yaua(p’ s) (3.92)

Finally we use

4 :
Sp(z2 —21) = /(57_34q2z(_¢;2nj_)iee—iq~(zz—zl)
= / %Sp(q)e‘iq'(”—zﬂ (3.93)
to get

E“(k‘)s”/*(k")ﬂ(p', ") (tevw ) Sr(q) (ievu)u(p, s)
= @2n)*%WDp+k—p —k)
el (k)™ (K ya(p', s')(iev,e ) S (p + k) (e, )u(p, s) (3.94)
Therefore, the T' matrix transition amplitude is,
— T} = et (k) (W Ya(p!, o) (iev ) Sp(p + k) (iev,)u(p, s) (3.95)

corresponding to the diagram on the left panel of Fig. (3.10). In Eq. (8:95) we factor out
the quantity (iev,), because it will be clear that this quantity will be the Feynman rule for
the vertex. The arrows in these diagrams correspond to the flow of electric charge. Notice
that to an electron in the initial state we associate a spinor u(p, s) and for an electron in
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Figure 3.11: Diagram with positrons

the final state we associate the spinor w(p’, s’). Since the electron line as to be a c-number,
we start writing the line in the reverse order of that of the arrows.

In a similar way for diagram d) we will get the diagram represented in Fig. (3.10]), that
corresponds to the following expression,

— Ty = e (k) (K Yu(p', s') (iev,) Sp(p — k) (ievu Ju(p, ) (3.96)

Looking at Eqgs. (8.95]) and (8.96]) we are almost in a position to state the Feynman rules
for QED. Before that we will look at a case where we have positrons.

3.6.2 Electron—positron elastic scattering (Bhabha scattering)

We will consider electron-positron elastic scattering, the so-called Bhabha scattering,
e (p)+et(g) = e () +e(q) (3.97)

This example will teach us two things. First, how positrons (that is the anti-particles)
enter in the amplitudes. Secondly we will learn that, sometimes, due the anti-commutation
rules of the fermions, we will get relative minus signs between different diagrams. We have,

Spi = (0,8, (d', 8'); 0ut|(p, 5), (q,3); in) (3.98)

corresponding to the kinematics in Fig. (8.11]). Notice that the arrows are in the direction
of flow of charge of the electron, but the momenta do correspond to the real momenta
of the particles or antiparticles in that frame: p entering and p’ exiting for the electron,
and ¢ entering and ¢’ exiting for the positron. In the following we will not show the spin
dependence in order to simplify the notation. Then using Eq. (3.98)) we write,

Spi = /d4xd4yd4$/d4y'6_i[p'”q'y—i”"m'—Q"y’]

— —

U(p/)a(iax’ - m)aﬁ EW(Q)(Z'% - m)'yé
(O] Tg (v ) (2" )b ()5 (y) 0)

(=il — M) grartier (D) (— iy — )10y (') (3.99)

We have, therefore, to evaluate the Green function

Gy 2’ z,y) = (0| Ty (y )hs(x )b g ()5 (y) |0) (3.100)
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x > 7 x’ x x’
—_— + 2] 29
- 22 - s ,
y = = y Yy y
a) b)
Figure 3.12:

The lowest order contribution is of second order in the couplinﬂ. We have (to simplify
we omit the label in),

(ie)?

Gy, 2 xy) = 5 (’Y“)Eef(’y”)w'/dﬁ‘md“zz

(O Ts (v )bp (") gr (@) 5 (y) = Pe(21)er (21) Au(21) 12 Py (22)1h (22) Ap(22) + [0)

ie)?
= (2) (’7“)55/(’7u)¢¢//d4z1d4z2

[ — Spae(a’ — 21)Spep (21 — @) Spsp(y — 22)Spws (22 — Y ) D (21 — 22)
+Spse(y — 21)Spep (21 — ) Sppp(a’ — 22)Sppe (22 — Y ) Dppw (21 — 22)

(o & 22)} (3.101)

Once more the exchange (21 > z2) compensates for the factor % and we have two diagrams

with a relative minus sign, as it is shown in Fig. (8.12). Let us look at the contribution of
diagram a),

S](‘? = _/d4xd4yd4x'd4y/d421d422(ie)2(’Y“)ee’(’Yu)sogo/e_i[p'”q'y_p/'x/_q/'yl]

T )a(ifl, — m)asty (@)(i8, — m)ss
Sppe(a’ — 21)Sperg (21 — ) Srsp(y — 22)Sppe (22 — Y)
(=il — m)grartiar (p)(—idl, — M)y 037 (@') Dy (21 — 22)

—7 . . — /- —_ /-
= —/d421d422€ i[p-z1+q-22—p'-z1—q 23]

a(p') (iev" )u(p)v(q) (iev” )v(q" ) Dy (21 — 22) (3.102)

4There is, of course, a contribution without interaction, but that corresponds to disconnected terms in
which we are not interested.
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Y
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A
A

Figure 3.13:

Using now the Fourier transform of the photon propagator,

d4k _ig vV —ik(z1—2
Druw(ar = =) = /sz—kuise o

= /—d4k Dy (ke (:1=22) (3.103)
- (2m)u 1 ’
we get
5](5) = —a(p)(ier")u(p)v(q)(iey”)v(q’)
d*k - / - /
4 4 —1z1-(p— k) —izo-(q—q¢'—k
/d ad 2 (277)4DFW(]€)€ L (p=p'Hh) gmiza(4=d'—k)

= —2n)'8" (p+q— ' — ¢Vl ier" )ulp)v(a)(ier")o(qd") Dryuw (0’ — p)

(3.104)
and therefore the T' matrix element is,
—iT = —a(p)(iey" Yu(p) Dy (0 — p)T(9)(ier” o(d) (3.105)
to which corresponds the Feynman diagram of Fig. (3.13)).
In a similar way we would get
() —f N _ .
— T} = () (iey" u(p) Dryw (p + )T ) (i7" )0 (q) (3.106)

that corresponds to the diagram of Fig. (3.I4]). Which of the diagrams has the minus
sign is irrelevant, because this is the lowest order diagram. It depends on the conventions
determining how to build the in state that lead to Eq. (8.98]). Only the relative sign is
important. However, higher order terms have to respect the same conventions.

3.6.3 Fermion Loops

Before we summarize the Feynman rules for QED let us look at what happens with fermion
loops. One such example is the second order correction to the photon propagator shown
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pb+q

Figure 3.14:

Figure 3.15: Vacuum polarization

in Fig. (315). First of all, the loop orientation it is only relevant if leads to topologically
different diagrams. Therefore the diagrams of Fig. (8.10]) are topologically equivalent and
only one should be considered. However the diagrams in Fig. (8.17) are topologically
distinct and both should be considered.

Figure 3.16: Topologically equivalent diagrams

The second aspect that is relevant is a possible sign coming from the anti-commutation
of the fermion fields, that should affect some diagrams, and in particular the fermion loop.
To understand this sign we should note that by definition of loop, the internal lines are
not connected to external fermion lines, they should originate only in the interaction.
Therefore they should come from terms of the form

OIT - p(z1)A(z1)b(21) = - = P(zn) A(zn) Y (20) < -+ [0) (3.107)

Now it is clear that in order to make the appropriate contractions of the fermion fields
to bring them to the form of the Feynman propagator, (0| T%(z1)1(22) |0), it is necessary
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Figure 3.17: Topologically distinct diagrams

to make an odd number of permutations of the fermion fields, and therefore we get a (—)
sign for the loops. This sign is physically relevant because there is a lowest order diagram
where the photons do not interact, corersponding to the free propagator. So the minus
sign is defined in relation to this lowest order diagram and therefore it is not arbitrary
(see the difference with respect to the discussion of the Bahbha scattering).

3.6.4 Feynman rules for QED

We are now in position to state the Feynman rules for QED

1. For a given process, draw all topologically distinct diagrams.

2. For each electron entering a diagram a factor u(p, s). If it leaves the diagram a factor
u(p, s).

3. For each positron leaving the diagram (final state) a factor v(p,s). It it enters the
diagram (initial state) then we have a factor v(p, s).

4. For each photon in the initial state we have the vector (k) and in the final state
e*H (k).

5. For each internal fermionic line the propagator

. (75 + m)aﬁ
B J4 a SF.(P) sz —m2 +ie (3.108)
6. For each virtual photon the propagator (Feynman gauge)
ANNNANNNNN Dy (k) = —i 2t (3.109)
vl k \Y) Fuv L2 .

7. For each vertex the factor
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10.

a

iey! (3.110)

. For each internal momentum, not fixed by conservation of momenta, as in the case

of loops, a factor

4
/(;%4 (3.111)

. For each loop of fermions a —1 sign.

A factor of —1 between diagrams that differ by exchange of fermionic lines. In doubt,
revert to Wick’s theorem.

Comments

e In QED there are no symmetry factors, that is, they are always equal to 1.

e In our discussion we did not consider the Z factors that come in the reduction

formulas, like in Eq. (2.67). This is true in lowest order in perturbation theory.
They can be calculated also in perturbation theory. Their definition is (for instance
for the electron),

lim Sp(p) = Z2Sr(p) (3.112)

p—m

where S%(p) is the propagator of the theory with interactions. Then we can obtain,
in perturbation theory,

Zy=140(a) +--- (3.113)

In higher orders it is necessary to correct the external lines with these v/Z factors.

3.7 General formalism for getting the Feynman rules

After showing how to obtain the Feynman rules for A\¢* and QED, we are going to present
here, without proof, a general method to obtain the Feynman rules of any theory, including
the case when the interactions have derivatives, that we have excluded up to now, and
that is very important for the Standard Model. This method can only be fully justified
with the methods of Chapter Bl For simplicity we will consider only scalar fields.

The starting point is the action taken as a functional of the fields,

Tolg] = / dzLle] (3.114)
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In fact, Tg[¢] is the generating functional of the one particle irreducible Green functions
in lowest order, as we will see in Chapter Bl The rules are as follows:

Propagators

82Tl
dp(x;)0p(wy)
(2

2. Then evaluate the Fourier Transform (FT) to get I )(pi, p;) defined by the relation

1. Start by evaluating I‘((]2) (i, xj) =

(2m)*6" (s + p) )T (irj) = / dheidtaye PN (@, ag)  (3.115)
where all the momenta are incoming.
3. The Feynman propagator is then
0 (2 _
G =il i)™ (3.116)
Do not forget that p; = —p;.

Vertices

_ 6" Loy
op(x1) -+ 0p(an)

2. Then take the Fourier Transform to obtain

1. Evaluate Fg") (1 xp)

2r) 6 (p1 +pa+ -+ )T (1 -+ pn)

= /d4x1"'d4a:ne_i(p1'ml+"'p”'”””)an)(a:l---xn) (3.117)
3. The vertex in momenta space is then given by the rule

ity (1, pn) (3.118)

Comments



3.7. GENERAL FORMALISM FOR GETTING THE FEYNMAN RULES 107

e For fermionic fields it is necessary to take care with the order of the derivation. The
convention that we take is
52
&pa (‘T)(SEB (y)

Yo () e g(z) are here taken as classical anti-commuting fields (Grassmann variables,
see Chapter [).

(¥(2)I(2)) = Dpadt(z — 2)5* (2 — y) (3.119)

e The functional derivatives are defined by

= 50t (z — y) (3.120)

3.7.1 Example: scalar electrodynamics

The Lagrangian is

L = (0p = 1eQA)@" (0" +ieQA")p — mp™p + Lytaswen = 7 (#°¢)* (3.121)

Therefore o
Lint = —ieQp*0 ,p Al + 2Q*p* p A, AV (3.122)

The propagators are the usual ones, let us consider only the vertices. There are two
vertices. The cubic vertex is

*

P R 2
ko
AR AAAN
N\
q ~.
¥

Figure 3.18: Cubic vertex in scalar QED.

—z

Fff’) (21, 29, 13) = —ieQ / d*z0%(z — r1)(0, — 8;)(54(2 — x9)6* (2 — x3) (3.123)

therefore
2m)*6t(p + k + q)F/(f’) (p,q, k) = —ieQ/d4zd4x1d4:ﬂ2d4:p3e—i(xl'p+x2'q+x3'k)
—z <z
5z —x1) (0, — Gu)54(z — 29)6% (2 — x3)
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= —z'eQ/d4zd4azge_i[(p+k)'z+q'””2]8;(54(z—azg)

—I—z'eQ/d4zd4:171e_i[p'm1+(q+k)'z]8ﬁ54(z — 1)

= —ieQ(ipy —iqu)(27)* 6 (p+ q + k)

Therefore we obtain for this vertex

iLu(p, ¢, k) = ieQ (pu — qu) = —1eQ (qu — pp)

The other vertex is

Figure 3.19: Quartic vertex in scalar QED (seagull).
We obtain,

Ffﬁj) (z1, T2, 3, 24) = 262°Q* (z1 — 22)6" (1 — 3)6% (21 — Z4) G

and

00 (P, . k1, ko) = 2(eQ)? gy
and we finally get for the Feynman rule.
i2¢*Q* gy

Comment

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

e From the above results we can enunciate a simple rule for interactions that have

derivatives of fields.

Consider that we have one field in the Lagrangian that has a derivative,

say Ou¢. Then the rule is

Ou¢ — —i (incoming momentum),,

In the end do not forget to multiply the result by 1.

(3.129)
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e As an example consider the following term in the Lagrangian for scalar electrody-
namics

L = ieQ0,p"pA! 4 - - (3.130)

If p is the incoming momentum of the line associated with the field ¢*, see Fig. [3.18]
we have
Vertex =i x (ieQ) x (—ip,) =ieQpy (3.131)

in agreement with Eq. (3.125]).
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Problems for Chapter 3

3.1 Show explicitly that Wick’s theorem is valid for the case of 4 fields, that is

3.2 For the case of the A\p? theory verify the Feynman rules for the diagrams

\\ ; II P :V\V: Y2
— ].+ / 7 N

piy TETRL Ap FORPERN
. - ~_ . N

\/’ \\I o — /\\|

1 | . 1 [4—P1tDpoY

2 " N " A

[AEREN PR [N (Y

’ S=p»-- \ 1 S=p»-- \

p1 q hp2 D14 q D2

Lr= —3%in (3.133)

e a) Find the Feynman rules for this theory.

e b) Find the symmetry factor for the diagram

3.4 Verify that for Compton scattering the diagram
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gives the result of Eq. (3.94]).
3.5 Verify Eq. (3.106).
3.6 Show that in QED the symmetry factors are always 1.

3.7 Explicitly calculate the T' matrix element for the process eTe™ — 4+ and verify that
is in agreement with the general rules.

3.8 Show that the amplitudes for eTe™ — vy and e~ — e~ are related. How can one
obtain one from the other?
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Chapter 4

Radiative Corrections

4.1 QED Renormalization at one-loop

We will consider the theory described by the Lagrangian

1 1 _
LqQED = —ZFWFW - 2—5(8 CA? (i + eA—m)p
The free propagators are
)
> « - =99
B > <¢_m+i‘€>6a Fpa(D)
| Guw Kk
ANNNNNN — - (1= —"2
a L g ! [kz + ie (1-9) (k2 + 15)2]
. kuky 1 Kk,
= G%w/(k)

and the vertex

113

|

(4.1)

(4.2)
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tie(p)sa  e=le >0 (4.4)

We will now consider the one-loop corrections to the propagators and to the vertex. We
will work in the Feynman gauge (£ = 1).

4.1.1 Vacuum Polarization

In first order the contribution to the photon propagator is given by the diagram of Fig. [4.1]
that we write in the form

p+k

Figure 4.1: Vacuum polarization.

GV (k) = G, (k) i 11" (k)GY,,, (k) (4.5)
where
. ) d* Tr m)y, m
M (k) = = (tie) / (27:;4 = Ejlé(—]i;—s)((); ﬁ; k—:ﬁ Eie) (46)

—4 2 / d4p [2pupu +puku +puku B g/w(p2 +p- k — m2)
(2m)* (p? —m? +ie)((p + k)2 — m? + ie)

Simple power counting indicates that this integral is quadratically divergent for large
values of the internal loop momenta. In fact the divergence is milder, only logarithmic. The
integral being divergent we have first to regularize it and then to define a renormalization
procedure to cancel the infinities. For this purpose we will use the method of dimensional
regularization. For a value of d small enough the integral converges. If we define e =4 —d,



4.1. QED RENORMALIZATION AT ONE-LOOP 115

in the end we will have a divergent result in the limit ¢ — 0. We get thereford]

(ke) = —de?p / d’p_[2pupy + Py + Dok — G (0* + -k — m?)]
i (27)d (p2 —m2 +ig)((p + k)2 — m? + ig)

B [ dip Ny (p, k)
= —de’p / (2m)d (p2 — m2 + Z'E)él(p + k)2 —m?2 + ie) )

where
Nuw (P k) = 2pupy + ppky + poky — guV(p2 +p-k— m2) (4.8)

To evaluate this integral we first use the Feynman parameterization to rewrite the denom-
inator as a single term. For that we use (see Appendix)

1 1 dx
ab /0 [ax 4+ b(1 — a:)]2 49
to get
o dp N (p, k)
My (k) = —de*p / d“/ B Ty T R am 1 (L ) ) 1 0]

4 Ny (p, k
0 (2m)% [p2 + 2k - px + xk? — m2 + ic]

— 462 e ! . dp N (p, k)
= —4e“ /0 d /(27T)d [(p+k$)2+k‘2$(1—$)—m2—|—z’5]2 (4.10)

For dimension d sufficiently small this integral converges and we can change variables

p—p—kx (4.11)
We then get
ddp Ny (p — kx, k)
I, (k, €) = —4e? /dac/ “ 4.12
v ( K O+ ze] ( )
where
C=m?—kxz(1-2) (4.13)

N, is a polynomial of second degree in the loop momenta as can be seen from Eq. (48]).
However as the denominator in Eq. (£12]) only depends on p? is it easy to show that

/ dp P! 0
2m)d [p? — C +ie)?

dp p'p” 1o [ d% p’
T e =i G e (114)
@m)d [p2 —C +i®* d @2m) [p2 — C + e
! Where p is a parameter with dimensions of a mass that is introduced to ensure the correct dimensions
of the coupling constant in dimension d, that is, [¢] = % = 5. We take then e — eug. For more details

see the Appendix.
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Im pOAL

w

Rep

|

Figure 4.2: Wick rotation.

This means that we only have to calculate integrals of the form

[ dp (v*)"
b = [ G e

. dd_lp (p2)r
B / (2 / Wi o (4.15)

To make this integration we will use integration in the plane of the complex variable p° as
described in Fig. [4.2l The deformation of the contour corresponds to the so called Wick

rotation,
+o0o +oo
P’ — ip% ; / — i / dp%, (4.16)

— 00 — 00

and p? = (p°)? — [p1? = —(¥%)? — |p|? = —p%, where pp = (p%, p) is an euclidean vector,
that is

pE = (p)? + |91 (4.17)
We can then write (see the Appendix for more details),
d’pp ry
I =i(—1 T—m/ E___ 4.18

where we do not need the ¢e anymore because the denominator is positive deﬁniteE(C' > 0).
To proceed with the evaluation of I, ,, we write,

[dtve = [appitanu, (4.19)

where p = /(p%)? + |p]? is the length of of vector pg in the euclidean space with d

dimensions and df)4_; is the solid angle that generalizes spherical coordinates. We can
show (see Appendix) that

)

2The case when C < 0 is obtained by analytical continuation of the final result.

/dQ 2 rt (4.20)
d-1=2 — .
r(4
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The p integral is done using the result,

< T(B) 0 (g )
d = 4.21
|, = wror 3Tm) 2
and we finally get
r—m Ql i _d
g = icr-mrg GV Dt g) Tlm —r = 9) (4.22)

(4mi  T(9) I'(m)

Note that the integral representation of I, ,,, Eq. ([AI5]) is only valid for d < 2(m —r) to
ensure the convergence of the integral when p — co. However the final form of Eq. (4.22])
can be analytically continued for all the values of d except for those where the function
['(m — r — d/2) has poles, which are (see section [C.6]),

d
me—r—g#0,-1,-2... (4.23)

For the application to dimensional regularization it is convenient to write Eq. (£22)) after
making the substitution d =4 —e. We get

_iﬂ am : gprm L2+7r—35) T(m—1—-2+%)
Iﬁm - (471')2 < C ) C r(z — %) P(m)

(4.24)

that has poles for m —r — 2 < 0 (see section [C.6]).

We now go back to calculate 11,,,. First we notice that after the change of variables of
Eq. (@) we get, neglecting terms that vanish due to Eq. (414,

Ny (p — kz, k) = 2pupy, + 22°kuky — 22k, ky — g (P* + 22K? — 2k® —m?)  (4.25)

and therefore

N = e/ d'p Ny (p — kz, k)
" 2m)d [p2 — C +ie)?

2
= (a - 1> g;w,uellz + |:_ 2517(1 - ZE)]{?“]{?,,—I—JJ(l - $)k72guu + .g,uumz /LEIO,2 (4'26)

Using now Eq. (£.24) we can write

. i drp2\ 2 T()
i = J62 \ e T(2)
i C

where we have used the expansion of the ' function, Eq. (C.1S),

r (%) - % — v+ O(e) (4.28)
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v being the Euler constant and we have defined, Eq. (C.82]),
2
A¢=—-—7v+In4dr (4.29)
€

In a similar way

i 47w2>5 I(3—5) T(-145%)
e = (M o s
12 1672 \_ C r2—5 1@
L efitoa —omE) 1o (4.30)
= 16n2 ¢ 12 ¢ '

Due to the existence of a pole in 1/e in the previous equations we have to expand all
quantities up to O(e). This means for instance, that

2 2 11 )
3—1—4_6—1——§+§6+O(6) (4.31)

Substituting back into Eq. (£26]), and using Eq. (4I3]), we obtain

1 1

N = g |-+ ge+0@)] |

7

C

+ [— 2¢(1 — x)kuky+2(1 — )k g + gum ] [@ <AE —1In F) + O(e)}

1

C
= —Wktuk‘,, [(Ae —In E) 2x(1 — :E):|

+#guuk2 [AE <x(1 —z)+ (1 — x)) + lnM—C; < —2(l—z) —x(l - x)>

w2 AL Coa_ne—ti L
T [AE( 14+1)+1In M2(1 1) + ( 5T 2)} (4.32)
and finally
i C 9
Nuw = T6-2 <AE —1In p> (guk” — kuky) 22(1 — x) (4.33)
Now using Eq. (4.7) we get
2 1 2 ! c
I, (k) = —4e T2 (guvk” — kuky) ; dr 2z(1 —x) [ Ac — 1HF
= — (guk® — kuk,) I(K*, €) (4.34)

where

(4.35)

M(k?, €) = 2704 /Old:n (1 - x) [Ae e x)k2]

112
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- @@
BB

Figure 4.3: Full photon propagator.

This expression clearly diverges as ¢ — 0. Before we show how to renormalize it
let us discuss the meaning of II,, (k). The full photon propagator is given by the series
represented in Fig. @3] where

=i1I1,,(k) = sum of all one-particle irreducible

(proper) diagrams to all orders (4.36)

In lowest order we have the contribution represented in Fig. [£.4] which is what we have

@:

Figure 4.4: Lowest order contribution.

just calculated. To continue it is convenient to rewrite the free propagator of the photon
(in an arbitrary gauge ) in the following form

koko\ 1 kuk 1 kk

- 0 _ phv whv T uhv

ZGMV = <gW— 12 >ﬁ+§ A —Puuﬁ‘i‘f L4
= G +iGY (4.37)

where we have introduced the transversal projector PED defined by

k. k,
P;z:/ = <g;w - 22 > (4.38)
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obviously satisfying the relations,

ktPL, =0 L3
PTVPT — PT ( ’ )
o vp wp

The full photon propagator can also in general be written separating its transversal an
longitudinal parts

T L
Guw =G, +Gj, (4.40)
where G/:fu satisfies
T T
Gu = PG (4.41)

Eq. (A34) means that, to first order, the vacuum polarization tensor is transversal,
that is

il (k) = —ik* P}, TI(k) (4.42)

This result is in fact valid to all orders of perturbation theory, a result that can be shown
using the Ward-Takahashi identities. This means that the longitudinal part of the photon
propagator is not renormalized,

Gl, =G (4.43)

For the transversal part we obtain from Fig. 3]
.GT o PT 1 PT 1 . ]{72PT'LL/V/H k2 . PT
WG = uuﬁ—i_ uu’ﬁ(_z) ( )(_Z) I//I/ﬁ

+PT L Car2pTor 112y (—i) PT L (i k2P T(k2) (i) PT, = + ..

upﬁ )\Tﬁ O'I/ﬁ
1
P[{Vﬁ [1— (k) + I (k) + - -] (4.44)

which gives, after summing the geometric series,

1
iGl, =P,

R+ (k)] (4.45)

All that we have done up to this point is formal because the function II(k) diverges.
The most satisfying way to solve this problem is the following. The initial lagrangian
from which we started has been obtained from the classical theory and nothing tell us
that it should be exactly the same in quantum theory. In fact, as we have just seen, the
normalization of the wave functions is changed when we calculate one-loop corrections,
and the same happens to the physical parameters of the theory, the charge and the mass.
Therefore we can think that the correct lagrangian is obtained by adding corrections to the
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classical lagrangian, order by order in perturbation theory, so that we keep the definitions
of charge and mass as well as the normalization of the wave functions. The terms that we
add to the lagrangian are called counterterm. The total lagrangian is then,

Etotal == £(€, m, ) + AL (446)

Counterterms are defined from the normalization conditions that we impose on the fields
and other parameters of the theory. In QED we have at our disposal the normalization
of the electron and photon fields and of the two physical parameters, the electric charge
and the electron mass. The normalization conditions are, to a large extent, arbitrary. It
is however convenient to keep the expressions as close as possible to the free field case,
that is, without radiative corrections. We define therefore the normalization of the photon
field as,

. 12:~RT T

%il%k iG,, =1-P,, (4.47)
where Gﬁ,:f is the renormalized propagator (the transversal part) obtained from the la-
grangian Lioa1. The justification for this definition comes from the following argument.
Consider the Coulomb scattering to all orders of perturbation theory. We have then the
situation described in Fig. Using the Ward-Takahashi identities one can show that

.o

Figure 4.5: Corrections to Coulomb scattering.

the last three diagrams cancel in the limit ¢ = p’ — p — 0. Then the normalization con-
dition, Eq. (£47), means that we have the situation described in Fig. .G, that is, the
experimental value of the electric charge is determined in the limit ¢ — 0 of the Coulomb
scattering.

3 This interpretation in terms of quantum corrections makes sense. In fact we can show that an
expansion in powers of the coupling constant can be interpreted as an expansion in A%, where L is the
number of the loops in the expansion term.
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lim bl = >/\AMI
q—0

Figure 4.6: Definition of the electric charge.

The counterterm lagrangian has to have the same form as the classical lagrangian to
respect the symmetries of the theory. For the photon field it is traditional to write

1

AL = 1

1
(Z3 —1)F,, F" = —ZéZg Fu, FH (4.48)
corresponding to the following Feynman rule

k k . k. Kk,
LNANANONNN v — 10 Z3k> (gw, — Z—2> (4.49)

We have then

) 1o . kuky
ill,, = zHiwf” YA <g,w — Z—2>

= —i (I(k,€) + 623) k* P, (4.50)

Therefore we should make the substitution
II(k,e) — II(k,€) + 023 (4.51)

in the photon propagator. We obtain,

1 1
Gl =prl, — 4.52
W = 32 TV T €) + 023 (4.52)
The normalization condition, Eq. (£47]), implies
T1(0, ) + 625 = 0 (4.53)

from which one determines the constant §Z3. We get

1 2
673 = —TII(0,¢) = _2_a/ drz(l —z) [Ae —In %}
T Jo H©
- _% A _1nm_2 (4.54)
N 3 ‘ 112 .
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The renormalized photon propagator can then be written as@

P
}2[1 + T1(K, ¢) — T1(0, )]

G (k) = +iGl, (4.55)

The finite radiative corrections are given through the function

HE(E?) =1 (k2 €) — T1(0, €)
_ 1d3::13(1 —z)ln [

™ Jo

a |1 2m? 4m? 12 _y [4m? 12
G ) e () )

where the last equation is valid for k? < 4m?2. For values k% > 4m? the result for I1%(k?)
can be obtained from Eq. ([&56) by analytical continuation. Using (k? > 4m?)

m? — (1 — a;)kT

cot Liz =i <— tanh ™! z + %) (4.57)
and 12
4m? 4m?
(%—1) i 1—k—”;‘ (4.58)
we get
a 1 2m? [am? am?\ '/
k%) = —3- {5 +2 (1 + ?> —14 /1~ =5 tanh ! (1 — —2> (4.59)
4Am?2
—zg 1- Z; ] } (4.60)
The imaginary part of II7 is given by
R Q 2m? 4m? 4m?

and it is related to the pair production that can occurﬁ for k? > 4m?.

4.1.2 Self-energy of the electron

The electron full propagator is given by the diagrammatic series of Fig. 4.7] which can be
written as,

4 Notice that the photon mass is not renormalized, that is the pole of the photon propagator remains
at k2 = 0.

® For k? > 4m? there is the possibility of producing one pair e
(vacuum polarization) there is a real process (pair production).

FTe~. Therefore on top of a virtual process
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o — @ -&@

Figure 4.7: Full electron propagator

Sp) = SO(p)+S°(p)<—z'2(p)> SO(p) 4 - --

= ) [1 —z’E(p)S(p)} (4.62)

@ =—i¥(p) (4.63)

Multiplying on the left with S; L(p) and on the right with S~'(p) we get

where we have identified

Sy t(p) = 57 (p) —i%(p) (4.64)

which we can rewrite as

S~ p) = Sy '(p) +i%(p) (4.65)

Using the expression for the free field propagator,

S0(p) = 5= = 5 0) = i = m) (4.66)

we can then write

ST p) = S5'(p) +iS(p)

= i |- e+ 5] (4.67)

We conclude that it is enough to calculate X(p) to all orders of perturbation theory to
obtain the full electron propagator. The name self-energy given to ¥(p) comes from the
fact that, as can be seen in Eq. (L.67), it comes as an additional (momentum dependent)
contribution to the mass.

In lowest order there is only the diagram of Fig. 4.8 contributing to ¥(p) and therefore
we get,

d*k ) v i

—i%(p) = (+ie)” / (2m)4 (=9) k2 — )2+ iz—:fyu]zﬁ +k—-—m+ z'z—:’yy (4.68)
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k
P p+k p

Figure 4.8: Self-energy of the electron

where we have chosen the Feynman gauge ({ = 1) for the photon propagator and we have
introduced a small mass for the photon A, in order to control the infrared divergences
(IR) that will appear when k? — 0 (see below). Using dimensional regularization and the
results of the Dirac algebra in dimension d,

WP+ = B+ 20+ =-[d-2)p+§)

my Y = md (4.69)

we get

—i%(p) =

_662/ ddk 1 ¢+%+m o
a (27r)dk:2—/\2—1—2'»37“(p—l—k:)2—7n2+is7

I —(d=2)(p+§) +md
e /(27T)d (k2 — X2 +ie] [(p+ k)2 — m? + i€]
e ! . dk —(d—=2)p+¥) +md
- /od /(2w)d (k2 — A2) (1 — 2) + z(p + k)2 — 2m? + ie]®
e ! . dk —(d—-2)p+¥) +md
- /od /(2w)d [(k + pz)? + p2x(1 — ) — X2(1 — 2) — 2m? + ic]?

d’k —(d-2)[p(1 —x)+ ¥ +md
2m)4 (k2 + p2x(1 — ) — A2(1 — z) — am?2 + ic]?

= —pe? /01 dx [ —(d—-2)p(1 —x) + md] Io2 (4.70)

wheréﬁ

i
Tpy = ——
0.2~ 672

The contribution from the loop in Fig. 4.8 to the electron self-energy >(p) can then be
written in the form,

[Ac —In[-p*2(1 — z) + m*z + A} (1 — 2)] ] (4.71)

S(p)'e? = A(p®) + B(p?) p (4.72)
with

1
A= e2/f(4—e)mﬁl2/ dr [Ac —In [-p*z(1 — 2) + m*z + N2 (1 — 2)]]
7™ Jo

1 1
16772/0 dx (1 —x) [AE

6 The linear term in k vanishes.

B = —e%uf(2 —¢)
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—In[—p?z(1 — 2) + mPz + (1 —a:)]} (4.73)
Using now the expansions

p(4d—e = 4:1"‘6(111#—%)4—(’)(52)}

LA A, = 4:AE+2<1M—%>+0(6)}

pi(2—e = 2 1+€<1DM—%>+(9(52)}

H2— A, = 2|A+2 <1nﬂ - %) + 0(6)} (4.74)

we can finally write,

4e2m [t 1 —p?z(1 — x) + m?z + \2(1 — 1)
2 p— —_—— —
A(p°) = =l dx [Ae 5 ln[ 5 ” (4.75)
and
9 __262 /1 B L —p?x(1 — ) + m?x + \2(1 — )
B(p") =152 i dr(l1—z)|Ac—1—1In 2 (4.76)

To continue with the renormalization program we have to introduce the counterterm la-
grangian and define the normalization conditions. We have

AL =i (Zy — V)P0 — (Za — 1) muptp + Zadm ) + (Zy — Ve py A, (4.77)
and therefore we get for the self-energy
—iX(p) = =i XP(p) + i (p — m) 2o +idm (4.78)

Contrary to the case of the photon we see that we have two constants to determine. In
the on-shell renormalization scheme that is normally used in QED the two constants are
obtained by requiring that the pole of the propagator corresponds to the physical mass
(hence the name of on-shell renormalization), and that the residue of the pole of the
renormalized electron propagator has the same value as the free field propagator. This
implies,

YXp=m)=0 — 5m:2l°°p(]6:m)

0% oteop

— =0 — 04y = — 4.79
8]6 p=m ? a¢ p=m ( )

We then get for dm,

om = A(m?)+m B(m?)
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_ 2me? {[2A5—1—21 <m2$2+)\2(1—x)>]

167?2 w?

[ ()
] Lo ()

3am 1 2 [t m2a?

where in the last step in Eq. (4.80) we have taken the limit A — 0 because the integral
does not diverge in that hmltm In a similar way we get for § 7,

oxteop 0A
02y == —| == —i—B—l—m—‘ (4.81)
8]6 p=m 8]6 p=m 8]6 p=m
where
0A 4t m? 1da; 2(1 — =)z
P | yem - 1672 —m2z(1 — z) + m2x + A\2(1 — x)
9 2 1 _
_ 2am / d (1—2a)x
T Jo m2z? + \2(1 — x)
1 2.2 4 \2(1 _
B = _i/ dz (1 — z) [Ae—1—1n<m v +A2(1 ””)ﬂ
21 Jo Jz
0B 27(1 — x)?
Wi = 4.82
"o o o / m2x2+/\2( ) (4.82)
Substituting Eq. (£82]) in Eq. ([4.81]) we get,
o Lo+ 2)(1 —x)zm?
Zy = —— |5Ac— < — (1—-2)1 —
0% %[ /d‘”” g “< ) 2 [ s m%@ﬂ%l—x)]
o m A2
= E[ A — 4—|—lnu——21nm} (4.83)

where we have taken the A\ — 0 limit in all cases that was possible. It is clear that the
final result in Eq. (4.83]) diverges in that limit, therefore implying that Z5 is IR divergent.
This is not a problem for the theory because d 75 is not a physical parameter. We will see
in section that the IR diverges cancel for real processes. If we had taken a general
gauge (£ # 1) we would find out that ém would not be changed but that Z5 would show
a gauge dependence. Again, in physical processes this should cancel in the end.

4.1.3 The Vertex

The diagram contributing to the QED vertex at one-loop is the one shown in Fig. In

"6m is not IR divergent.
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b

Figure 4.9: The QED vertex.

the Feynman gauge (£ = 1) this gives a contribution,

i€M€/2Al00p(p/ p) _ (26 Me/2)3/ d®k (—Z) 9po
oo (2m)dt k2 — X2 +ie

o @ +§) +m] i@+F)+ml
(p' + k)2 — m? —I—z'»s%(p—l— k)2 —m?2 +ie

(4.84)

where A, is related to the full vertex I';, through the relation

Ty = ey + AP +7,671)

= e (v +AY) (4.85)

The integral that defines AifOp (p,p) is divergent. As before we expect to solve this problem
by regularizing the integral, introducing counterterms and normalization conditions. The
counterterm has the same form as the vertex and is already included in Eq. (485]). The
normalization constant is determined by requiring that in the limit ¢ = p’ — p — 0 the
vertex reproduces the tree level vertex because this is what is consistent with the definition
of the electric charge in the ¢ — 0 limit of the Coulomb scattering. Also this should be
defined for on-shell electrons. We have therefore that the normalization condition gives,

(p) (A + 982 ) u(p)| _ =0 (4.86)

=m

If we are interested only in calculating 677 and in showing that the divergences can be
removed with the normalization condition then the problem is simpler. It can be done in
two ways.

1** method

We use the fact that §7; is to be calculated on-shell and for p = p’. Then

d’k 1 1 1
Cn)AK2 N2 tic Phr R —mtic PhE—m +ic

AP (p, p) = € / P (4.87)



4.1. QED RENORMALIZATION AT ONE-LOOP

However we have

1 1 0 1
}6+k—m+z’€%]ﬁ+%—m+ia__@}6+k—m+i€

and therefore

) dik 1 pP+E+m
- A loop — 2~
iy (0, ) 1 / @OIRE =N +ic P(p+ k)2 —m2+ic !
. 8 00
= _Za—pﬂ Zl p(p)

We conclude then, that Aleep p, p) is related to the self-energy of the electronﬁ,
m

0
loop _ loop
A;/, (pup) - apu 2
On-shell we have
82100;0
loop _ —
AP (p;p) P W 0 2oy

and the normalization condition, Eq. (£86]), gives

071 = 62

As we have already calculated 675 in Eq. (4.83]), then §Z; is determined.

2™ method

p

129

(4.88)

(4.89)

(4.90)

(4.91)

(4.92)

(4.93)

In this second method we do not rely in the Ward identity but just calculate the integrals
for the vertex in Eq. ({84]). For the moment we do not put p’ = p but we will assume

that the vertex form factors are to be evaluated for on-shell spinors. Then we have

dk u(p)y, W + K+ m)) v B+ K+ m)] v u(p)

BT = / (2r) DoD1D;

2 e/ ddk NH
= e 'u/
(2m)@ DyD1Ds

where

N, = u(p) [(—2 + d)k‘zyu + 4p - p/%t +4(p+p') - kv, +4mk,

8This result is one of the forms of the Ward-Takahashi identity.

(4.94)
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— 4 (p+ 9 +2(2 — d)fky | u(p) (4.95)
Dy = k*— X2 +ie (4.96)
Dy = (k+7p)% —m?+ie (4.97)
Dy = (k+p)*—m? +ie (4.98)

Now we use the results of section [C.7.3] to do the momentum integrals. We have for our
case

o= p* ;b =pH (4.99)
Pt o= xpP o+ zoph (4.100)
C = (r1+ x2)2m2 — z20¢° + (1—x1 — :172))\2 (4.101)
where
g=p —p. (4.102)
We get,

1 11—z
iT(p ) APu(p) = igf(3)/ dazl/ 1 dxo 1
# 47 0 0 2C

{ﬂ(p')’yuu(p) [ —(—2+ d)(:t%m2 + x%mz +2z19p’ - p) —4p’ - p

)2
+4(p+p') - (19" + 22p) + 2 2d) C <Ae — ln%ﬂ

Fa(p)up)m [4<x1p' T eap) — AW + )p(ar + )

=22 = d)(z1 + m2) (21" + xzp)u] } (4.103)

= i(p) [G(@*) vu + H(¢®) (p+ 1)) ulp) (4.104)
where we have deﬁnedﬁ,

1 1—z1 2,,2 2 1— _ 2
G(qz) = o A—2-2 dxq drs In (71 + 29)"m T122¢” + 1 — @)
4m 0 0 p?

9 To obtain Eq. (EI09) one has to show that the symmetry of the integrals in z1 > x2 implies that the
coefficient of p is equal to the coefficient of p’. To see this define

1 11—z
H= [ dn , 4.105
[am [ pana) (4.105)
Then use 1 1
flz1,x2) = 3 [f(1317502) + f(xa, 131)] 3 [f(l’h x2) — f(x2, 131)] (4.106)
to show that . .
H:/O dxl/o i(f(xl,:cg)—t-f(xz,xl)) . (4.107)

Also notice that you can put d = 4 in this term because H is not divergent.
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n /1 p /1_9“ d ( —2(x1 + 29)*m? — 2122¢% — 4m? + 2¢>
T T
0 ! 0 2 (21 4+ x2)?m? — 21296 + (1 — 21 — 22)N?

2 2
2(x1 + x2)(dm* — ¢*) (4.108)
(71 + 22)?m? — 2172¢% + (1 — 71 — 22)\?
o [ [ o —2m (21 + m2) + 2m (71 + 22)?
5w/ d 4.109
™ [/0 o /0 2 (x1 4+ x2)?m? — 129> + (1 — 21 — 332))\2] ( )

Now, using the definition of Eq. (£.85]), we get for the renormalized vertex,

a(p )AL, p)u(p) =1(p') [(G(q®) +621) v+ H(q”) (p+ p)u] u(p) (4.110)

As 07y is calculated in the limit of ¢ = p’ — p — 0 it is convenient to use the Gordon
identity to get rid of the (p’ + p)* term. We have

a(p) (' +p), ulp) =a(p) [%m — 10 q”} u(p) (4.111)

and therefore,

TN pue) = T |(Gla®) +2mH(¢) + 621 ) v — i H(e*) 0, ¢* | u(p)

= a(p) [’mFl(qz) + ﬁawq”FQ(qﬂ u(p) (4.112)
where we have introduced the usual notation for the vertex form factors,
Fi(¢®) = G(¢®) +2mH(¢*) + 07 (4.113)
R(¢®) = —2mH(¢%) (4.114)
The normalization condition of Eq. ([A386]) implies F3(0) = 0, that is,
071 = —G(0) — 2m H(0) (4.115)

We have therefore to calculate G(0) and H(0). In this limit the integrals of Eqgs. (4108
and (£.109) are much simpler. We get (we change variables x1 + z2 — ),

1 1 2, 2 _ 2
G0) = E[Ae—2—2/ da:l/ dy n 2" +(; y)A
47
—2y°m? — 4m? + Sym?
d d 4.11
/ xl/ YT (1 )N } (116)
« —2my—|—2my
- a 411
HO) = / day / dy g (4.117)

Now using

1 1 2,,2 2 2
-2 1
/ dxl/ dy i LN <1nﬂ2 - 1) (4.118)
0 1 1 2 7
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1 1 2,2 2 2 2
—2y*m* — dm~* + 8ym A
d d =7+2ln— 4.119
[ [ e =T (4.119)
—2my+2my 1
/dazl/ dy P+ ))\QZ_E (4.120)

(where we took the limit A — 0 if possible) we get,

a m2 2
a1
H = ——— 4.122
0 = ——— (4122)

Substituting the previous expressions in Eq. (4115]) we get finally,

2 /\2
071 =~ |-A—4+In 2 —2m = (4.123)
47 12 m?
in agreement with Eq. (Z33) and Eq. (£93). The general form of the form factors F;(q?),
for g2 # 0, is quite complicated. We give here only the result for ¢> < 0 (in section
we will give a general formula for numerical evaluation of these functions),

a A2 0 0/2
Fi(¢®) = (2 In— + 4> (0 coth® — 1) — 0 tanh — — 8 coth 6 B tanh BdS
471' m 2 0
oy _ a0
Ble) = 27 sinh 0 (4.124)

q2

0
. 19 o
In the limit of zero transferred momenta (¢ = p’ —p = 0) we get
Fi(0)=0
o (4.126)
F = —
2(0) 27

a result that we will use in section [£.4.T] while discussing the anomalous magnetic moment
of the electron.

4.2 Ward-Takahashi identities in QED
In the study of the QED vertex, in one of the methods, we used the Ward identity@

Au(p,p) = —%E(p) (4.127)

0The sign in Eq. (@I121) is connected with our identification in Eq. (£63)) of the one-particle irreducible
contribution to the fermion propagator as —iX(p).
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We are going to derive here the general form for these identities. The following discussion
is formal in the sense that the various Green functions are divergent. We have to prove
that we can find a regularization scheme that preserves the identities. This happens when
one uses a regularization that preserves the gauge invariance of the theory. Examples are
dimensional regularization and the Pauli-Villars regularization.

Ward identities are a consequence of the gauge invariance of the theory, as will be
fully discussed in chapters Bl and 6l Here we are only going to use the fact that there is a
conserved curren,

j,u = _€E7u¢
(4.128)
Oug* =0
We are interested in calculating the quantity
ag <0’ Tju(x)w(xl)a(yl) e W%)E(%)Aul (Zl) e AVp (Zp) ’0> (4'129)

This quantity does not vanish, despite the fact that 0*j, = 0. This happens because
in the time ordered product we have 6 functions that depend on the coordinate 2°. For
instance, for the field ¥ (z;) we should have a contribution of the form,

0y [0(2” — &) jo(2)ip(:) + 0(af) — 2°)ip(wi)jo ()]
= 6(z° — ) jo () (i) — (2 — ) p(wi)jo ()
= [Jo(x), ¢ (x:)]8(2° — a?) (4.130)

In this way we get ( ~ means that we omit that term from the sum),

O (01 Tju(@) (1) -+ b (yn) Ay (21) - - A, (2p) [0)

=>_ (01T {jo(w), ()] 6(z° — 20)(v:)

—

+(xs) [Jo(@), ¥ ()] 6(2° — o)} ¥(@0)d(y1) - (i) (y) - Av, (2) 0)

+ ) {0 Tp(a1) - Plyn) Av, (21) -+ [0 (), Ay (2))]6(2° = 27) - -+ Ay, (2,) [0)  (4.131)
j=1

Using now the equal time commutation relations,
Lio(x),1(2")]6(2 — 2"°) = ep(x)d" (x — 2')
Lio(2), 9 (2")]6(2 — 2"°) = —ep(2)d" (2 — 2') (4.132)
ljo(x), Au(")]6(2® — ") =0

that express that ¢, and A, create quanta with charge ) = fd3:17j0(x) equal to e, —e

and zero, respectively, we get,

O (O Tjp(w)ib(wr) -+ b (yn) Av (21) - - - Ay (2p) 0)

"We follow here Ref.[2], but use our identification of the electric charge as e = |e|, so we have modified
the signs to be consistent.
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= —e (0| T(y1) -+ A, () |0) Y [0*(w — i) — 6" (@ — )] (4.133)

i=1

Taking different values for n and p we get different relations among the Green functions
of the theory. We will consider in the following, two important cases.

4.2.1 Transversality of the photon propagator n =0, p =1

The Green function (0| 7j,(x)A,(y) |0) corresponds to the Feynman diagram of Fig. £.10]
and it is related with the full photon propagator shown in Fig. E1T], by the diagrammatic

o, T @\/\A/W v,y

Figure 4.10: Green function (0|7, (z)A,(y) |0).

relation shown in Fig. .12l known as the Dyson-Schwinger equation for QED. It can be
written as

Gt — ) = GO (z — ) — i / GO, (i — o) (0] T (o) Ay () 0) (4.134)

We apply now the derivative 9% to get,
Gy (x —y) = LG, (w —y) —i / A G (v — 2') (0] Tj* () Au(y) 10)  (4.135)

The free photon propagator is given by,

0 / d4p —i(z—2')-p 0
Gyl —2') = (2#)46 G (D) (4.136)
where
0 o pupv ) 1 PuPv
Gw(p)——Z[(g;w— ;2 >1?+£ ;4 ] : (4.137)
Therefore
d4p —i(x—z')- .
oLe, (e o) = [ SR i)l )

Figure 4.11: Photon propagator
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ﬂ,xm@mu,y = U, T ANV VYt w@v\”y,y

Figure 4.12: Dyson-Schwinger equation.

4 o
= [ e e in P

_ x’ d4p —i(z—a')p 2
= o [ e e

= —0) F(z —a') (4.138)

and we get

DG —y) = OFGC(x—y)+i / a4/, Bz — o) (0| Tjo(a') Au(y) 0)
= 9GO, (r—y) i / dh' Bz — /)07 (0] T4#(2') Ay (y) [0)

= WG, (x—y) (4.139)

where we have made an integration by parts and used the Ward-Takashashi identity for
n =20, p=1. We have then

O Gy (x — y) =BG, (x — y) (4.140)
which in momenta space implies

P'Gu(p) = PG, (p) (4.141)

This means that the longitudinal part of the photon propagator is not renormalized,
or in other words, that the self-energy of the photon (vacuum polarization) is transverse.
In fact

P
PG, (p) = —ié o (4.142)
or ) »
pH = —it p—ZGJﬁ (p) = —ép—’;FW(p) (4.143)
But, in agreement with our conventions, we have
1
FVH(p) = _(glj,upz - pl/p,u,) - Epup,u + Hyp(pz) (4144)
and therefore 11
p
- fp—gfw(p) =DPu— gﬁpyﬂw(pz) = Pu (4.145)
which gives
P’ (p%) =0 (4.146)

that is, the self-energy is transverse.
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4.2.2 Identity for the vertex n=1, p =0

We are now interested in the Green function,

(01 Ty (x)a(x1)¥ o (41) 0) (4.147)

to which corresponds the diagram of Fig. L13l This Green function can be related with

5,%1 a, Y1

Figure 4.13: Green function (0| 75, (z)1s(21)¥4 (y1) |0).

the vertex (0| T A, (x)15(x1)¥o (y1) |0) corresponding to the diagram of Fig. 14} through

B,%’l @Y1

Figure 4.14: Full vertex.

the following diagrammatic equation,
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Wy T
% (4.148)

B,I’l a, Y1 6,1’1 a, Y1

[ T

that we can write as,
(01 A, ) Tn) [0) = =i [ dh/GR ') (0] T (Y1 o) 0} (4:149)
Taking the Fourier transform,

/d%ﬂ%mfmdwwrﬂmﬂwmmTAMwWw@O@AmHW

= ~iGu(9) / d'ad"erd y PPN (O] T (2)ds (e1) o (1) 0) - (4.150)

where the direction of the momenta are shown in Fig. [ 15 and the momentum transfered

Figure 4.15: Definition of the momenta in the vertex.

isq=7p —p.
On the other side, using the definition of I, we have,

/ d*zdiaydty P TPV (0] T A (€)1 (21) 0 (y1) [0)
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= M)W —p - )G (@) [SE)T. (0, p)SK)] 4, (4.151)

Therefore we get,
(2m)*5(p" = p — )G ()SE )T (0, p)S(p)
= —iG(q) / dhad"eidty TP (O T3 () () B (y1) [0) - (4.152)
Multiplying by ¢* and using the result,
0" Gula) = 4Gl (a) = i€ 3 (4.153)
we can then write (using the Ward identity for n =1, p = 0)
(2m)*8(" — a = p)SE)a"Tu (¥, 0)S(p)

= i/d4azd4x1d4y18; 0| T, (2)(21)v(y1) |0) 0" -T1—py1—q-x)

= —ie / didbzydy e P TP (0] Ty (21 )i (1) [0) [6(z — y1) — 6z — 21)]

= —ie2m)*5(p' —p— )[S(p)) — S(p)] (4.154)
or
¢'To(p,p) = —ie[S™ (p) = ST'(p)] (4.155)
As ¢¥ = (p' — p)¥ we get in the limit p’ = p,
-1
L,(p,p) = ieaaspu
0%
— ¢ <% _ a_py> (4.156)

Using I'), = e(y, + Ay) we finally get the Ward identity in the form used before,

(>

Au(Pap) = _Z?—p” . (4-157)

4.3 Counterterms and power counting

All that we have shown in the previous sections can be interpreted as follows. The initial
Lagrangian L(e,m,---) has been obtained from a correspondence between classical and
quantum theory. It is then natural that the initial Lagrangian has to be modified by
quantum corrections. The total Lagrangian is then given by,

ﬁtotal = ﬁ(e, my - - ) + Aﬁ (4158)
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and
AL=ALD 4+ ALE 4. (4.159)

where AL is the i™ — loops correction. This also correspond to order %’ as counting
in terms of loops is equivalent to counting in terms of . This interpretation is quite
attractive because in the limit 7~ — 0 the total Lagrangian reduces to the classical one.
With the Lagrangian L;,; we can then obtain finite results, although L. is divergent
because of the counter-terms in AL.

With this language the results up to the first order in & can be written as,

Lleym,---) = —i Ly %214”14“ _ 2_15(3 A2
+ipPip — mpyp — e A (4.160)
ALO = 22— DB F 4 (2, )P — i)
+Zadmaptp — e(Zy — 1) fup (4.161)
The Lagrangian
Loar = —iZgFWF“” 4 )\;AMA“ - %(a . A)
+ Zy (i Pop — mpnp + Smye)
—eZ1) A (4.162)

will give the renormalized Green’s functions up the the order #.

In fact, we have only shown that the two-point and three-point Green’s functions (self-
energies and vertex) were finite. It is important to verify that all the Green’s functions,
with an arbitrary number of external legs are finite, as we have already used all our freedom
in the renormalization of those Green’s functions. This leads us to the so-called power
counting.

Let us consider a Feynman diagram G, with L loops, Ig bosonic and [r fermionic
internal lines. If there are vertices with derivatives, ¢, is the number of derivatives in

that vertex. We define then the superficial degree of divergence of the diagram (note that
L=Igp+Ir+1-YV) by,

w(@) = 4L+ 6,—1Ip—2Ip
= A+3Ip+2Ip+ Y (0, —4) (4.163)

For large values of the momenta the diagram will be divergent as

A“(G) it w(G) >0 (4.164)

12 pE-14L — 55+ 5 We have the following relations L =I —V + 1 ; 3V = E + 2I (this only for QED).
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and as
InA ¥ w(G)=0 (4.165)

where A is a cutoff. The origin of the different terms can be seen in the following corre-
spondence,

d4
/(—q4 (for each loop) — 4L

2m)
On & B s (4.166)
g_im — —IF
?jﬁ — —2Ip

The expression for w(G) is more useful when expressed in terms of the number of ex-
ternal legs and of the dimensionality of the vertices of the theory. Let w, be the dimension,
in terms of mass, of the vertex v, that is,

3
Wy = Oy + Fcampos bosénicos + §#Campos fermidnicos (4167)
Then, if we denote by f,(b,) the number of fermionic (bosonic) internal lines that join at

the vertex v, we can write,

3 3
Zwv:2(5v+§fv+bv)+§EF+EB (4.168)

(2

where Ep(Ep) are the total number of external fermionic (bosonic) lines of the diagram.
As we have,

1
IF = 521):]01)
Ip = %Ev:bv (4.169)

we get

3
Zv:wvzzv:év+3[F+QIB+§EF+EB (4.170)
Substituting in the expression for w(G) we get finally,

w(G) =4 — gEF —Ep+ Y (wy,—4)

=4~ 2B~ B~ Y (o] (4171)

v
where [g,] denotes the dimension in terms of mass of the coupling constant of vertex v,
satisfying,
wy + [go] =4 . (4.172)
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From the previous expression for the superficial degree of divergence, Eq. (LI71]), we
can then classify theories in three classes,

i) Non-renormalizable Theories
They have at least one vertex with w, > 4 (or [g,] < 0). The superficial degree of di-
vergence increases with the number of vertices, that is, with the order of perturbation
theory. For an order high enough all the Green functions will diverge.

ii) Renormalizable Theories

All the vertices have w, < 4 and at least one has w, = 4. If all vertices have w, = 4
then

w(@) =4— gEF — Eg (4.173)

and all the diagrams contributing to a given Green function have the same degree
of divergence. Only a finite number of Green functions are divergent.

iii) Super-Renormalizable Theories

All the vertices have w, < 4. Only a finite number of diagrams are divergent

Coming back to our question of knowing which are the divergent diagrams in QED, we
can now summarize the situation in Table Il All the other diagrams are superficially

Er | Ep | w(G) Effective degree
of divergence
2 0 (Current Conservation (CC))
0 (Furry’s Theorem)
Convergent (CC)
0 (Current Conservation)
0

NN O OO
— O A W N
o~ o

Table 4.1: Superficial and effective degree of divergence in QED.

convergent. We have therefore a situation where there are only a finite number of divergent
diagrams, exactly the ones that we considered before. This analysis shows that, up to order
h, the Lagrangian

Liotal = —%Z;),FWFW + %)\QAMA“ — 2_15(3 . A)2
+Zy (i@ — mipap + dmapy))
—eZ 1P A (4.174)

gives Green functions that are finite and renormalized with an arbitrary number of external
legs. It remains to be shown that this Lagrangian is still valid up an arbitrary order in

13 The effective degree of divergence it is sometimes smaller than the superficial degree because of
symmetries of the theory. This is what happens for gauge theories like QED (see Table [£1]).
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h, with the only modification that the renormalization constants Z, Zs, Z3 e dm are now
given by power series,
Z=zM 4727 4. (4.175)

The previous Lagrangian, Eq. ([4I74]), allows for another interpretation that it is also
useful. The fields A, and 1) are the renormalized fields that give the residues equal to
1 for the poles of the propagators and the constants e, m are the physical electric charge
and mass of the electron. Let us define the non-renormalized fields 19,1, and Ag and the
bare (cutoff dependent) u2, mq through the definitions,

Yo =24y mg =m —om
B VET Nz

AOZ\/ZgA 60:Z1Z2_1 Zgle:ﬁe

(4.176)

§o = 23§

Then the Lagrangian written in terms of the bare quantities is identical to the original

Lagrangia

1 , 1 1
L = —ZFOWFO“ + §A3 Ap, Al — 2—50(8-,40)2
+i(PoPibo — mototo) — eothofotbo (4.177)

Finally we notice that the bare Green functions are related to the renormalized ones
by

G6L7£(p17 ©P2n, k17 e kf) Ho, m07£07 507 A)
= 23 (N Z5 G (o1, pons by -+ kg pym,e,€) (4.178)

where py -+ pay, (k1 -+ k¢) are the fermion (boson) momenta. We will come back to these
relations in the study of the renormalization group, in chapter [71

4.4 Finite contributions from RC to physical processes

4.4.1 Anomalous electron magnetic moment

We will show here, for the case of the electron anomalous moment, how the finite part
of the radiative corrections can be compared with experiment, given credibility to the
renormalization program. In fact we will just consider the first order, while to compare
with the present experimental limit one has to go to fourth order in QED and to include
also the weak and QCD corrections. The electron magnetic moment is given by

2
4 The terms A;Az = *2—0143 and %(8 CA)? = %(8 - Ag)? are not renormalized. This a consequence of
the Ward-Takashashi identities for QED. The Ward identity Z; = Z is crucial for the equality ep Ao = eA
giving a meaning to the electric charge independently of the renormalization scheme.
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e 7
i=—g— 4.179
i=5-05 (4.179)
where e = —|e| for the electron. One of the biggest achievements of the Dirac equation

was precisely to predict the value g = 2. Experimentally we know that g is close to, but
not exactly, 2. It is usual to define this difference as the anomalous magnetic moment.
More precisely,

g=2(1+a) (4.180)
or
a= g —1 (4.181)

Our task is to calculate a from the radiative corrections that we have computed in the
previous sections. To do that let us start to show how a value a # 0 will appear in
non relativistic quantum mechanics. Schrodinger’s equation for a charged particle in an
exterior field is,

—,

Do | (F—eA)? e . =

—_— = | — ——(01 -B 4.182

i 5~ ted— 5 -(1+a)d B¢ (4.182)
Now we consider that the external field is a magnetic field B =V x A. Then keeping only
terms first order in e we get

2 - 7 T =
P p-A+A-p e L= »
H = ——e——1———(1 . A
2m ¢ 2m 2m( +a)d- VX
= Ho+ Him (4.183)

With this interaction Hamiltonian we calculate the transition amplitude between two
electron states of momenta p and p’. We get

/ _ _ ¢ Cr g pEra F o ST ip
(p'| Hint Ip) = _%/(277)3XT6 P [p-A—I—A-p—l—(l—l—a)axV-/r]ep X
= -2 & X + ) - A+i(1+a)o'edkgl AF]e=Tox
2m J (2m)3
= —%XT (0 + ) +i(1 + a)o'eT*qT] A% (q)X (4.184)

This is the result that we want to compare with the non relativistic limit of the renormal-
ized vertex. The amplitude is given by,

A=ea(p) (v, + A u(p) A" (q)

=eu(p') [’m(l +Fi(¢%) + ﬁ%q%(q?) u(p)A*(q)

= o= a){ (7 + ) [1+ Fi(@)] + 0" [L+ Fi(@) + Falg®)] pup) A"(q14.185)
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where we have used Gordon’s identity. For an external magnetic field B=V x A and in
the limit ¢?> — 0 this expression reduces to

A = a) {0+ p[L+ Fi(0)] +iod! [L+ F(0) + Fa(0)]} u(p) A¥(@)
_ %g(p') {—(p/ +p)F ixiei g (1 + %)} u(p)A*(q) (4.186)

where we have used the results of Eq. (4.120]),

F1(0) = 0
N 4.187
F»(0) = 7 ( )

Using the explicit form for the spinors u

X
®) = (5 o) (4.188)
X
2m
we can write in the non relativistic limit,
A= =X+ p) i (14 - ) olelihgl | xa? (4.189)
2m 27
which after comparing with Eq. (I84)) leads to
. @
= — 4.190
Qtp o ( )

This result obtained for the first time by Schwinger and experimentally confirmed, was
very important in the acceptance of the renormalization program of Feynman, Dyson and
Schwinger for QED.

4.4.2 Cancellation of IR divergences in Coulomb scattering

In this section we will show how the IR divergences cancel in physical processes. We will
take as an example the Coulomb scattering from a fixed nucleus. This is better done if we
start from first principles. Coulomb scattering corresponds to the diagram of Fig. [4.16]
which gives the following matrix element for the S matrix,

A

pi pr

Figure 4.16: Lowest order diagram to Coulomb scattering.
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Sy = iZe*(2m)d(E; — Ef)% u(ps)y u(pi) (4.191)

We will now study the radiative corrections to this result in lowest order in perturbation
theory. Due to the IR divergences it is convenient to introduce a mass A for the photon.
For a classical field, as we are considering, this means a screening. If we take,

0 e_)‘|f|
Al(z) = Ze 7] (4.192)
the Fourier transform will be,
0 1
Aclq) = Zei‘d12 v (4.193)

that shows that the screening is equivalent to a mass for the photon. With these modifi-
cations we have,

Sy =iZe*(2m)8(Ey — E;) Wﬁ a(ps)y ulp:) (4.194)

We are interested in calculating the corrections up to order e in the amplitude. To
this contribute] the diagrams of Fig. £.17. Diagram 1 is of order e? while diagrams 2, 3, 4

I
Al A¥ Aic Al AY
bi pr Di z S by Di by Di Dy

Figure 4.17: Coulomb scattering up to second order.
are of order e*. Therefore the interference between 1 and (2 + 3 + 4) is of order o and

should be added to the result of the bremsstrahlung in a Coulomb field. The contribution
from 1+ 2 + 3 can be easily obtained by noticing that

eAly, — eAl (v, + NS + 115, G¥P,) (4.195)

where Aff e ny have been calculated before. We get

(1‘+2+3) — i7Ze2(9 E. — E #— 071 o _1 h
St iZe"(2m)0(E; f)@u)\gu(pf)v +— |-gptanhe

5We do not have to consider the self-energies of the external legs of the electron because they are
on-shell.
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%)
<1 + In i) (2¢pcoth 2¢p — 1) — 2 coth 2cp/ [ tanh 8dg
m 0

n <1 - COth%) (peothp — 1) + 1] 4o v }u(p,-) (4.196)

B 9|  2m 7 sinh 2¢p
where
2
% = sinh? . (4.197)
Finally the fourth diagram gives
d*k 28 (B — k) i 218 (k0 — E;)
9B (i76)2(e)?2 / - ! 0 0 i
o = W | ) (G e Fm e (k¥
Z%a? _ 0
= -2 27T(5(Ef — Ez) u(pf) [m([l — [2) +y Ei(fl + IQ)] u(pz) (4.198)
with
3 1
L= | dk—s — SR (4.199)
(P = k)? + N[0 — k)* + N][(0)* — (k) + ie]
and
1 k
§(m+ﬁf)fgz/d3k ——— . (4.200)
(0 — k) + N[0 — k)? + N2][(D)* — (k)* + i€]
In the limit A — 0 it can be shown that
72 2psin(0/2)
L = 1 4.201
! 2ip3sin® 02 < ) ) (4.201)
2 ™ 1 1 2psin 6 /2 A
L = —/———— = |1— —1 1 In —
2 2p3 cos? 6/2 {2 [ sin0/2] ! Lin29/2 n( A > * n2p]}
(4.202)
With these expressions we get for the cross section
do Z2a2 1 2
— = u(pr)Tu(p; 4.2
iR ; [@(ps)Tu(pi)] (4.203)

where
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P =144+ L5y c (4.204)
2m
and
@ A ¥ %
A = —|({14+In— ) (2pcoth2¢p — 1) —2coth2¢p dffBtanh 8 — = tanh
s m 0 2
1 1 Za
1 — = coth? hp — 1)+~ | — = |q*E(I; + I 4.2
+ (1 eottp) (poothp = 1)+ 5| - TSUPE(T + 1 (4.205)
a @
B = —— 4.2
m sinh 2¢ (4.206)
Za 9
= —— I — I 4.2
C 5-amd (h — I2) (4.207)
Therefore

S pu(p) = TG+ m)T Gy -+ m)

pol
0
= 2E%(1 — B%sin? 0/2) 4+ 2E*2B3? sin” 3

+2E*2ReA (1 — (3% sin? g) + 2ReC(2mE) + O(a®)  (4.208)

Notice that A, B e C are of order a.. Therefore the final result is, up to order o?:

do do 2a A %)
- = — 1+ — 14+In—)(2 th o — 1) — = tanh
< d > elastic < ds) > Mott { * ™ |: ( i m > ( pootay ) 2 aniip

coth? ¢

® 1
—2coth 24,0/ dBp tanh B + <— ) (pcothp — 1) + 9
0

o B?sin? /2
sinh2p 1 — 32sin?60/2

ﬁsing[l —sin /2]
1 — B2sin%6/2

] + Zar } (4.209)

As we had said before the result is IR divergent in the limit A — 0. This divergence
is not physical and can be removed in the following way. The detectors have an energy
threshold, below which they can not detect. Therefore in the limit w — 0 bremsstrahlung
in a Coulomb field and Coulomb scattering can not be distinguished. This means that we
have to add both results. If we consider an energy interval AE with A < AFE < E we get

] (8) [ o =
aQ BR dQ ) viott Jw<ar 20(2m)3 ki -pik-py (k-p-)?2 (k-ps)?
(4.210)
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Giving a mass to the photon (that is w = (|k|? + A2)'/2) the integral can be done with the
result,

[d—U(AE)} = <d0> 2—a{(2¢coth2gp—1)ln2A—E+iln—ijg

ds BR o Mott 7 A 26
1 1-p5%2 ! 1 1+ B¢
——cosh2p———— d 1
2 O Bsing /2 /Cose/z T PO —coo/? " T- pe
(4.211)
The inclusive cross section can now be written as
do do do
—(AE) = |[=—= —(AFE
dQ( ) <d9>elastic " [dQ( ):| BR
<d0> (165 + 65) (4.212)
= | =5 —OR + 0B .
dQ Mott

where dr and dp are complicated expressions that depend on the resolution of the detector
AF but do not depend on A that can be finally put to zero. One can show that in QED all
the IR divergences can be treated in a similar way. One should note that the final effect
of the bremsstrahlung is finite and can be important.



Chapter 5

Functional Methods

5.1 Introduction

In this chapter, called Functional Methods, we are going to present the path integral
quantization. For systems that are not described by gauge theories this method may
seem unnecessary, as the canonical quantization works without problems. However, for
non-abelian gauge theories, as we shall see in the next chapter, this is the only known
method. Besides this fundamental point, the quantization done using functional methods
and the path integral formalism is very elegant and allows us to obtain the results much
faster, even for the cases where the canonical quantization works. Examples of this are
the Ward-Takahashi identities and the Dyson-Schwinger equations, as we will discuss at
the end of the chapter.

We are going to assume that the reader is familiar with the path-integral quantization
for systems of N particles in non-relativistic quantum mechanics. Therefore only a brief
summary of the results will be given. A more detailed account is given in Appendix [Al
The step from the quantization of a system with IV particles to the quantization of a field
theory will be done heuristically. A more rigorous treatment will be given in Appendix [Bl

Before we start, let us clarify some questions related with the notation. Let us assume
that we have real scalar field ¢®(x) where a = 1,...N. In the following we will encounter
expressions of the type,

I = / d'z 6 (2)6" () (5.1)

j / diadty ¢ (z) M (z, )6 (y) (5.2)

where M (z,y) is normally a differential operator. According to the rules for functional
derivation, we have,

(5[1 o b
where we used the result 55°(2)
qba €T ab ¢4
= 55 — 5.4

149
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If we keep all the indices in the previous expressions (and in some much more compli-
cated that we will encounter soon), we will get a very complicated situation with respect
to the notation. Therefore it will be useful to make use of a more compact notation. To
this end we identify,

¢i = ¢"(x) (5.5)

that is, the index ¢ will represent both the discrete index a as well as the continuous x,
i <= {a,z} (5.6)

In the case that the fields have further indices we will assume that ¢ will always rep-
resent them collectively. We also use the Einstein convention meaning a sum for discrete
indices and an integration for continuous indices. With these conventions Eq. (5.I]) and
Eq. (54) can be written as

I = ¢ip; Iz = ¢iM;j¢;

(5.7)
Sy S

00; J 00; g
In the following we will use these conventions, returning to the more usual notation when
convenient or in case of a possible confusion.

5.2 Generating functional for Green’s functions

5.2.1 Green’s functions

The basic objects in Quantum Field Theory are the so-called Green functions. To avoid
unnecessary complications we are going to use mostly the example of the scalar field. The
generalizations are however quite straightforward. The Green function of order n is given
by

G (zy,...,2n) = (0|Td(x1) - d(x0)]0) . (5.8)

The Green functions defined in the previous equation are, sometimes called complete
to distinguish from the Green functions connected, truncated or one particle irreducible
that we now are going to define.

5.2.2 Connected Green’s functions

We call connected Green functions those that in which none of the external lines goes
through the diagram without interacting. As an example, in Fig. Bl we represent a
disconnected contribution to G*(z1, ..., x4), while in Fig. 5.2 we have a connected contri-
bution to the same Green function.

Therefore the connected Green functions are obtained summing over all the connected
diagrams. The disconnected Green functions, corresponding to disconnected diagrams,
can be obtained from connected Green functions of lower order, therefore the relevant
quantities are the connected Green functions G?(z1,...,x,). It is clear that we have

Gl (x1,...,2n) = G"(x1,...,2,) — disconnected terms, (5.9)
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T X9
T3 Ty
Figure 5.1: Disconnected contribution to G*(z1,. .., z4).
T Z2
T3 Iy
Figure 5.2: Connected contribution to G*(x1, ..., x4).
and
G2(w1,w2) = G* (21, m9) - (5.10)

Conventionally we represent G¥(z1,...,x,) by the diagram of Fig. 5.3

T Z2

Figure 5.3: Graphical representation for G2 (x1,...,xy).

Sometimes it is important to consider the Green functions in momentum space. We
define then G”(p1,...,p,) through the relation (Fourier Transform)

2m) 0t (p1 +pa+ - pu) GE(p1,-- -, Dn)

= /d4a:1 e drp et P TIEEPeT) G (g ) (5.11)

where all momenta, p1,...,p,, are incoming, as shown in Fig. 5.4 Notice that in the
definition we have factored out the delta function that ensures the conservation of 4-
momentum. With these conventions G2(p, —p) = G?(p) is the full propagator represented
in Fig.
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DPn pi

Figure 5.4: Graphical representation for G (p1,...,pn)

Figure 5.5: Full propagator G2(p).

5.2.3 Truncated Green’s functions

For n > 2 one defines the truncated Green functions through the relation,
n
-1
Glomc(®1:- -2 0n) = [ [ [GP(or)] ™ G2(p1, - 1n) (5.12)
k=1
that is, we multiply each external line by the inverse of the full propagator corresponding
to that line. These are the functions that play a fundamental role in the Theory, as these

the ones that are related to the S matrix elements. In fact the LSZ reduction formula for
scalars fields is

(p1y...,pn out|q,...,qein) = (p1,...,pn in|S|q1,...,qe in) = disconnected terms
n ¢
—12\" [ 4 ,
+<ZZ ) /dyl’”dw exp i | Y pk-yk— D k- wn
k=1 k=1
x(Qy, +m?) - (g, +m*) TG (y1) - d(x)[0), (5.13)
which gives
(p1,-..,pn outlqy,...,q in) = (p1,...,pn in|S|q1, ..., qe in) = disconnected terms
+Z_(n+£)/2 (27‘-)46 <Zp7« - Z QJ> G?r—grl;c(_pb ceey 7 Pnyq1,- - 7qg) (514)

5.2.4 Irreducible diagrams

We saw in[5.4l that the .S elements related with the cross sections are expressed in terms of
truncated diagrams. Among the truncated Green functions there is an important subset.
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These are the Green functions that correspond to the subset of one particle irreducible or
proper that are the truncated diagrams that remain connected when one cuts any arbitrary
internal line. For instance the diagram of Fig. Eﬂﬂ is truncated but it is not proper, while
the diagram of Fig. 5.7is proper (in A¢?).

Figure 5.6: Example of a truncated diagram that is not proper.

Figure 5.7: Example of a proper diagram.

The reason why the non-irreducible truncated diagrams are not important is because
they can always be expressed in terms of irreducible diagrams of lower order (remember the
self energy series that we saw in the last lecture). It is convenient to introduce a notation
for the irreducible Green Functions (sum of all the irreducible diagrams for a given number
of exterior legs) where the factor ¢ was introduced by convenience. In Fig. 5.8 the external
legs are drawn to make the figure more clear. They are in fact truncated. It is also
convenient to define a notation for the truncated diagrams of order n. This is shown in
Fig. or, in another way, in Fig. .10l We can define similar diagrams in momentum
space.

5.3 Generating functionals for Green’s functions
The Generating Functional (FG) for the Green functions plays a very important role in
Quantum Field Theory. In fact starting with it, by taking appropriate functional deriva-

tives, one can obtain all the Green functions. Therefore they can treat simultaneously an
infinite number of Green functions. The FG of the full Green functions is given by,

Z(J) = <0]Tei‘]’i¢i\0> (5.15)

! The bars indicate the the external lines are cuted.
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Lz, ) =

Figure 5.8: Irreducible Green functions.

T / x2

Ggﬁnc(‘rla"wxn) f | . =

Figure 5.9: Graphical representation of truncated Green functions.

where we are using the compact notation explained before.
Jigi = / dz J(x)p(x) . (5.16)

Z(J) generates all the Green functions, because if we expand the exponential in [5.15 we
get

Z(J) =300 5diy e Ji (0T iy -+ 3, |0)

=3 o Sy S, G (5.17)
The Green functions are then obtained taking derivatives
oz
G? = — (5.18)

i1 Z(;le - ZéJzn Ji=0
The generating functional of the connected Green functions is defined by the relation,

Z(J)=e"t) (5.19)
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Tl D)

T, >

Figure 5.10: Another representation of truncated Green functions.

or
W(J)=—ilnZ(J) . (5.20)
The connected Green functions are then obtained by taking functional derivatives
n oW

o ew 21
Cipein = ¥ i0J;, - --10J;, Ji=0 o

Before we actually prove this statement, let us define the last important generating func-
tional, the one that generates the irreducible Green functions. This is defined through the
Legendre transformation of W (J), that is

(o) =W(J) — Jigy (5.22)
where
5 = W)
Lok (5.23)
PR\ |
T 0o
The irreducible Green functions are then obtained through
T = M (5.24)

C I S 6=0

Having given the definitions we have now to show that W (J) and I'(¢) do generate the
connected and irreducible Green functions, respectively. Let us start with W (J). The
proof is done calculating G ;, .., . We are going only to do only the n = 2, n = 3 and
n = 4 cases. The generalizations are immediate.

o2 _ W VA 6 1 6z
N i1 diy |y 1031005y | g 10y Z 06y | ) g
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1 &z 16z 1 oz
 Z0i8Jyiddiy | ;g Zi6Jiy Z i0Jiy |y _g
627z
= — = 5.25
10J3,10Ji5 | 5, (5.25)
or
2 2
GC ilig = Gilig (5-26)
To obtain this result we have used,
Z0) =1 The vacuum is normalized
07 . .
A (0|T'¢;|0) =0 There is no symmetry breaking (5.27)
n=23
o _[1 &z 18z 16z
cuanis T 708 ;100,10 s, Z00J;,i0Ts, Z 18T,
1 ¢z 146z 1 Pz 162
Zi0J;,10Jiy Z 00y, Z 160,105y Z 16T,
1 62 1 02 1 67
— - — 5.28
Zi0Jyy Z10Jsy Z10J5 ||, (5.28)
therefore
3 3
Gi1i2i3 = Gc 111213 (529)

The case n = 4 is left as an exercise (see Problem x.x). The extension to n > 4 is
straightforward. We have therefore showed that W (J) generates all the connected Green
functions. Let us now show that I'(¢) is the generating functional for the irreducible Green
functions. For that we need two auxiliary results. The first one is based in the relation

5
5Tk

Sik (5.30)

This relation it is obvious. However one can obtain starting with it another important
relation. In fact

5Ji  6.J; 6oy 82T 582w ,
_0Jidpp _ S e 5.31
5T 0duodr | 0biddy 0Jp0 0y ik (5:31)
or
LieGo = i (5.32)

This fundamental relation expresses the fact that I'? is the inverse of the propagator
(except for the ¢ that comes from conventions). It is useful to write it in a diagrammatic
form shown in [B.I1l Notice that

i = (5.33)
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&0 -

Figure é\ L tation of Eql5.32

=

which explains the disappearance of the i. A second result is related to the following
functional derivative,

)
10.J;
We want to derive in order to J; quantities that depend on J; indirectly through ¢;. We
get

(5.34)

0 _ 0t 0 _ W 5 @0
i0J;  i0J; 0y O0JnidJ; S Sy

(5.35)

and therefore

0 0
— =G
Equations [£.32] and [5.36] allow us to obtain all the relation between irreducible and con-
nected Green functions. This analysis it is easier in a diagrammatic form, if we note the
following identities,

(5.36)

m

) k m _k
)
J

5 1 J i

o @ 5%
k

and 7
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where we have used to establish In all these relations it is understood that at
the end (after taking the functional derivatives) we do J =0 e ¢ = 0 at the right places
We will use now these relations to relate the connected and irreducible Green functions
for n =3 and n = 4.

n=3

The starting point is the equation [£.321 We apply ﬁ to [6.32] and we get

N WA (5.40)

Using equations (.37 and [5.39 we get the diagram of Figure [5.12]

Figure 5.12: Graphical result of Eq/5.40

) and using [£.32] we get

mai

k
k
(3 m B m
ngnacl: =
(5.41)
)
l

This shows that I’ SL[ is in fact the irreducible Green function with 3 external legs, as for
3 external legs the irreducible and truncated Green functions coincide. To show that we
have really irreducible functions and not only truncated ones, one has to go to n = 4 as

the difference starts there.

Multiplying on the left by G
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n=4

We start from equation [5.41] and take the functional derivative with respect to 6 7 Using
the previous methods we get the equation represented in Figure B.13l If we use [@] to

e

%%Q ol

Figure 5.13: Graphical representation of G,k in terms of I'yygpn.

ﬁﬁw

7a

)

express G( ) o 0 terms of I‘(
ends the proof

., we obtain the diagrammatic equation of Figure [5.14] that

n >4

It is now trivial to continue the process for n > 4. For a given n we start from the relation
for n — 1 and we apply Egs. B37 and These results show that the irreducible
Green functions are the important ones, all the other can be obtained from them. This
is an important result as it reduces enormously the number of Feynman diagrams to be
evaluated.

5.4 Feynman rules

The formalism of functional generators allows us to obtain the Feynman rules of any theory
with all the correct conventions. We have already shown how to get the Feynman rules in
section B.71 There we used the result that in lowest order (tree level) we have

Pireol®) = [ dtoLlo] = To(0) (5.42)

Here we are going just to show this result. For the interaction terms (n > 2) this is clear.
For instance for n = 3 we have

ir® =GP (5.43)
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o
) \E )
% ,
n l
Figure 5.14: Graphical representation of Gk, in terms of Iy, .
while for n = 4 we get
ir™® = @™ — irreducible parts (5.44)

(4)

and it is obvious that I'; .

generates the vertices.

The i factor is in agreement with the usual conventions for the Feynman rules as it
comes from the term exp (z f d4x£mt) in the calculation of the Green functions. There
is however an important detail. In our definiton of '™ (py, py,...) we have factored out
(2m)*6*(p1 + p2 + - - - ). Before doing the inverse Fourier transform one has to put it back.
For instance for the quadratic terms we have, Eq. (.32,

r®

@ (p) = p*—m? (5.45)

therefore, doing the inverse Fourier transform,

(2)
Ftree

@)= [ é o1 (C;f) vetran) (pf —m®) x (2m) 64 oy p2)  (5.46)

and

5 [ dhady 6@ g o, 1)010) =

4
/ Aty dpl (d 1’)2 Ty (VA5 (o1 4 po) (92 — m?) () (y)
1

= %/d4x ¢(x)(—0 — m2)¢(w) =5 /d4w (au(bau(b _ m2¢2) (5.47)

which shows that I'yyee is in fact the action. In getting to Eq. (5:47) we have done an
integration by parts and discarded, usual, the boundary term. We refer the reader to
Section [3.7] for the actual recipes on how to determine the Feynman rules of any theory.
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5.5 Path integral for generating functionals

5.5.1 Quantum mechanics of n degrees of freedom

Let us start reviewing the results for the path integral in systems with 1 degree of freedom.
In appendix A a more detailed explanation is given for the results that we are going to
use. The fundamental result is the following transition amplitude,

(ditlait) =N [ Dlg)eisl wHad — [ pig)eis (5.48)

where N is a normalization factor and D(q) is a symbolic form for representing the measure
of integration. This is in fact a complicated limit (see appendix A). Another important
result concerns the time ordered matrix elements of operators. Let

O(t1, ..., tn) = T[OH(t1)0H (t)...0H (t,)] (5.49)
such that
t'> (t1,te, ... ty) >t (5.50)
Then
(W00t t)la0) = N [ D@OLa() -+ Ola(a)e® (551

where we have assumed that the operators O; are diagonal in the coordinate space. For
the generalization to Quantum Field Theory the important objects are not the transition
amplitudes but the generating functionals. Consider, for instance, the Green function

G(t1,t2) = (0| T(Q™ (t1)Q™ (t2)) |0) (5.52)

where |0) is the ground state and Q¥ (t) is the coordinate operator in the Heisenberg
representation. To write Eq. (5.52]) using the path integral, we introduce a complete set
of states and we write

Gty ta) = /dq dq' (0lq';t') (¢s¥'| T(Q" (t1)Q" (t2)) |a; t) {a:t|0)
B /dqdq/%(q/at')%(qvt)/D(Q)Q(tl)Q(h)eif:, Lar (5.53)

where ‘
do(a,t) = (Olg;t) = po(q)e " (5.54)
The appearance in this expression of the wave functions of the fundamental state makes

the expression not very useful. We can remove them in the following way. Consider the
matrix element

(q';t'| O(t1,t2) |g; 1)
- / dQ dQ' (5 '1Q":T'Y (Q5T'| O(t1, 12) |Q: T) (Q: Tlas ) (5.55)
where

O(t1,t2) = T(Q™ (t1)Q" (t2))
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t'>T > (t1,te) >T >t
Let |n) be the eigenstates of energy F,, with wave function ¢, (q) that is

(gln) = on(a)

Then
<q,;t,|Ql;T,> _ <q/‘ e—iH(t’—T’) Q/>
_ Z <q/’n> <n’ e—iH(t’—T’)
= Y ond)on(@)e BT

Q)

We consider now the limit # — —ico. We obtain then

lim (¢:¢|Q5T) = 65(¢)o0(Q)e BN e T

t'——i00

In a similar way

dim (Q:Tg:t) = do(a)95(Q)e oIl 0T
—100
Applying these limits to Eq. (5.55]) we get

lim  lim <q';t’| O(t1,t2) |g; t)

t'——ioco t—ioco
— /deQIQSa(q/)qb()(Ql)e_EoltlleiEOT/
(QT'| O(t1,t2) |Q; T) do(q) by (Q)e Foltle= 0T
= (¢ )go(q)e Il

/ 4QdQ' $o(Q' . T)63(Q, T) (Q:T'| O(t1. 12) |Q: T)

Using the definition of Green function in Eq[5.53] we obtain the important result

lim  lim (¢;#'|O(t1,t2) ;) = p(q)po(q)e™ I e B0l G2y, 1)

t'——ioco t—100

On the other hand

lim  lim {¢;|g;t) = () po(q)e Folt | Folt

t'——ioco t—i00

Therefore we can finally write

/. 4/ H H .
Gltits) = Tim  lim |\LHTQTE)Q"()) lg:t)
t'——i00 t—100 (q/;t/‘q; t>

(5.56)

(5.57)

(5.58)

(5.59)

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)
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Using [5.51] we can finally write G(¢1,t2) in terms of a path integral, as

G(t1,ts) = lim  lim 7/2) Ya(t1)q(ta)et i e (5.65)

t'——ioco t—i00 <q t’\q,

This result is easily generalized to Green functions with n-points

Gty tn) = (01T (q(t1) -~ q(tn ))
= lim lim /D q(t1)---q(t )eifttlLdT (5.66)

t'——ico t—ioco (q'; t/|q,
We can now see that all the Green functions can be obtained from the generating functional

Z[J]= lim lim 7/2) lft [L(g,9)+ T q)dr (5.67)

t'——ioco t—100 <q t’\q,

by functional derivation

5" Z[J]

to ) = :
Gl t) = S i d ) |

(5.68)

The expression [5.67] for the generating functional shows that its the transition amplitude
between the ground state at time ¢ and the ground state at time ¢/, in the presence of an
exterior source and with normalization such that Z[J = 0] =1

Z1J] = (0j0), (5.69)

For a system with n degrees of freedom, we have the generalization of [£.67]

ZIJ,. . J] = lim  lim N [ D(g)e' )i drlilaid)+3, Jiail (5.70)

t/——ico t—ico

Comments

e In the previous equation the time limits for times ¢ and ' are imaginary. This means
that these Green functions are in Euclidean space. For field theory this corresponds
to the prescription m? — m? — ie.

e In equation .70l we do not explicitly wrote the normalization. It should be chosen
in such a way that Z[0,...,0] = 1. However, as we will see, for the connected
Green functions in Quantum Field Theory the normalization it is not relevant, and
therefore we will not worry about it.

5.5.2 Field theory

To get the generating functional in Quantum Field Theory we proceed in the usual heuristic
way, by making the following equivalences,

t — ot
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qt) — o)
D(q) — D(9)
L) > [ aL(0.0,0) (5.71)
We get therefore
2l = N / D(g)el | Aal£(6.0.0)+T(@)o(a)] (5.72)

This is the starting point in the path integral quantization. We will see in the next lecture
how to use it. A more rigorous derivation of the above result, Eq. 572l be found in
appendix B.

5.5.3 Applications

Once we know the generating functional Z[.J] we also know all the Green functions of the
theory and therefore how to address any problem in Quantum Field Theory. We can ask
in which conditions can we evaluate Z[J]? The answer is that as we only know how to do
Gaussian path integrals we can only do either free fields or perturbation theory. However
there are two main advantages in the method that we will now discuss:

e Perturbation Theory
The expression for Z[J] allows to establish the perturbative expansion and find the
Feynman rules for any theory.

e Formal Manipulations
Relations among the Green functions that are a consequence of symmetry properties
of the theory (for instance Ward identities) are much simpler in terms of the gener-
ating functionals. Here the expression of Z[J] in terms of a path integral, Eq.
is particularly useful as we will discuss later.

We will use the scalar field as an example to illustrate the first point, that is how to
establish the perturbative expansion. We consider a real scalar field, described by the
Lagrangian,

L($) = Lo(¢) + L1(¢) (5.73)
where L£o() is quadratic in the fields, that is
Lo(¢) = % L pOM P — %m2¢2 (5.74)
We can then write,
ZlJ] = N/p(¢)eifd4w[£o(¢)+£z(¢)+J¢>}
_ N / D(p)etf PalLi@)] i [ dalto(e)+o (5.75)

This last integral can formally be written in the form,

Z1J] = exp [z / dol; <%>} ZolJ] (5.76)
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where
ZolJ] =N / D(¢)e’ [ F'#lLot o] (5.77)

The usefulness of this expression results from the two following points:

e Zy[J] can be exactly calculated because is quadratic in the fields (Gaussian integral).

e If £;(¢) has a small parameter, the exponential can be developed in a power series
in this parameter and the generating functional Z[.J] can be obtained order by order
in perturbation theory, as the integrals will be Gaussian integrals with polynomials.

5.5.4 Example: perturbation theory for \¢?

To see the connection with the usual results let us consider as an example the derivation
of the Feynman rules for a real scalar theory with the interaction,

A
Lr= 7 ot . (5.78)

The generating functional Z[J] is

4
Z17] = N exp {(—M)% /d4:13 <%> } ZolJ] (5.79)

where (see Problems)

ZolJ] = exp {—% / d4xd4yJ(az)A(az,y)J(y)} (5.80)

The normalization N is to be chosen such that Z[0] = 1, as we will see later. We expand
in a series in the coupling constant,

Z[J) = N Zo[J] {1 + (—iN) Z{[J] + (=N Z5[J] + - } (5.81)

2] = 23] {% / e (%) } Z007] (5.82)

Al = 5% {% [ dta (%)4}22%]

where

and
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6 827y %74 §Zy &7 A }

§J2(2) 0.0%(x) | 6J(z) 6J3() + 20577 @) (5.83)

We get for the first order
zi[J] =

— %/d‘lw [3A(IE,IE)A(IE,JE) - 3!A(3:,3:)/d4y1d4y2A(3ﬁ,yl)A(iﬂvy?)J(yl)J(y?)

+/d4y1"'d4y4A($,yl)A(ﬂf,yz)A(iﬂay?))A(ﬂ?,y4)J(y1)J(y2)J(y3)J(y4)] (5.84)

This result can be represented diagrammatically in the form,

4O;+i'><

N
|
| =
|
>~ =

(5.85)

For Z), we get
Zo[J]

_ %(z{mf + % <%>24!/d4w1d4w2A(x1,wg)A(acl,wg)A(xl,wg)A(xl,xg)
1\2
+ (E) [—72/d43:2/d4:131A(331,:E2)/d4y1A(iE1,y1)J(yl)
A(371=372)A(95279€2)/d4y2A($27y2)J(y2)
+24/d4:132d43:1A(3:1,:E1)/d4y1A($1,y1)J(yl)A($1,y2)
/d4y2A($2,y1)J(?J2)/d4y3A(9€2,y3)J(?J2)/d4y4A($1,y4)J(y4)
+24/d4a:2/d4a:1/d4y1d4y2d4y3d4y4ﬁ(ﬂ?1,332)A(331=y1)
Az, y2) A1, y2) Az, 22) Az, ya) J (Y1) - - - J (ya)
—8/d4x2/d4:p1/d4y1---d4y6A(:E1,$2)A($1,yl)A(xlyz)
A(z1, y3)A(w2, ya) A(w2, ys) Az, y6)J (Y1) - J (ys)

+36 / d4$2d4l‘1A(l‘1, :L'l)A(:L'l, :L'Q)A(:L'l, :L'Q)A(:L'g, l‘Q)
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—36/d4$2d4$1A($1,$1)A($1,$2)A(JE1,!E2)/d4@/1d4y2A($2,y1)
A(z2,y2)J (y1)J (y2)
—36/d4a:2d4a:1d4y1d4y2A(a:1,ajg)A(ajl,xg)A(xg,xl)
A(z1,y1)A(w1,y2)J (y1)J (y2)
+36/d4ﬂ?2d4ﬂf1d4y1"'d4y4A($1,w2)A(ﬂ?1,w2)A(ﬂ?1,yl)
Az, y2) Az, y3) Az, ya)J (y1) - - I (ya)
48 / dradyrd i d ya (1, 22) Ay, 22) A1, 72)

Az, y1)A(x2, y2)J (y1)J (y2) (5.86)

This can also be written as,

Zy[J]

1
(Z{[J])2 + n d4x1d4x2A4(x1,a;2)

N | —

3

+5 o /d4:171d4:1:2A(x1,:pl)A2(x1,x2)A(x2,x2)

1
2-31-3!

/d4$1d4$2d4y1 - dYye Alyr, 21)A(ya, 1) Ay, 21)
Az, 22) A(x2, y4) A2, y5)A(r2, y6)J (Y1) - - - J (y6)

2
+E d4x1d4x2d4y1 tee d4y4A(y1, xl)A(xl, xl)A(xl, LEQ)

A(zg,y2) A(w2, y3) A2, y4)J (y1) - - J (ya)

3
+—2 T d4x1d4x2d4y1 . d4y4A(y1, x1)A(y2, xl)A2(xl7 332)

A(w2,y3)A(w2,y4)J (Y1) - J(ya)
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1
-5 / Ay o d yy dys Ay, 21) A, 21)A (@1, 22) A2, 72)

A(z2,y2)J (y1)J (y2)
1
~3 / drydzadty1dya Ay, ©1) A% (21, 20) Az, 29) A1, y2) I (Y1) (y2)
d*zrd wad y1d ya A(yr, ©1) A% (21, 22) A2, y2)J (y1) T (42) (5.87)

12

Let us now evaluate the normalization up to second order in perturbation theory. The
condition Z[0] = 1 gives,

1=N[1+ (=i\ng + (=iX)*na + -] (5.88)
where
1
1, 1 3
"T M T gy @ BT m (590
We then get,

1
L+ (—iN)ng + (—iX)2ng + - -

= 1—(=iMng — (=iN)?(ng —nd) + - (5.91)
Putting everything together we have

Z1) = Zo[J]{1 — (=iX)ng — (—=iN)2(ng —n?) +---}
{1+ (=iNz] + (—iX)2Zh + - }

= Zo[J] {1+ (—iN(Z] — m1) + (—iN*(Zh — na +nf —n1Z7) + -+ } (5.92)
Defining now

Zl = Z{—nl
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Zy = Zy—mo+ni—mZy =2 —ns—my (5.93)
we get
1 ( ) 1
2l =7 + 4,>< (5.94)
and
218

2! 41 4l

/
\
00 _8_1% .

with Z;[0] = Z3]0] = 0. Therefore the generating functional

| =
| —
—_
[\V]

Z[J] = Zo[J] {1 + (—iN) Z1 [J] 4+ (—iN)* Zo[J] + - } (5.96)

is automatically correctly normalized if we neglect all the vacuum amplitudes, know as
bubbles. To verify that this expression reproduces the perturbation theory results, let us
evaluate the propagator up to second order in A2. We get

/ . 82Z1J]
A (331,332) = m -
__ T4 | (—i\) _sal | (—i))2 8* Za[J]
6J(21)0J (x2) | ;g §J(21)8J (w2) | ;_, 5T (21)0J (22) | ;g
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— Aeraz) + (<05 [ a0 Az, 1) Ay
+(—i)\)2/d4y1d4y2 Eﬁ(iﬂl,yl)A(yl,yl)A(yl,yz)A(yz,w)A(ZJ%@)

1 1
+ ZA(Uﬂlayl)Az(yhy2)A(y2,y2)A(y1,l’2) + EA(Uﬁl,yl)Ag(y17y2)A(y2aﬂf2) (5.97)

y

In diagrammatic form we have the situation of Figure [5.15]

8
),
8
no
8
_
=
Do
N —

1 1

T T2
4 x T2 4 x T9 6 I U T2

Figure 5.15:

Continuing with the scalar A¢* theory as an example, let analyze the generating func-
tional for the connected Green functions, W[J]. It is easy to see that the terms like
Z32[J] correspond to disconnected diagrams which are part of Z[J]. Let us see how they
disappear in W[.J]. We have

iW[J] = InZ[J] =
= InZo[J] +In {1+ (=N Z1[J] + (—iN)? Za[J] + -+ - }

= WL+ (SN~ (A (L) + (A ZalT] 4

= iWo[J] + (—iN) Z1[J] + {(—M)Q(ZQ[J] — % (Zl[J])2} 4.
= i {WolJ] + (—iNWAJ] + (—iA)* WalJ] + -+ } (5.98)
with
WAl = 4ld), iWalT] = ZelJ] — 5 (Z11)) (5.99)

Therefore the disconnected diagrams contained in Zs[J] are subtracted and Wy and Ws
have only the connected diagrams.

5.5.5 Symmetry factors

After doing the derivatives in order to J to obtain a given Green function, we have some
diagrams multiplied by numbers known as symmetry factors. For instance for the one-loop
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correction to the propagator we get,

§2Z
A 6.0 (21)i0 (x2) | ;g
(21, 22) i6.J (x1)i0J (22) | ;—g
527, 827
vz PN N
i6J (21)idJ (x2) J:OH ) 0 J (21)i0J (x2) J=0+

= A(xl,xg)—ké -JL +o- (5.100)

The factor % is the symmetry factor that corresponds to that diagram. The method of

the generating functional gives automatically the correct symmetry factors. However in
practical applications it is normally easier to have a rule to obtain these symmetry factors.

Rule for the Symmetry Factors

The symmetry factor S of a diagram it is given by

= __ 101
S=+ (5.101)

where N is the # of different ways of forming the diagram, and D it is the product of the
symmetry factors of each vertex by the number of permutations of equal vertices.

As an example take the diagram that contributes to the propagator at one-loop rep-
resented in Fig. Then according to the rule we have,

p p
Figure 5.16:
4x3 1
S = =3 (5.102)

5.5.6 A comment on the normal ordering

In the previous example we have diagrams like in Fig. 5.16] that we generically denote
by “tadpoles”, that connect fields that belong to the same vertex, and that we saw that
were excluded by the normal ordering. This difference comes from the fact that we were
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not very rigorous in the definition of the Lagrangian to include in the path formalism.
If we would we would concluded that we should have to do the normal ordering in the
Lagrangian to include in ¢t [ 4'2L(9) This would make the Lagrangian £(¢) to include in
the path integral different from the classical Lagrangian. Let us look at ¢* as an example.
We will use the relations

$(@)o(x) =: $(x)o(x) : + (0] $()(x) 0) (5.103)
or symbolically ) ) )
1% = ¢% — (0] 42 0) . (5.104)
In a similar way
¢t =" 46: %+ (01610) +6 (0] 6% |0) (0]¢? |0) (5.105)
Therefore we get
. . . . . 2
L= 91— 62 02(@) : (0] 6%(x)]0) — 6 ({01 [0)) (5.106)
or
19" = 9" — 6 6% (0] 67 |0) (5.107)
This means that the quantum Lagrangian should be written as
A -
E?nt = _a : ¢4 :
B Aoy Ay
=~ 7o (5.108)
where

I = (0]¢*x)]0)

= / dhkydks (0| (af(kl)e“ﬂ'x+a(k1)e—ikw) (af(kQ)eikz.x M(,@)e_ikz.x) 0)

= /difldifg (0] a(k;l)aT(kz) |0) eilka—k1)-x

- ek 1
_ / iy = / S (5.109)

In the previous expression we have used the relations

[a(k),a™ (k)] = (27)32w8° (k — k') (5.110)

wp = \/ k2 + |K|? (5.111)

The integral I is divergent and in fact it is equal to the one-loop integral. In fact

/ d*k i
(2m)4 k2 — m?2 + e
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3k [T i
- / (2m)3 /—oo o (ko — wg) (ko + wi)

Bk 1
_ 1o 5.112
/(27r)3 2w, (5.112)

Therefore if we had been rigorous we should have to include the term, %qbzl in the
interaction. The Lagrangian to use in the path integral should then be,

A, A
Ll =—70" + 7071 (5.113)

It is easy to verify that the additional term cancels the tadpole. In fact we have

=0 (5.114)

and therefore the tadpoles would not appear. However many times we do not worry about
this considerations and just use the classical Lagrangian in the path integral. This can be
done because the tadpole gives an infinite contribution to the mass, that can be absorbed
in the renormalization process.

In QED the same occurs, we should have as interaction Lagrangian
LIS = —epy"p A, + eA, (0] Pyep |0) (5.115)

and the second term would remove the tadpole shown in Fig. 5.17]

Figure 5.17: Tadpole for QED.

However, due the Lorentz invariance of the theory, one can show that this tadpole vanishes
to all orders and therefore we do have to worry, just use the classical Lagrangian.
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5.5.7 Generating functionals for fermions

For theories with fermion fields we introduce Grassmann variables. These anti-commuting
variables are in some sense the the classical limit of fermionic quantum fields. The details
of this construction are explained in the Appendices A and B. Here we just review our
conventions. Due to the anti-commuting character it is necessary to specify the order of
the derivatives.

We will take the convention that derivatives are left derivatives, that is they obey,

%@) / dym()ly) = v(x)
ﬁf@ / () = —B(z) (5.116)

In the Green functions the order of the derivatives is such that

G (x1, ... yn) = (O] T(w1) - ()P (y1) - ¥ (yn) |0)

_ 8> Z[n, 7]
= T e ion (e, i)
- 0 S Zin (5.117)

on(yn)  i07(w1)

where we have defined the generating functional for fermion fields as

Zlng = (0| TetS dei@v@+d@mn@)] oy

_ / D, et | 2L @) D @m() (5.118)

Examples of these results will be given in the Problems at the end of the chapter.

5.6 Change of variables in path integrals. Applications

5.6.1 Introduction

One of the great advantages of having an expression for the generating functional Z[J] in
terms of a path integral is that a great number of manipulations that are familiar for the
usual integrals, (change of variables, integration by parts, ...) can also be applied here.
Let us see the implications of changing integration variables.

Let us consider an infinitesimal transformation of the form,
o; — ¢ + €FZ(¢) (5.119)

where

Fi(¢) = fi+ fiyd5 + - (5.120)
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Then we should have, in first order,

D(¢p) = D(¢p)det

0ij + 6%

OF;
—  D(¢) (1 + 5552,) (5.121)
On the other hand
(S@)+Jidi) _y i(S(8)+Jidi) [1 + e <% + J> (Qg)} (5.122)
As the integral for Z(J) should be independent of the change of variables we get
oF; ]
= [ D(¢ F, + i(S[@l+Jids) 12
o= [P0 i35+ ) B 5 (129)

Using ¢; — W we get a more compact expression,

{i [% <155Ji>”"]ﬂ< 5 ) ?ﬁf <%>}Z<J>=0 (5.124)

This the general expression that we are going to apply to two important particular cases,
the Dyson-Schwinger equations and the Ward identities.

5.6.2 Dyson-Schwinger equations

Let F; = f; independent of ¢;, that is a simple translation of the fields. Then the previous
master equation simplifies to

(% [ng] * J) 2(J)=0 (5.125)

We will see below that this the expression for the Dyson-Schwinger (DS) equations for
the generating functional of the full Green functions. In this way, the DS equations are a
consequence of the path integral for constant field translations. This equations can further
be written as

1 )
=——F Z 12
5 =58 || 2 (5.126)
where the functional E[¢] is the Euler-Lagrange equation of motion,
68
5.127
Blo =5 (5.127

For many applications it is more convenient to write the Dyson-Schwinger equations
for the connected and proper (one particle irreducible) Green functions. For this we have
to write the corresponding equations for the functional W and I'. Using the identity

) W 0
F e AND = (S + ) £ (5129
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we can write

1 1) ow )
—F Z\J =F |i— 4+ —| 1 12
Z |:Z'5Jk:| V] |:Z’L'5Jk + i5Jk:| (5.129)

Therefore the DS equation for the generating functional of the connected Green functions
can be written as,

+

o 1
Yoy oy (5.130)

sz—E["SW 5 }

Let us now find the corresponding equation for the proper, or one particle irreducible,
Green functions. To obtain this equation we use the following relations

i oW 6T
= J = ———
Ok = 5 R e
5 5 5 5
= - Ty
. = g Son s
We get
6T 5
2 _Elg+C m—} 1 5.131
Son [¢k km 5o ( )

It is in the form of Eq. BI31] that the DS are more useful.

Example : Self-energy in ¢°

Let us start with the example of the self-energy in ¢>. The action for this theory is, using
our compact notation,

Slg] = %qﬁk(—ﬂ — M) Spambm — %(qﬁk)‘”’ (5.132)
Therefore the equation of motion is
Blox] = (-0 m?)ox — 5(60)’ (5.133)

We get therefore, expanding the functional,

)
E [Cbk + kaw

We get therefore for the DS equation

] 1=—(04+m?)ey — % <¢k + Gkr%) Pk (5.134)

S5 = O+ m)x =5 (61 + Gid) (5.135)
By taking functional derivatives with respect to ¢, we get the DS for the various Green
functions, all derived from just one master equation. For instance, for the self-energy we
get,

L 0 w0 — 2 (20850 — o Gernog) (5.136)
5¢k5¢m_ m km 2 kOkm W omnGkrnOrk .
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Setting ¢ = 0 we get

A
Pkm - (_D - m2)5km = ZE PmnGkrnérk

A
= 5 anGkrnFT’s Gsk

A
= 1 5 PmnrrsGsk Gkk’ Grr’ Grm’ Pk’r’n’

A
= —i5 G Grslwam (5.137)

where we have repeatedly used the relation

;G = i, (5.138)
By definition of self-energy we have,
i — (=0 = m)0km = —Skm (5.139)
Therefore )
— 1 Xk = —1'5 Grr GrstU i sm (5.140)

as shown in the Fig. 6.I8 We see that the DS equation is no more than the statement

DA "
=

Figure 5.18: Dyson-Schwinger equation for ¢3.

that the vertex of the theory is %gb?’ .

Example: Self-energy in ¢*
In the case the action is
1 A
S[e] = 5 k(=0 = m*)okmodm — 37 (9x)" - (5.141)
Therefore the equation of motion is
A
Blo) = (-0 - m*)ox — 5 () (5.142)

We then get

E [% + ka%] 1=—(O+m?)¢x — % <¢k + ka%> <¢k + Gkn%) b
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)

A
=—(0+m?)¢y, — 30 (¢2 + 0k Grnnk + 2GrmPrdkm

A
=—(0O+m?)¢y, — 30 (@k + Gim

- inmFmeGkne5nk> (5.143)
The master equation for the DS equations then reads,

or A .
o —(O4+m?)¢r — 30 (6} + DkGrndnk + 2Grm®r0km — iGrmlmeGrnedpr)  (5.144)

To obtain the DS for the self-energy we take the derivative with respect to ¢; make all
¢ = 0 after derivation. We obtain,

Tyj — (—0—m?)d,
A .
= —5 (Gknénkék] + 2ka6km6kj - Zkameij”ﬂS”k
—kaprpjrszkn£5nk - kaFmZGknprpjénk) (5'145)

This equation can in turn be written as,
. A A . .
—i1¥; = —Z§Gkk5kj + Z5kaZFmejGkkann'Gzz'Zkanw5nk
A : .
+Z§Gkk’Gmm’ Gpp’ZFk’m’p’ijFméGkk”Gnn’GM’ZFk”n’Z’énk
A
+Z§kaFmZGanprj5nk

A A
= —iEGkk%j + i§5kz5nkaaninj (5.146)

For the ¢* theory we have [;; = 0 and therefore
Grnep = Gt Grn' G Gppr 10 gy (5.147)

We finally get,

. A A .
— X = _ZEGkkékj - ZgGkk’Gkn’GkZ’ Lo (5.148)

that we represent diagrammatically in Fig. [5.19] Again the DS equation for the self-energy

— m+1kfgém
< @ 2

Figure 5.19: Dyson-Schwinger equation for ¢*.

is nothing else than the identification of the vertex of the theory.
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5.6.3 Ward identities

Consider a theory with some symmetry. This symmetry is expressed as an invariance of
the action, that is
55[¢)
0i
where we considered the previously defined infinitesimal transformations. If this symmetry
transformation also leaves invariant the integration measure D(¢) the we get simply the
expression,

Fi(¢) =0 (5.149)

)

Ji F; [W} Z(J)=0 (5.150)
This expression is known as Ward Identity. Derivation in order to the external sources
will lead to relations among different Green functions as a consequence of the symmetry
of the theory. For gauge theories the correct expression is a bit more complicated. The
reason being, as we shall see, that in the quantization of gauge theories one normally has
to introduce terms that break the symmetry, known as gauge fixing terms. In this case
we can write,

Sefr = Sr+ Sni1 (5.151)
where % F; =0 and 65 (gz LF; # 0. Then, if the measure is still invariant, we should have
the more complicated expression for the Ward identities,

oSNy | 0 1)
— Ji | Fi|— | Z(J)=0 5.152
(2 (53] +#) 5 [353) 2 (>152)

In the next chapter we will apply this expression to obtain the Ward identities for QED
and for the non-Abelian gauge theories. For these last ones the question of the invariance
of the measure is more subtle and will be discussed there, after we have learned how to
quantize these theories.
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Problems for Chapter 5

5.1 Evaluate G? starting from B21] and show that it is indeed the connected Green
function with four external legs.

5.2 Show that for a real scalar field we have

1
Zo[J] = exp {—5 / dizd'yJ(z) A (x,y)J(y)} (5.153)
where
A (z —y) = / d'k eik'(w—y); (5.154)
(2m)4 k? —m? + ie '

Hint: Use a convenient generalization of the result

+00
/ da - - dwye 37MuTitbii — 2N/ (g M)~ H/ 230 (M sty (5.155)

—00

5.3 Determine the symmetry factors for the following diagrams:

o OO OO0

5.4 Consider the theory ¢3, that is, V(¢) = %(b?’. Using

Z1J] = exp {—z’ / By [%] } Zo(J) (5.156)
where
Zo(J) = exp[—% / ded*s' J(2)GY (x — o/)J (2')] (5.157)
and

1

o m? i i (5:158)

Gz —a') =i / d' ket =)
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show that the symmetry factor of the diagram

isS:%.

5.5 Given the Lagrangian for the free Dirac field

Lo =T(ir"8, —m)b . (5.159)

show that the generating functional for the Green functions is

Zoln, ] = e~ { d'ad*y W@k @yn(y) (5.160)

where

dp . i
0 _ —iple—y) ([~
Srap(®:3) /(277)46 <I5— m+i€>a/3
82 Zy
i0na(y) i0ng(x)

= (0] Tya(x)Pa(y) |0) -

5.6 As we will show in Chapter [6] the generating functional for the Green functions in
QED is given by,

Z(Jpsm,7) = / D(A,,, 0, 9) ¢ @elapptLar+ It Autnuin) (5.161)
where
1 — .
Loep = ~1 Fu F* + (i) —m)y
_ 1 2
Lar = —3¢(0-4)
D, =0, +ieA, .

a) Determine Zy[J*, n,7]
b) Show that

1) 1) 0
Z[J*,n,7m :exp{ —ie /d4x7 ) os = }Z JH n,ml . 5.162
] = exp () [ et (Mo s s F A ] (516
c¢) Expand
Z =7y [1+ (—ie)Z1 + (—ie)*Zo + - | (5.163)
where we have subtracted the vacuum-vacuum amplitudes in Z;, that is, Z;[0] = 0 —

Z[0] = 1. Show that
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A
T

d) Discuss the numerical factors and signs of the previous diagrams.
e) Evaluate in lowest order

5z
10ma (2)i6n5(y)idJ, (2)

and verify that it coincides with the Feynman rules for the vertex

(0] TA"(2)1hp(y)¥a(2) |0) =

f) Determine the amplitude for the Compton scattering in lowest order, that is,

5z
1070 (w)i07 5(2)i6J, (y)id T,

(0] TAH (2) A" ()5 (2) 1 (w) |0) =

and verify that it reproduces the result obtained from the usual Feynman rules.

5.7 The Ward identities for QED derived in section 5.7 have not the form

0

e

} Z(J)=0

where d¢; = F;[¢] because

SGF—/da:< 8A)>

it is not gauge invariant. Introduce the functional

Z/(J;u??,ﬁ) = /’D(A,“Ib,a,w,w) eifd4x(£eff+J”Au+ﬁ¢+$n)
where
Letr =Loep + Lar + L

and
Lo=—wlw .

35
- ;O

(5.164)

(5.165)

(5.166)

(5.167)

(5.168)

(5.169)

(5.170)

(5.171)

(5.172)
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where w and @ are anti-commutative scalar fields.
a) Show that
Z/(Juﬂ],ﬁ) =N Z(J;u??,ﬁ) (5.173)

where A do not depend neither on the fields nor on the sources. Explain why this nor-
malization does not affect the Green functions. Therefore either Z or Z’ are good for its
calculation. b) Show that the integration measure D(4,,v¥,¢,w,w) and [d*zL.s; are

invariants under the transformation
8 = —iewb) 5 = iepwl
0A, = 0,wb (5.174)
5@2%(8-14)0 dw=0

where 6 is an anti-commutative parameter (Grassmann variable). ¢) Introduce the anti-

commutative sources for the fields, w and @, that is

Z(Juymm,¢,C) = /D(AwQp@,w,w)eifd4x(£eff+JuAu+n¢+En+wc+Zw) (5.175)
Show that
Z(Jusn,1,6,C) = Za($,C) Z(Jum, M) (5.176)
where
Z(Juym,7) = / D(A,,, 0, 9) ¢ @ elbapptLar+ It Autny+in) (5.177)

Consider the functionals W, Wg and W as well I',I'¢ and T' defined in a similar way.
What is the relation between W, W and W and the set T', ' and I' . d) Show that the
Dyson-Schwinger equation for the fields w and w is
oT
— = —[w . 1
S w (5.178)

e) Show that the Ward identities can now be written as

J —
JiFi[m]Z =0. (5.179)

Write the Ward identities for T(Au, ¥,1),w,w). Show that you recover the known results.

f) Show that a mass term for the photon, although it breaks the gauge symmetry does
not spoil the Ward identities, if the ghosts also have mass. If the photon mass term were
% p? A, A* what would be the mass of the ghosts?
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Chapter 6

Non-Abelian Gauge Theories

6.1 Classical theory

6.1.1 Introduction

We will start by reviewing briefly how to construct the classical action for a non-abelian
(Yang-Mills) theory. Let us consider a compact group G corresponding to some inter-
nal symmetry. Let ¢;, (i = 1,--- ,N) be a set of fields that transform under G in a
representation of dimension V.

¢(x) = ¢'(z) = Ulg)d(x) (6.1)
where U(g) is a N x N matrix. In an infinitesimal transformation
g=1—1ia%" a=1,---,r (6.2)

where a® are infinitesimal parameters and ¢® are the generators of the group. For the
fundamental representation they satisfy

|:ta’ tb] — Z'fabctc

1
Tr (t“tb) = 55“” (6.3)
Examples of these generators are
O.CL
SU(2) ta:7 3 a:1,2,3
a )\a

where 0% and \* are the Pauli and Gell-Mann matrices, respectively. In the representation
associated with the fields ¢;, the matrices 7% are of dimension (N x N) and they form a
representation of the Lie algebra, that is

[T, T°) = ifebeTe (6.5)

185
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Its normalization is given by
Tr(T°T®) = §6*°T(R) (6.6)

where T'(R) is a number that characterizes the representation R. For a given representation
one can show the identity (see Problem 6.1),

T(R) r = d(R)Cs(R) (6.7)

where 7 is the dimension of the group G and d(R) is the dimension of the representation
R. In an infinitesimal transformation

d¢p = —ia"T ¢ = —iq o (6.8)

where we have introduced the useful notation a =T

6.1.2 Covariant derivative

In a local gauge theory we have the usual problem that the derivative does not transform
as the fields, that is,

Ot # Uyt (6.9)
because the parameters depend on the coordinates, . To solve this we introduce the
covariant derivative,

D¢ = (0 —igAu)e 5 Au=AT" (6.10)

where A7, are the gauge fields, in equal number to the generators of the group. The
transformation properties of A, are obtained requiring that D,¢ transforms in the same
way as ¢, that is,

(Du¢)/ = (Ou— 294,1;)@/ = (O — ZQAL)Uﬁb

= .U +Uduo—igA,Ud

= UDu¢+ (igUA, —igA, U+ 9,U)¢ (6.11)
Therefore (D, ¢)" = U(D,¢) requires
_ { _
A, =UA U — ;&LUU ! (6.12)
For infinitesimal transformations U ~ 1 — i and we get
1
A=A~ A= | Au] — 0 (6.13)
This can be written in components
1 1
SAS = —;E?Ma“ + frrab A = —;(Gua“ — gfrral AS) (6.14)
As in the adjoint representation, (T°¢)q, = —if?°®, we get
a 1 - C (& 1 a
oAy =~ (Oubap — ig(T)apAS) o = - (Due) (6.15)

that is, the gauge fields transform proportionally to the covariant derivative of the param-
eters of the gauge transformation.
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6.1.3 Tensor F,,
Let us calculate the commutator of two covariant derivatives,
D D)6 = [0~ 940 — igds] 0
= —ig (0udy — AL —ig |Au AL ) 0
= —ig Fu ¢ (6.16)
We have defined the tensor F, = Fj, T known as curvature,
Euw = 0udv = 00 Au— ig [ A A1) (617)

In components
Fo, = 9,A% — 9,A% + gfabeAb A¢ (6.18)

which shows that it is a generalization of the Maxwell tensor. Let us see how [}, trans-
forms under gauge transformations,

F/

~ MY

Oy = Ay —i9 | Al Al
= [@L(Ué,,U_l) - g@u(&,UU_l) — (p 1/)]

~igUT A AU = 9,00, U4, U]

- va,u a0 + é [0,UU,0,UU~1] (6.19)

Using
o, Ut=-U"to,uUu! (6.20)

we get
E;u/ = U,E;WU_l (6.21)

For infinitesimal transformations this gives,
6 = i | Fyw| (6.22)
It easy to see that one can construct an invariant with the tensor F),,. In fact the quantity,
1
TH(E, E) = Tr(E ) = S Fl oW (6.23)

is an invariant and can be used to construct the action. Generalizing the Maxwell action
for the Yang-Mills theories we get,

1 1
‘CYM = _gTr(,EWEW) = _ZFSI/FGMV (624)
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6.1.4 Choice of gauge

As we will see later in this chapter, gauge invariance can be used to choose some particular
configuration, or gauge for the gauge fields. We call pure gauge to the field A* such that

£, = 0. One can easily show that

F,=03U:4,=0,UU" (6.25)
Two important examples of gauge choices are, the Azial gauge defined by,
ntAf(z) =0 (6.26)
where n# is a constant four vector, and the Lorenz gauge defined by,

9" A% () = 0 (6.27)

6.1.5 The action and the equations of motion

The action for the pure gauge theory (without matter fields), is
1 4 N7 1 4 a pva
S = ~3 d*xTr(F, F'") = ~2 d'xF, I (6.28)

and it is invariant under gauge transformations, because Tr(F,, F*) is. The Euler-
Lagrange equations

oL oL

_ = .2
5o Az~ 5ag " (6:29)
can be easily obtained noticing that we have
5L 5L OF),
=— P7__ — o (6.30)
6(0uAg)  OFp, 6(9,A3)
and )
oL oL OF,, bea 1b
— — ca A0 prepy 31
5Ag ~ 6FL, 6AY 9/ A (6:31)
We get therefore
O 4 g frr AD PP = 0 (6.32)
As we have in the adjoint representation, (T°¢)q, = —if*®, we get
(a/ﬂsab - ig(TC)abAZ)F“Vb =0 (633)
that is
ab vb __
D FF? =0 (6.34)

which is the equivalent of the Maxwell equations in the absence of external sources. As in
the Maxwell theory, from the antisymmetry of F#** we can derive the Bianchi identities,

DS Fypy + D Fppy + D3P Fppy = 0 (6.35)

which are equivalent to the homogeneous Maxwell equations.
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6.1.6 Energy—momentum tensor

As in the case of Electromagnetism, the canonical energy momentum tensor is not gauge
invariant. In fact

~ oL
g = 2% _grAn g g
5(&“4%)8 o T gL
1
_ Fupaal/AZ _ ZgHVFPU“F;U (636)

To make it gauge invariant we proceed as in the Electromagnetism. We subtract from
0" a quantity that is a four divergence, in such a way that the conservation laws are not
changed. The relevant quantity is,

NN
= 9, FHP AV 4 g, AV

b b
— gf caApr,ucAua + F,upaapAua

= FHPY(—F)"+0"A7) (6.37)
We get therefore
o = M — A
= PR — ig‘“’Fp‘mFga (6.38)

which is analogous to the electromagnetism. Introducing the analog of the electric and
magnetic fields,

. . 1 g
Ey=F.: By =—gepFy  ijk=123 (6.39)
we get
90 = L(E*.E*4 B*. B
. B o (6.40)
902 — (Ea x Ba)z

with an interpretation similar to the case of the electromagnetism.

6.1.7 Hamiltonian formalism

From the component #° we get for the Hamiltonian

H = /d3$%(ﬁa .E®+ B*. B%) = /d?’x”H (6.41)

1One should note an overall sign difference with respect to the general definition of Eq. ([C7A). This is
to maintain the component #°° with the meaning of a positive energy density. Obviously, the overall sign
in Eq. (IL75), has no meaning prior to make contact with the model.
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where H is the Hamiltonian density. We are now going to show that the relation between
the Hamiltonian and the Lagrangian is not the usual one. For this it is convenient to write
the action using the so-called first order formalism,

1 a a aoc (& rva 1 a ra
S = / diz {—i(Z?MA,, — O, A5 + gf A AL P 4+ L FF } (6.42)

where A}, e Fjj, are now taken as independent variables. It is easy to show that the

variation of S in order to Fy, gives back its definition,

Fp, = 0,45 — 0,A5 + gf " A}, A (6.43)

and therefore if we substitute in S, Eq. [6.42] we get back the usual action. Using the
definitions of £* and B* we get

S = /d4x_(80ga+ﬁA0a_gfabcAObA’C) _E’a_ %(E’a'ﬁa_’_éa'éa)
_ / d4x{_aoga.ﬁa (B B+ AT _gfabcmm} (6.44)

The Lagrangian density is then
L= _EkaaOAka o H(Eka, Aka) + AOaCa (645)

where L L
H=i(E*-E*+ B®- B
Bka = _%ekmnana (646)
Cazﬁ_E_’a_gfabcA'b'E_'c

The variables Af and —E} are canonical conjugate variables, H(E}, Af) is the Hamil-
tonian density. The variables A% play the role of Lagrange multipliers for the conditions,

V.- E%—gfibedb . Ec =0 (6.47)

which are just the equations of motion for v = 0 (Gauss’s Law). If we introduce an equal
time Poisson bracket

{A" (@), B (y)}ogmyo = 67670 8% (& — §) (6.48)
one can show that

{C%(x), C*(y) }agmyo = —9f ™ C(2)6° (& — ) (6.49)

{H,C%x)} =0 (6.50)

This shows that gauge theories, both abelian and non-abelian, are what it is known as
Hamiltonian Generalized Systems, first introduced by Dirac.
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To define these systems let us consider a system with canonical variables (p;, ¢;) that
generate the phase space I'*" (i = 1,...,n). Then the action of the Hamiltonian Gener-
alized Systems is given by,

S :/ (t)dt where L(t Zplql — h(p,q Z (6.51)

The variables A%(a = 1,...m) are Lagrange multipliers and ¢“ are the constraints. To be
an Hamiltonian generalized system the following conditions should be verified,

{e*e" = Y19 (6.52)
{h.o*} = P (p,q)¢” (6.53)

The case of gauge theories is a particular case with f®¥ = 0. Therefore to be able to
quantize gauge theories we have to learn first how to quantize Hamiltonian generalized
systems.

6.2 Quantization

6.2.1 Systems with n degrees of freedom

Let us consider an Hamiltonian Generalized Systems, described before. The Lagrangian is
L(t) = pigi — hp,q) — A*¢*(p, q) (6.54)

which leads to the following equations of motion,

a&p
. Z?h . aaSO .
pi = ~Jq; A 94; (6.55)

©*(p,q) =0 a=1,...,m

One can show that an Hamiltonian Generalized System, (HGS) is equivalent to an usual
Hamiltonian system (HS) defined in a phase space [*2(v=m)  That is, a HGS it is equiv-
alent to an HS with n — m degrees of freedom. To prove this we construct explicitly the
HS I'*. For this consider m conditions,

X*(p,g) =0 ; a=1,....m (6.56)

such that they satisfy,
{XO‘,XB} =0 (6.57)

and
det ({w,xﬁ}( £0 (6.58)
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Then, the subspace of I'>" defined by the conditions

X“pq) = 0
a=1,...,m (6.59)
©*(p,q) = 0

is the space I'*2("=™)  The canonical variables p* and ¢* in I'*2("=™) can be found in the
following way. Due to the requirement { X%, x? } = 0 we can choose the variables ¢; in I'?"
in such a way that the x® coincide with the first m variables of the coordinate type, that

1S
fo'

g =(x",q ) (6.60)
~— N~
n m n—m
Let now p = (p®,p*) be the corresponding conjugate momenta. In these variables, the
condition in the determinant takes the form,
Op®
det | =—=| #0 6.61

This means that, in principle the conditions ¢®(p,q) = 0 can be solved for p®, that is,

(67

p* =p*(p",q") . (6.62)

The subspace I'* it is therefore defined by the conditions,

X* = ¢*=0
(6.63)
p* = p*(p*.q")
The variables p* and ¢* are canonical and the Hamiltonian is given by
h*(p*, (]*) = h(p, Q) ‘(XZO ; ©=0) - (6'64)
The equations of motion are now
Oh” ok oh*
= pr=—a (6.65)

Op* oq* ’

in a total of 2(n —m) equations. The fundamental result can be formulated in a form of
a theorem.

Theorem 6.1
The two representations lead to the same equations of motion and are therefore
equivalent.

Proof:
The relations ¢* = 0 = ¢* = 0, which means, in the (p,q) description,

h 0

0 ; =1,... . 6.66
Opa " Op T (6:59
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Let us now consider the equations of motion in for the coordinates q* in the two

representations
. oh 0pa
* — Aa
a Op* * Op*
oh* oh Oh Opq
o= =, 9P (6.67)

op*  Op*  Op“ Op*
The two equations will be equivalent if

o« 00a  Oh Op,

= 6.68
Op* Op® Op* ( )
which means, using the previous relations,
Ipa | Opa 3p5>
A + — =0 6.69
<0p* dpg Op* (6.69)

But this relation is true due to the constraints ¢, = 0. Therefore the two represen-
tations are equivalent which proves the theorem (the equations for p* could be treated
in a similar way).

If we want to quantize these systems we can use the expressions for the evolution
operator in terms of a path integral in the variables (p*,¢*) as these correspond to an
usual Hamiltonian system. We have then,

dp*dg*
U(q},q;) /H b q el [rd )l (6.70)

Although this is a possible way of quantizing the theory, it is normally not very convenient
in most situations. This is because in real situations it is difficult to invert the relations

=0 to get p® = p*(p*, ¢*). It is normally more convenient to use the variables (p, q)
with appropriate restrictions. This can be easily done substituting,

[T~ T Lo ). (6.71)

Then dnd
Ulara) = [ [T TIa0 - e J e (e

This expression can be written in terms of the constraints if we recall that

* 89011
S(p* —p*(p".q")) = (") det s (6.73)
Then we get
[T =", a*) = [ [ 6(™)(x*) det [{a, X3} - (6.74)

t t



194 CHAPTER 6. NON-ABELIAN GAUGE THEORIES

Finally we use the identity

oy dA —i [ dtAYpa
(e )—/Zwe ; (6.75)
to get
dpdq dA o i
Ulapa) = [ T] 550 TI0 Qe i )| 50 (6.76)
where
S(p,a,\) = / [pd — h(p.q) — Ngldt . (6.77)

It will be this expression in Eq. (6.76]) that we will apply to the gauge theories. Note that
the expression in the parenthesis is precisely the Lagrangian for generalized Hamiltonian
systems, Eq. (654). It can be shown that the physical results do not depend on the
auxiliary conditions x® = 0. In gauge theories these are known as the gauge choice.

6.2.2 QED as a simple example

Let us consider the electromagnetic field coupled to an external conserved current, J* =
(p,J), with 9,J# = 0. The Lagrangian is,

1
L= _ZF“"FW —JrA, . (6.78)
The action can be written using the first order formalism,
S = / d'z

The equations of motion are obtained by varying with respect to E and B

B2 _ 2

o o E - o
(VA 4 A) BV x A+ T a0 JOA (6.79)

E = —(VA° + A) V.B =0,
— o8 (6.80)
B = VxA VxE = -

ot~

Varying with respect to A? and ff,

ﬁ‘E::p7
= o o o (6.81)
VxB—a—E:J

ot

If we substitute B =V x 4 we get after an integration by parts,

S E2 vV x A2 . L - o
Sz/d‘*:n{—E-A—<#—J-A>+A%V-E—p)}. (6.82)

It is clear that A° plays the role of a Lagrange multiplier. The canonical variables are
A and F but they are not free, as there exists one constraint to be obeyed, V- E = p. This
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constraint is linear in the fields. Here resides the big simplification of the electromagnetism.
If we choose a linear gauge condition, then det{¢®, xg} will not depend either in Eor A
and will be a constant that only will modify the normalization. Such a gauge condition is
obtained, for instance, with the Lorenz gauge

X = O A" —¢(Z,1) (6.83)

where ¢(Z,t) is an arbitrary function. Then the generating functional for Green functions
is (the term that comes from det{y®, x5} is absorbed in the normalization)

Z[J" N/D HéaA“—c ))es (6.84)
where
S = /d‘*m{—ﬁf(— WJr(f- 1) +A0(6-E—p)}
= d4x{—E72—E-(§AO+Z)—mTA)2—JHA“}. (6.85)

The integration in E is Gaussian and can be done immediately (we keep the notation N
although this normalization will be different after the integration)

21" = N / D(A,) [] 60, 4% — c()e™ | (6.86)
where now
1
S = / dz [—Z(auAy — 0, A,) (0" AY — OV AF) — J, AP
1
= / d*x [—ZFWF’“’ - JMA“} . (6.87)
As the functions ¢(z) are arbitrary we can integrate over them with a weight
1 4, 2
exp | —=— [ d*zc*(x) ) . (6.88)
We get then the familiar result,

2] N/ zfdx 1P L (9-4)—J-A] ‘ (6.89)

As we will see later, if we had chosen a non-linear gauge condition the det |{g, x}| would
depend on E or A and it would not be possible to absorb it in the normalization (which
is irrelevant as we can always choose it such that Z[0] = 1). In that case it would be
necessary to use the methods of non-abelian gauge theories that we will discuss in the
next section.
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6.2.3 Non abelian gauge theories. Non covariant gauges

We have seen before that the action for the non-abelian gauge theories, could be written
in the form,

s—-2 [ e |E 08+ J(E + B - 49T E o+ old. ) (6.90)
_ / o [~ ELC AL — H(Ey, Ay) + A%C] (6.91)

where
C* =V E"—gfied’. E° (6.92)

If we introduce the equal time Poisson brackets

(B AW}, =@ ) (6.93)
one can then show that
{o@. W}, = —or @@ -
{H,C%x)} =0, (6.94)
where
H= / BaH(Ey, Ay) = % / &z [(Eka)2 + (B’m)2] . (6.95)

We see then that the non-abelian gauge theories are an example of generalized Hamiltonian
systems, like we saw with the electromagnetism. The variables of the type coordinate are
A%, and the conjugate momenta are —Ejy. The variables A% are Lagrange multipliers for
the constraints,

V.-E®—gfedb . Ec=0, (6.96)

which are part of the equations of motion.

To proceed with the quantization we have to use the formalism of the HGS. For that
we have to impose r auxiliary conditions (where r is the dimension of the Lie group and
therefore of its adjoint representation where the gauge fields are), that is, as many as the
constraints C%(z) =0, a = 1,...,r. Choose these conditions is what is known as choosing
or fixing the gauge. This choice is arbitrary, and the physical results should not depend
on it. However intermediate expressions as, for instance, the Feynman rules can depend
on the choice.

As we saw in the case of the electromagnetism if it is possible to make a gauge fixing
that is linear in the dynamical variables, A% and E“, then the path integral will simplify
because the determinant will not depend on these variables and can be absorbed into the
normalization. For the non-abelian case, a gauge where this is possible is the axial gauge
that we now study.
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Axial Gauge

It is always possible to make a gauge transformation such that the component of Aa along
some direction vanishes in all points, that is,

A3 =0 a=1,...,r, (6.97)

where we have chosen the direction along the z axis. These r conditions are our auxiliary
conditions necessary to proceed with the quantization of the theory. The advantage of
this gauge choice is the following. If we calculate {C%, A%} we get

{Cal). W)} = {OkF5(2), A (W)} — 9faacAG{Ee (), A7 ()}

9 4. . 0
= —g 5(11)@5 (x_y)_5aa($)

(A3 (y)) (6.98)

where we have used the fact that A7 = 0. We see then that {C, A3} does not depend on

ffa and Ea and the determinant that appears in the expression for the path integral can
be absorbed in the normalization. We can then write the generating functional for the
Green functions in this gauge as

Z[Jr) = / D(E, A, A%) [] 8(A?)eiSBAAN (6.99)

where

S o o o 171 - o
S(E, A, A, JH) = /d4x [—E“ S0P AT — 3 [(Ea)2 + (B)?| 4+ A% 4 A®. J“] ,

(6.100)
and
CO=V.-E*— gfeA. e (6.101)
As the integration in E is Gaussian we can easily get

Zal ") = / D(A) [ 5(4%)ef airle@anre] (6.102)

After the integration the Lagrangian is then

1 a prapy

L= _Z(F“”F ) . (6.103)

The index A in Z4[J"*] reminds us that this generating functional corresponds to the
axial gauge. Although the expression for the generating functional can be easily written
in this gauge it has the disadvantage that the Feynman rules are not covariant. Before we
introduce the covariant gauges, let us look at another non-covariant gauge, the so-called
Coulomb gauge.
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Coulomb Gauge
This gauge is defined by the auxiliary conditions,
V-A,=0 a=1,...,r. (6.104)

These auxiliary conditions have a non-trivial Poisson bracket with the constraints C*(x).
In fact one can show (see problems) that

5A, = —é / a3y {Aa(x),ab(y)cb(y)}xozyo . (6.105)
Therefore 5
{Aa(w)ﬁb(y)}m:yo = 5y P Aa@)) (6.106)
and 5
{v : Aa(a:),Cb(y)}m:yO = 05V (0 Aae) (6.107)
As we have )
§A,(z) = g%a@) + favea® (2) A%(z) (6.108)
we get (with the condition V - A, = 0)
— gV - (044(2)) = =VZa,(2) — gfacAc(x) - Vay(z) . (6.109)

This gives finally
[ 2u@), G} = [-V260 — gfuseAcla) - 9] 8@ — ) = Mip(wy) . (6.110)

As det M, although depending on A it does not depend on E, the Gaussian integration
in E can still be done and we get

Zo[ ] = / D(A,) [[det Mc [[ 6(F - Ayt dalerars) (6.111)

Now it is not possible to absorb det M in the normalization. The Feynman rules that
can be obtained from Z¢o[J#] are again non-covariant.

6.2.4 Non abelian gauge theories in covariant gauges

The gauge conditions chosen up to now (axial and Coulomb gauges) lead to Feynman
rules where the Lorentz covariance is lost. Of course the final physical results should not
depend on this, but the non-covariance in the intermediate stages of the calculations is
a complication. We are now going to generalize the previous results to covariant gauges.
The method to follow will be a sub-product of the answer to the following question: How
can we show the equivalence between the axial and Coulomb gauges? For the argument
that follows it is convenient to work with gauge invariant quantities. Then, instead of the
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functional Z4[J#] we are going to consider the integral Z4[J = 0] that, as we have seen,
has the meaning of a vacuum — vacuum transition in the absence of external sources,

— [ D) TL 84 (@) expisa )} (6.112)
where S[A,] is the action. In a gauge transformation,

Ay — AL =%, =U@AU \(g) - éc‘)uUU‘l , (6.113)

the action S[A,] and the measure D(A,) are invariant, therefore we get
_ / D(A,) [ (4% (2)) exp{iSTA,]} (6.114)
We define now the functional Ac[A,] through the relation

AGYA, / H §(V - A% (6.115)

where D(g) represents the infinite product of the invariant measures for the group G at
each space-time point, that is

=[[ dg(x) . (6.116)

The invariance of the integration measure of the group G, D¢’ = D(gg’) has the
consequence that Ag is gauge invariant. In fact

AGH,] = / Do) [[6(% - 740)
— [ Do) [Ta(e i)

= AZ'A,] . (6.117)

We introduce now in the expression for Z4[J = 0] the identity
1= AclA,] /D(g) [To(v 94 (6.118)
We therefore get

Za(J=0) = /DAe ulﬂa A% (z)) Ac[A /D [TV -4

= /DA eSAdA LA Ha v /D 5(97°A%) | (6.119)
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where we have used the gauge invariance of D, S[A,] and Ac[A,]. As the measure is
invariant, we can write in the last integral g~! — ggo. Then

/D Ha g A (g /D H5 990437 (1)) . (6.120)

where g is the gauge transformation that takes from the gauge V-A =0 to the gauge
A’® =0, that is
A® =943 =0 | (6.121)

with V- A = 0. We still have to calculate the integral over the group, that now takes the

form,
[P0 I]s % w) . (6122)

with A3® = 0. As A’3® = 0 it is enough to consider infinitesimal transformations in the
vicinity of the unit,
g9(z) = e—iq(x) = e—ia(z)t", (6.123)

where a(x) are infinitesimal. In these conditions, the integration measure dg(x) is given
by,

= [ de*(=) . (6.124)

On the other hand to first order in o® we have

18(1

%/3a

(6.125)

and therefore the integral is now
/D H5 (A% (z /D NIk 10a%\ . (6.126)
N 923

The integral is independent of A, and therefore it can be absorbed in the normalization.
We get then

_N / D(A) D04, [ 6(F - A)eisal (6.127)
We have obtained before an expression for Z¢[J = 0], which was,

:/D HdetMcH(SV AP)eiSlAul (6.128)

z,b

Therefore to show that the two path integrals, that represent the the vacuum — vacuum
amplitudes in the absence of external sources, we still have to show that Ac[A,] = det Mc¢.
This can be easily shown true. In fact,

/D(g)Ha(ﬁ-%’a)



6.2. QUANTIZATION 201

= / D(a)ga [ﬁ- G%a(ax) - f“bcabffcﬂ

= /D(a) H5 (éVﬁa“(m) + feevab . /TC>

x det™* Mg, (6.129)
where
5§ (o -
ab - g .9 A
ME(z.9) I5aiy (774,
- (—viaab —gfPed, . ﬁx) 337 — 7). (6.130)

Therefore Ac[A,] o< det M, and except for an irrelevant normalization we have, Z4[0] =
Zc|0].

The way we have shown this equivalence between the axial and Coulomb gauges sug-
gests a way to define the vacuum — vacuum amplitude for an arbitrary gauge defined by
the gauge conditions,

FA,] =0 a=1,...,r (6.131)

For that we define Ap[A,] by the expression
A7 14, = [ Do) [T (P ) (6.132)
and, like before, we introduce |
1= ari,) [ Do) [T ) | (6.133)

in the expression for Z4[J = 0]. We therefore get

247 =0) = [ D) 6 (4% () 5 ap(a) [ Do) []5 (1174,
T,a y,b
. / D(A) [16 (F'14,]) Ap(A,lesi / Do) [T 6 (7 4% (@)
y,b x,a

:N/D(AM)AF[AM] H5 (Fb[Au]> e'Slul

=NZpl[J =0] (6.134)

showing that the axial gauge and general gauges of the type F' are equivalent. The vacuum
— vacuum amplitude in the gauge F'* = 0, is therefore given by

Zel7 =0 = [ DUA)ARA T8 (FA]) S (6.135)
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To finish we still have to be able to evaluate Ap[A,]. As in the definition Ap[A,]
appears multiplied by [[¢ (F®[A,]), we only need to know Ap[A,] for A, that satisfy
F?[A,] = 0. Then for g in the vicinity of the identity we have

oOF
oAb,

T P

1 0F°
= W(Dua)b , (6.136)
o

where we have used F° [AZ] =0 and 5AZ = —%(D“a)b. Let us calculate Ap. We get
apia) = f 2 [T (Fe)
LOF® )
- [r@Ils (-5 o)

o det” 1.MF : (6.137)
where . .
M () = 5j§(x)Dﬁb54(:n —y) = —g%é()x)] , (6.138)
and therefore
Ap[A,] = det Mp = det (—g%) . (6.139)

We have discovered how to write the vacuum — wvacuum amplitude in the absence
of external sources. However this is not the more interesting quantity, but rather the
vacuum — vacuum amplitude in the presence of sources, Zp[J] because this is the one
that generates the Green functions of the theory. In all this discussion the source terms,
i d4xJﬁA““, were put to zero because they are not gauge invariant, and our derivation
relied upon gauge invariance. If we define Zp[.J ﬁ] by the relation

ZplJy) = / D(A)Ar[AL] [T 6(F° (A} () ST S Tia) (6.140)

then it is clear that the functional Zr will not be equivalent for different choices of F'* = 0.
This means that the Green functions obtained from Zp[J*]| will depend on the gauge
F* = 0. In the section we will show that although the Green functions depend on
the gauge, this is not really a problem, because the physical results for the elements of
the renormalized S matrix are gauge independent and these are the ones that we compare
with the experiments.

Before we finish let us make a transformation in the functional Zr[J}] to get rid of the
d function. For the calculations it is important to exponentiate [[§(F*[A,]). This can be
done in the following way. We start by defining a more general gauge condition,

FOAN] — c(x) =0, (6.141)
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where ¢%(x) are arbitrary functions of space-time but that do not depend on the fields.
Then Ap[A] will not be changed and we write,

ZelT) = N [ DAAFAN T8 [A4,] - )Tt (.142)

The left side of this equation does not depend on ¢*(z) and therefore we can integrate
over ¢*(z) with a convenient weight, more specifically,

exp{—%/d‘*x cg(;n)} , (6.143)

where x is a real parameter. We finally get
ZF[J;L] _ N/D(A“)AF[Au]ei(S[AM]—Ffd4:c(—éFg-l—J#aAZ))
= N / D(A,)Ap[A,)et ] o) =g FarImeag] (6.144)

This expression is the starting point for the calculation of the Green functions in an
arbitrary gauge defined by the gauge fixing F'*. To be able to establish the Feynman rules
for this theory we still have to exponentiate Ar[A,]. This will be done in the section
with the introduction of the Faddeev-Popov ghosts.

6.2.5 Gauge invariance of the S matrix

In the previous section we have defined the generating functional for the Green functions,
ZplJ4], for a gauge condition given by the function, /' [AZ], through the relation,

ZrlJ) =N / D(A) Ap (AT 6(F2 (A5 ()] ST E2TEA (6.145)

We have shown the equivalence between different gauges in the case of vanishing sources.
We are now going to show what happens when Jj; = 0. For this we will go back and redo
the proof of the equivalence in the presence of the source terms. We choose for this, the
case of the Coulomb and Lorenz gauges defined by

Fo = V.A® Coulomb gauge
(6.146)
F* = 9g,Ar Lorenz gauge .
We define the generating functionals Z¢[j;] and ZL[J;] by the expressions
Zelji) =N / D(A)AJA [ (V- A2)ei(Slal+] dagiare) (6.147)
and
Z [Tl =N / D(A,)AL[A] [] 69, A1) SIS dialiare) (6.148)

z,a
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Let us derive the relation between them. Following the methods of last section we introduce
in Z¢o []Z] the identity given by,

1=A[4] /D(g)H(@MgA““) : (6.149)
We get then,
Zcljg] o \
=N [ D(A)ACAIT], , 8(V - A2)e ST St A ) A [A] [ D(g) TT, , (D, 9A#2)
= N [ D(A)ALIAITL, , 58, A)eSAIAGIA] [ D(g) [T, 0 6(V - 8 eyt o A
= N DA ALIAITT, 50, AP S ACIA] [ D(g) T, 0 6(F - 990}t et e
(6.150)

where ¢° is the gauge transformation that goes from the gauge 0, A** = 0 to the gauge
V.-AY=0, A% = 9°A. Tt is obtained solving the equation

v [U<g°>fTU—1<gO>—gﬁrf(gO)U—l(gO) 0 (6.151)

V- A

where 9,A** = 0. Due to the factor ], §(V - 9") we are only interested in infinitesimal
transformations, and therefore

Zoljp =N / D(A,)AL[A] ] 68, AM0) Sl S 4 san (6.152)

y,b

where we have used, like before, the result

/ D(yg H5 -9 = AGMA] . (6.153)

To compare with ZL[J}}] it is necessary to write 9AM as a function of A* | solving the
equation for ¢°. This can be done formally in a series in the potentials A*. We should

then have
1

Al = <5ij - viﬁv]) A; 4+ O(A3) . (6.154)

If we restrict the Coulomb source to be transverse, j° = 0 and V- ; = 0, we can then
write,

Zcljs) = N/D )AL[AIT] 6(8, A1)’ J+[ dtaEge (6.155)
y,b
where F’ E [A] = A% + O(A3). Comparing with the expression for the functional Z1[J}] we
finally get,

Zcolji) = eXp{ /d%gaFW [ (;H } ZrlJ) (6.156)
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This is the expression that relates Z¢ with Zr. As F,[A] is a complicated functional,
we see that the expressions will be different in the two gauges. But what has a physi-
cal meaning and can be compared with the experiment are the matrix elements of the
renormalized .S matrix. The equivalence theorem that we will prove next shows that these
matrix elements are gauge invariant. For simplicity we will make the proof for the A¢?
case, but the reasoning also applies to the gauge theories.

Theorem 6.2
If two generating functionals, Z and Z, differ only by the terms of the external
sources, then they will lead to the same renormalized S matriz.

Proof:
Let us consider the generating functional of the Green functions,

Z[J =N / D(¢)e! SO+ [ &) (6.157)
where
1 1 A
S[g] + /d4w Jo = /d4:v [5@@8% —gm** = 56t +J0| (6.158)

What happens if we couple the external source to ¢ + ¢3 instead of coupling to just
o7
The generating functional Z[j] will then be,

Zj] :/\[/D(¢)ei[3[¢}+fd4xj(¢+¢3)] ] (6.159)
We can writeZ[j] in terms of Z[J] using the usual trick,
Z[j] = exp {i/d%j(x)F [%] } ZJ, (6.160)

where F[¢p] = ?+¢3. Let us now consider the four-point Green function, G(l, 2,3,4)
generated by Z|[j]

5 Z[)

~ — (—i 4 .
G1,2,3,4) = (=0 = 0y5795 (3155 (0)

(6.161)

A typical diagram that contributes to é(l, 2,3,4) is shown in Figl6.1, where the part
inside the square corresponds to a Green function generated by Z[J].

Let us consider now the propagators G(1,2) and G(1,2) generated by Z[j] and Z[J)
respectively. We get the following expansion of G(1,2) in terms of G(1,2)
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Figure 6.1: Green functions generated by Z[.J] and Z[j].

If we examine the propagators near the physical mass pole, we get (Zs and Zy are
the renormalization constants in the schemes)

- iz iZ
lim G=— 2 lim G =2 (6.163)

pP—mp p* —mj pP—mi, p* —mpg

Now, if we multiply the previous expansion near the mass pole by p? — m%% and take
the limit p*> — m% we get,

22222[1+2 — +(@)2+~l. (6.164)

From here we get
Z 1/2
— 2 _
o= <72> =1+ €+, (6.165)

The unrenormalized S matriz is given by,

n

SN (Kyy e k) = lim (k7 —mB)G (k1. kn) (6.166)

2
i1 ki —my

for the Green functions obtained through Z[J|. We define in the same way,

n

SNR(Ky k) = lim (kf —mz)G(ki,.. . k) (6.167)

2
el ki —my

for the Green functions calculated from Z[j] In these expressions n is the number
of external particles. From the argument used to relate lim(k? — m%)G (k1, .. <5 kn)
with Um(k* — m%)G(k, ... ky) it is easy to see that in relating []lim(k? — m%)G
with [[lim(k? — m%)G only contribute the diagrams with poles in the variables k2.

Therefore we obtain

T - Z\E
th(kiz—m%)G = <—~> H th(kiz—m%)G

n
= o" lim (k2 — m%)G . 6.168
Ek?%mﬁ(l 7) ( )

From this we get a relation between the unrenormalized S matrices in the two schemes,

S NR — gng NR (6.169)
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which van be written as,

1

SNR(Ey, .. ky) =

1
SN (ks k) (6.170)
72

%L
1

But — S™*(ky,...,ky) it is precisely the definition of the renormalized S matriz,
2

so we get ~

SR =gk (6.171)

We conclude that two generating functionals that only differ by the coupling to the
external source lead to the same renormalized S matriz and then to the same physical
quantities. This completes the proof of the equivalence theorem.

The application of our result is now clear, because

" . a8 .
Zelje] = exp {z/d{qu” [W HZL[JM] , (6.172)

where F{[A] = A%+ O(A3). The difference between Zc¢|[j,] and Zp[J,] lies in the coupling
to the external source, and although the Green functions are in general gauge dependent,
the renormalized S matrix is gauge independent and hence physical.

6.2.6 Faddeev-Popov ghosts

Having shown the gauge invariance of the renormalized S matrix, let us go back to the
generating functional in an arbitrary gauge defined by the gauge condition F [AZ]. We
have seen in section [6.2.4] that this functional in given in the form,

Zp[J8 = N / D(A,) Ap[A]et | TE@ =B +Ipam] (6.173)
where 5F(2)
Uz

Ap[A] = = —g—— | . 174

rlA] = det Mp det( géo/’(y)) (6.174)

In this form the Feynman rules are complicated because det M g will lead to a non-local
interaction among the gauge fields. If, in some way, we could exponentiate the determinant
and add it to the action, that would solve our problem.

The idea to exponentiate a determinant comes from using Gaussian integrals with
Grassmann variables we have (see Appendix),

/D(w,w)e_fd4waFw = det Mp . (6.175)

Using this result, and making the change Mp — iMp (an irrelevant change in the nor-
malization), we get

Zp[Jl =N / D(A,, @, w)et | dellesr+T5AM] (6.176)
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where @ and w are anti-commutative scalar fields and L.s is given by,

ﬁeff =L+ Lagr+ L, (6.177)
with
1 a rva
E - _ZFNVFM
Lor = —i(F )2
Lo =T MBS . (6.178)

The fields w and @W are auxiliary fields and are called Faddeev-Popov ghosts. The
name comes from the wrong spin-statistics connection, but there is no problem with this,
as they are not physical fields.

Let us now evaluate more explicitly the ghost part of the Lagrangian,

OF(x)  O0F*[A(x)]

MP(z,y) = —g sab(y) — O0A:(y)

cb
D (6.179)

where we have used,
a 1 a
SAT(y) = —gDubab .

We get
/d4$d4yw () ML (z,y)w /d4 /d4 5F“Ez§ Dﬁbwb(y) , (6.180)
" _ e ST @) e
Lo(z) = — / a'y 2 ()5 X oy D) (6.181)

To have a more explicit form we have to specify the gauge. In the Lorenz gauge F'* = 9, A**
and therefore

Lole) = - / a4y ()08 [64(x — )] Db (y)
= '@ (x)DSw(x) . (6.182)

In the last step we have used integration by parts and that the covariant derivative in the
adjoint representation where the ghosts, like the gauge fields, are is given by,

D> = 9,6 — gf ™ A, . (6.183)

6.2.7 Feynman rules in the Lorenz gauge

We are now ready to write the Feynman rules that will enable us to evaluate, in perturba-
tion theory any process in a theory that can be described by an non-abelian gauge theory.
All the work done so far just lead us to an effective Lagrangian with which we can obtain
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the Feynman rules as if it was a normal theory without the problem of the mismatch of
the degrees of freedom. Our effective Lagrangian is then

Lef =L+ Lagr+ La , (6.184)
where
1
L= Fo P Fp = 0,40 = 0,45 + gf " AL A7
Lom = — ()2
GF — 25 a

SFC

Lo=—-T" / d*y——D"w, . (6.185)
SALH

The structure constants ¢ are defined by the commutation of the generators of the
group G. Our conventions are,

[ta7 tb] — Z'fabctc

1
Tr(tt’) = 55@ : (6.186)
To fix things, let us consider the Lorenz gauge, defined by
F[A] = 0, A (z) . (6.187)
We get then
1 a va 1 a\2 —a yab, b
ﬁeff = _ZF,U,I/F“ — 2—6(8MA“ ) + 8“0.) D;U' w . (6188)
Using the fact that the ghosts are in the adjoint representation of the group, we get
(Dw)® = (auaab - z‘gA;(TC)“b> W (6.189)
with
(T)® = —if* = —ifobe . (6.190)
Therefore we have
DPwb = (9,6 — gf ™ AS)w" . (6.191)
We can therefore separate the Lagrangian in kinetic and interaction parts
Lefs = Lyin + Lint (6.192)
where
1 a a 1 a —a a
Lin = =70y = 0,A70)° i(auAﬂ )? + 0, @ 0w
_ 1Aua 1 90 abAVb —a ab, b
= 5 Dgl“’_ 1—5 1Ov 0 — w0 6%w s (6193)

where we have done integrations by parts and neglected total divergences. For the inter-
action Lagrangian we have

ﬁint — _gfabcaMAgAubAuc o %g2fabcfadeAZAiAMdAue + gfabcauwaAzwc ) (6194)

We are now in position to get the Feynman rules for a non-abelian gauge theory. We
get with the usual conventions,



210

Propagators

i) Gauge fields

ii) Ghosts
Uoveeeeemnnnnnees Peerneeeeeeennans b
k

Vertices

i) Gauge bosons triple vertex
p,c

lp?)

v\p2

=y
P1 Y b

TN

ii) Gauge bosons quartic vertex

o,d p,C
ps P
P1, P2
Hsa v, b

Notes:

1. The dot in the vertex of the g
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gh kLY

erie TG (6:199)

— 10ap

Sab (6.196)

k% + e

—gf®el g (p1 — p2)P + g"°(p2 — p3)*

+g"*(p3 — p1)”]

(6.197)
_Z‘g2 feabfecd (gupgua o guagup)
+f6acfedb(g;wgpu - g/wgpa) (6'198)
+feadf6bc(9uugpcr - g,upguo)]
g feepl (6.199)

hosts with the gauge fields corresponds to the leg where

the derivative applies. This corresponds to the line exiting the diagram (the ghost
lines are oriented as they have ghost number, as we will see)
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2. The other rules are as usual not forgetting the minus sign for the ghost loop because
of their anti-commuting character.
6.2.8 Feynman rules for the interaction with matter

We have just seen the Feynman rules for the pure gauge theory, without interaction with
matter. This already non trivial due to the non-abelian character. Interaction with matter
is done in the usual way, changing normal derivatives into covariant derivatives. In general
matter is described by scalar fields, as

o; ; 1=1,..M (6.200)
We consider also fermion fields
Y; 5 j=1..N (6.201)

They belong to the representations of dimension M and NN, respectively. The Lagrangian
will then be

Loaster = (Dpod)'DF¢—miolo — V()
i Dy, h — mye)

= ﬁkin + ﬁint . (6202)

The interaction Lagrangian between matter and the gauge fields is easily obtained
from the covariant derivative

DZ = auéz-j - ZgAZfTZZ (6203)

where T7; are the generators in the representations appropriate for the matter fields ¢ and
.
We get then,

Lt = 985 (0 — 0)Pé;TEApe + > 65 TETY, ¢y, A% AR
int = Zg¢z ( ) ¢j ij‘iua +g ¢z ] ]kqbk o
+go T A (6.204)

This leads to the following vertices:

Triple Vertices

s, a
TP3

D2
£ R _
B,i a, j

ig(v") T3 (6.205)
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ig(p1 — p2)"'T}; (6.206)

1929, AT, T} (6.207)

Group Factors

The factors f2¢ and T} that appear in the Feynman rules do not need in fact to be known.
In the calculations in the end will appear combinations of those that can expressed in terms
of invariant quantities that characterize the group and the representation. Our generators
are hermitian (7%" = T%) and satisfy the normalization conditions,

[Ta7 Tb] — Z'fabcTc
Tr(T°T®) = §°T(R) (6.208)

In these definitions T'(R) is a number that characterizes the representation R. Other
frequently used quantity is the Casimir of the representation, defined by

Z 4T = Te[T°T) = 6;;Ca(R) (6.209)

For the adjoint representation we get

faed pbed — 5980y (@) (6.210)
T(R) and C3(R) are not independent, they obey the relation

T(R)r = d(R)Ca(R) (6.211)

where r is the dimension of the group G (number of generators) and d(R) is the dimension
of the representation R. For the adjoint representation we have

d(Adjoint) = r
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In many applications we are interested in the SU(N) family of Lie groups. For these
we have the results

r=N?-1;dN)=N; d(adj) = d(G) =7 (6.212)

T(N) = L. Cy(N) = N1 (6.213)
2’ 2N

T(G) = C5(G) = N (6.214)

Symmetry Factors

For the calculation of some diagrams there appear symmetry factors different from one.
They were discussed before, in section.5.5], but for completeness we recall their definition
here. The symmetry factor is given by the # of different ways in which the lines can
be connected with the same final diagram, divided by the permutations factors for the
vertices involved and by the permutation factors for the number of equal vertices.

6.3 Ward Identities

6.3.1 BRS transformation

We are now going to study the Ward identitiesg for the non-abelian gauge theories. The
more convenient method is that of the Becchi, Rouet e Stora (BRS) transformations. The
BRS transformations are a generalization of the gauge transformations that make invariant
the effective action.

As we saw for non-abelian gauge theories the effective action is given by (A = gauge
field, ¢ = matter field)

Suislaol = SlAo] - 5 [dartiag - [deeMu b 6219)

where S[A, ¢] is the classical action, invariant under the (infinitesimal) gauge transforma-
tions,

1
SAC — __Dabab
1 g "
op; = —z‘(T“)ijqﬁjoz“ , (6.216)

and where F,[A, ¢] are the gauge conditions and the operator My, is such that

oF, OF,

b a b b a . b b

Mypw’ = 5AfLDfLw + 56, ’Lg(T )ijgbjw . (6217)
The effective action, S.yr, is not invariant under gauge transformations due to the non-
invariance of the gauge fixing term and of the ghost Lagrangian. This non-invariance can

%We use here the generic name of Ward identities for the more general identities for non-abelian gauge
theories, discovered by Ward, Takahashi, Slavnov and Taylor.
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disappear if we choose appropriate transformations for the ghosts in order to compensate
the non-invariance of [ d*zF?2. These transformations, known as BRS transformations,
are defined by,

oprsAf = DPuwbf
Sprsgi = ig(T?)ij¢;wb0
(6.218)
Sprs@" = ¢Fu[A, ¢]0
5BRSWa — %gfabcwbwce

where 6 is an anti-commuting parameter independent of the space-time point (Grassmann
variable).

We see that for the fields A7, and ¢; the BRS transformations are gauge transformations
with parameter o®(z) = —gw®(x)f. Notice the anti-commuting character of € is necessary
for the product w®@ to have a bosonic (commutative) character. To show the invariance of
SerflA, @] we are going to prove a series of theorems needed for the general proof. Before
we do that it is convenient to introduce the Slavnov operator, s, defined by the relations,

(5BR5AZ = SAZ@ 5BRSw“ = sw?
(6.219)
OBRS®i = 5¢;0 OBrsw® = sw’0

This operator is distributive with respect to multiplication (like a derivative) and obeys
the following relations,

(

S(FlBg) sk By + FisBs

S(Bng) = —sB1Fy + Bisky

S(FlFQ) = —sInFs + F1sky (6 220)
Theorem 6.3
The Slavnov operator s is nilpotent in the fields A}, ¢; e w®, that is 32Afj = $%¢p; =

= 0.
Proof: We show for each case. We have
a) 32Afj =0
5Dab
szAZ :s(Dwab) = 5AC sASW + D“bsw

v abc cd bed Myab
== 5;1,(_9.]0 )DI/ w w + gf D ( )
_ abc acd acd c
—[gf auww + gf (%ww + gf E?Mw}

+ |:gfabc( )fcdeAew w + ;g( )fbcdfabeAzwcwd]
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—(gf D, wud — g™ e)
_ %.92(fabc.fcde _ pade pebe 4 ped pace) g d b — (6.221)
b) s2¢; =0
s2pi =s [ig(T*)ij ;0"
= —ig(T")ijspjw® +ig(T")ijdjsw”
=g*(T")ij (T°) jr e + ig(T“)z’j%%gf“bcwbwc
:%gz (T, TV, + 392(Ta)ij¢jfabcwbwc
:%gz(Ta)ij¢j(facb b fabe) by
=0 (6.222)
c) 2wt =
$2,0 g (%gfabcwbwc>
_ %gfabcswbwc + %gfabcwbswc
_ g fabegbye
_ %ngabc]cbefwewtwc
_ %92(fab0fbef } fabe pbfe 4 pabf pheey et e
=0 (6.223)

where we have used the anti-commutation of the ghost fields and the Jacobi identity.
The theorem is then proved.

For linear gauge fixing, we can show an important result that we also give in the form
of a theorem.

Theorem 6.4
For linear gauge fizings, the Slavnov operator verifies the relation

$(Mgpw®) =0 (6.224)
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Proof:
We saw before that

Mas(@) = [ d'y [5 Acz D) + 5o ig(T) 050 <>} (6.225)

If we use the definitions of dprs and of the Slavnov operator, we can write

0F,(x) 0F,(x)
M’ ( :/d4 [ sAS(y) + s¢i : 6.226
If the gauge fizing is linear gj‘g and 6Fa do not depend on the on the fields and then
dF, () O0F,(x)
Mpw” :/d4 [ 2AS (y) + s*pi(y)| = 0. 6.227
s[Mat@)] = [ty | ZEES AL + T2 ) (6.227)

where we have used the previous results. This proves the theorem.

Using theses results we can then show that the effective action is invariant under BRS

transformations. We are going to show this result also in the form of a theorem.

Theorem 6.5
The action Scyy is invariant under BRS transformations.

Proof:

The effective action is
SerflA, ¢ / diz [——F2 L] — T M| (6.228)

As the classical action is invariant under gauge transformations we should have

s(S[A,¢]) =0 . (6.229)
For the other terms we have
<—2—§F2 — W' M gpw > = —%FasFa + S M gpw® — w“s(./\/labwb) . (6.230)
But
[ | OFa 0F, b
sFy(x) —/d [51417( ) sA ( )+ 5oiy )S(bl( y)| = Mgw’(z) , (6.231)

and using one of the previous theorems we get

s(Mgpw?) =0 . (6.232)
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Therefore

s <—2i£F3 - —“Mabw*’> - (—%F 4 sw“> Moy =0, (6.233)

where we have used the fact that sw® = %Fa. Putting everything together we get,
SSeff[A, (25] =0. (6.234)

For the applications we still need another result on the invariance of the integration
measure that we also present as a theorem.

Theorem 6.6
The measure D(A,, $i,@%, wP) is invariant under BRS transformations.
Proof:
Simple calculations lead to the following relations
d(sAL) basu, b
— = —gf""0w’ =0
S AL B
J Sgbi . a a a
((5¢ ) = Zg(T )iiw =0 ; (TT(T ) = 0)
5 Swa aac, .c
(&u“ : =g/t =0
5 —a
g";"a) =0 (6.235)

As we saw in the last chapter these relations imply that the integration measure is
invariant proving the theorem (see Eq. (2.121])).

6.3.2 Ward-Takahashi-Slavnov-Taylor identities

We are now in position to derive the generalization of the Ward-Takahashi identities to
non-abelian gauge theories. This extension was done, among others, by Slavnov and
Taylor, but frequently we use the short designation of Ward identities even for the non-
abelian case. In a generic form Ward identities are relations among the Green functions
that result from the gauge symmetry of the theory. As we discuss the more convenient
way to describe them is through the generating functionals of the Green functions. Let us
then consider a non-abelian gauge theory. For simplicity we just consider that the matter
fields are scalars ¢;. Fermions can be introduced later easily. The generating functional is
then

Z[JZ7 Ji7 T,aa ﬁa] = /D(Aua ¢i7 w? w)ei fd4x[£eff+JﬁA#a+Ji¢i+ﬁawa+wana] (6236)

where we have also introduced sources for the ghosts.

A BRS transformation is a change of variables in the integral. The value of the integral
should not be changed by this. As S.; and the measure are invariant we should have the
following theorem:
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Theorem 6.7
Given any Green function

G($17 e Y1y ey By eeey W1 ) = <0| TAZl (:El) e qbil (yl) o 'wa('zl) T wb(wl) e |0>

(6.237)
we have the following relations:
i) s (0] TAG (1) -+ @i, (1) - @ (21) -+~ (w1) [0) = 0
ii) 0= (0| TsAL(z1) - |0) + -+ (O] T+~ 56 -+ [0) + - - -
+{0|T--sw®--]0)---+ (0| T+ sw--|0) (6.238)

Proof: The proof is clear if we write
(O TAY (1) -+~ i, (1) - - @ (21) - - P (wy) [0) =

_ /D(AM, b1, B) A% (1) - bua (1) -+ T (21) - Py )T (6.239)

Then the BRS transformation should leave the integral invariant proving the first
relation. Then the second relation results from the first and from the invariance of
the measure and of the effective action.

This theorem constitutes a quick way to establish relations among Green functions
for particular cases, as we shall see below. However to establish general results for the
renormalization and gauge invariance of the S matrix, we are interested in the Ward
identities expressed in terms of the generating functionals. Using the invariance of the
integral for a change of variables, the invariance of the measure D and of Scsr, we get for
the Ward identity for the generating functional Z,

0= /D(A“, ¢i,w, W) / d4:17(J““sAZ + Jisd; + T sw® — swin®)e!Sesstsowees) (6 940)

The more useful Ward identities are for the functional I'. The previous expression can not
directly lead to I' functional, because SAZ, s¢; and sw® are not linear in the fields. To
solve this problem we introduce sources for these non-linear operators. We generalize the

effective action defining a new quantity X such that
S[AL, i, w0 W, Ky, Ky, LY
= SefflAS, diyw®,w® + / d'n(K™sAS, + K's¢; + L%sw®) ,  (6.241)
where K, K; and L are sources for the non-linear operators sAfy, s¢; and sw” respec-

tively. Using the previous theorems it is easy to show that ¥ is invariant under BRS

transformations, that is
s%=0. (6.242)
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Let us consider now the generating functional for the Green functions in the presence
of the sources Jj, Ji,m®, %, KM K and L%, that is
Z[Jg, Jj,n, ﬁ, KM,KZ,L] — /2)(%1/1/7 (251',5, w)e’i [E-i—fd4x(JﬁA#a+Jz¢z+ﬁw+w77)] (6243)

We can now repeat the previous reasoning for invariance under BRS transformations. Like
before we get (recall that s¥ = 0)

0= /D / z[Jhs A} + Jis; 4+ T sw® — swn?el(FHsources) (6.244)
only now we have composite operators sA, s¢ e sw, that is
> 0X 0% . 1
SAZ = 5[{—}14(17 S(bi = 5—I{i7 Swa = m, Swa = EFG (6245)
We get then

0% > 0 1 ,
. n i —a _ ~paya| i(X+sources) _
/D( )/ [J st S T e~ g E ] e 0 (6.246)

or in another form

) ) 1) 1 0 ) T Ta -
d4 n ) ' —a . A _Y | el WL Jinm, K K L
/ [J“ ke sk T 5Ee € [w,}u’ iaJJ 7 ]e " 0
(6.247)

For a linear gauge condition all the differential operators in the square bracket are of first
order and therefore we can write

o ;0 o 1
4 " 1 —a - a —
/d x [Ja SKia +J 5K, T 5T : all } W=0. (6.248)

This is the expression of the Ward identities for the generating functional of the con-
nected Green functions, W. Normally the Ward identities are more useful for generating
functional of the irreducible Green functions. This defined by,

F[A/M ¢i7wuw7 K;u Ki7 L] = W[J}/n Jianaﬁa K;u Ki7 L] - /d4x[JgAaM + JZ¢Z +ﬁw + wn]

(6.249)
with the usual relations
_ oW a _ OW
. ¥ “ on° (6.250)
Qo — oW —a _ _O0W
ey JRe on
as usual as the inverse relations,
or
J; = - >=a (5F
i 5 ; = 2
¢ ! ow (6.251)
Jo = 6T a ST

Iz T AR [/
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As the Legendre transform leaves the sources Kjj, K; and L* unchanged, we should
have.

ow or ow or ow or
_ . _ : _ 252
OKf 0K " 0K,  O0K; T dLe Lo (6.252)
We then get easily
or or or or or or 1 or
4 _ _ZFo_— | =
/d v [M{g(x) SAra () + O0K;(x) 0¢;(x)  OL*(z) dw?(x) SF 0w () 0 (6:253)

This is the generating functional for the Ward identities for the irreducible Green func-
tions. The Ward identities for specific Green functions are obtained by taking appropriate
functional derivatives of the fields.

In the applications the previous equation is used in connection with another functional

identity, the equation of motion (or Dyson-Schwinger) for the ghosts. This can be easily
obtained doing the following change of variables in the functional integral,

04y = 0¢; =0w" =0 (6.254)
ow® = f%=infinitesimal constant '
Then
0Z =0= / DY ( > foeitrtsourees) (6.255)
but
g = ~Maw'(@) = ~sFi)
0F,(z) 0F,(x)
s[5t b
o [y + Sty o)
0F,(z) 0% 0F,(x) 6%
_ [ ] 6.256
J 9 H s * o) w0 (6:250)

We therefore obtain
= R —3 1, | 9%a () 0% 0Fu(z) 0% ) i(X+sources)
= o= fat [Mb e+ Fh) ) T

{ / d'y [Mb Z 5Kfi(y) " igj((;)) 5Kf(y)] +ma($)} -

(6.257)
Using now
“ or
=5 (6.258)
we finally get (for linear gauges)
0F,(z) oT 0F,(z) oT or
da* [ =— 6.259
/ VAL () 0K (y) T 30ily) 0K (y) 0w (x) (6.259)

which the generating functional for the Dyson-Schwinger equations for the ghosts.
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6.3.3 Example: Transversality of vacuum polarization

We are going to give an example of the application of the Ward identities. For this we
will show that the vacuum polarization is transversal. As the pure gauge theory is already
non-trivial, we only consider this case, the generalizations being straightforward. To show
the details of the calculations that will shed some light on the more formal expression we
just proved, we are going to do this example using two methods. The first one, that we
will call formal method, will use the general expression for the Ward identities satisfied
by the generating functional of the irreducible Green functions, I'. The second method,
which we call practical method, will use the results of one of the theorems on the BRS
transformations that we proved before. The comparison between the two methods will be
important to clarify the meaning of the expressions.

i) Formal Method

For the pure gauge theory case, the expression for the Ward identities for the generating
functional T is,

or or or or 1 ST
' - i = 2
/d ! [Mfﬁ(ﬂ?) 6Auq(z)  OL%(z) dwo(z) £ (x)awa(x) 0 (6.260)
where we will choose a covariant linear gauge,
F*(z) = 8,A"(x) (6.261)

To proceed it is necessary to know what is the meaning of the functional derivatives, (;i(—ra
I3

and 5‘5LFG. From their definition we have

o0 _ W _ 8 ., 1 0Z
OK(z) OKp 0K Z 0K (x)
1 a i sources
= E/D(---)SAH(J:)e &+ ) (6.262)

As sAj(r) = ijb b= 9w(x) — gf“bcwb(x)Aﬁ(x), we then get

2
—55 = ,ﬂjl—. iZ _gpael 02 .Z_b (6.263)
OK(z) Z i0m°(x) Z i0J(z)ion’(x)
Introducing now Z = exp(iW), the previous expression becomes,
6T S(iW) . 52w SiW - &iW
— 12 aoc
=0 —— 7~ — 9" |- Tt o T : 6.264
6Kg(x) iom*(x) [zéJﬁ(a:)z&nb(x) zéJH(x) i07° () ( )

which has the following diagrammatic representation
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where W is the generating functional for the connected Green functions.

In a similar way we can show that (sw® = % gf®ewbue)

a1 fabe 1 62z
oLy 277 7 ey (@yiont(x)
T §2(iW) }
= —g f%° 6.266
29 / [idﬁc(x)zﬁﬁb(aj) 1577 2577 ( )
In diagrammatic form this eives
b .. &
or _1 abc A l abc _
6[/0'(:1:) - 59 f --,v“-@ + 29 f --_... (6267)
c \S
C -..@
52 . .
We want to apply —————--— to the original equation. We get
0w’ ()0 Aj (2)
&2 or or - 62 6T (6.268)
dwb(y)dAg (2) \OKf(z) dAre(x) ) |_,  dwb(y)oKa(x) _o 0AG(2)0AM () | ’
But we have
e ) (wiee)
5wb( 5K“ 5wb y)ow! (w) ionf (w)dK g (x) ) |_,
/ ( 7w (i)
5wb y)6w! (w) ionf (w)ion®(z) /|,
e 8T 3
g £ [t ( > I
5wb y)o6w! (w) ion/ (w)ion” (x)id J¢ (x) 0
/ 5T
:8“(54 _ 6ab_ abc/d4 <_' )
&3
; 6.269
(iénf(w)iéﬁb (m)z&]ﬁ(az)) o ( )
In a similar way we have for the second term,
52 6T 6T
- = 2
e )|, = (6:270)
&2 1 6T 1 6T
2. APe =28 —2) ——— 6.271
e (O @), = € |, 64
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Using these results we get
6T 6T
O — gfade/d43:d4w (—z—_)
"OAL (y)dAs(2) Sswb(y)ow! (w)

53w < 6T > N Lo 5T
ion (w)ion®(x)is Js (x) | \ 0Af(x)0Ag(2) €77 Swh(y)owe(z)

(6.272)

We now apply the Fourier transform, with the conventions shown in the Fig. 6.2 we

wa
z Yy

Figure 6.2: Momentum definition for the Fourier Transform.

get

. N\ —1le ade;~—1ca - e v bz c
- ZpH(Z)G lul;L(p) - gf d i lu,u,(p)A lbe,ud f + (—Zp )EA 1 b(p) =0 (6273)

This can be written as

1
PG = ATy g fUGTI () ATHEX (6.274)

where

xhdel _p [ < 0| Tw ()@ (w) A" ()]0 >c]

(6.275)

Il
=

) ? 1}&,
A

To prove the Transversality we also need the equation of motion for the ghosts. For
our case this is

or or
— oK
dw?(z) oK (z) (6:276)

Applying the operator += we get
ow” (y)
82T bed

S BN _
5 (y)5" (2) M0y = 2)

wde [ , 5T §3iW
i / dw <_15wb(y)5wf (w)> % <i5Jﬁ(z)i5nf(w)i5ﬁd(z) )6'277)
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Applying now the Fourier transform, we get
IATI0 = pP5e g fUl(—iph) X AT (6.278)

The previous equations allow now to complete the proof of the transversality of the
vacuum polarization. For this we write,

.a
G = Grl + 150 pup (6:279)

where p“G;IZIl’, = (. For the free propagator we have a = 1. To show the transversality

we just have to show that the longitudinal part is not renormalized and that therefore the
value of a remains always a = 1. Using

PG = i%(Sabpzp,, (6.280)

and multiplying equation by p” we obtain
O aseb _ L oanie 0 9 e, sepdef A-1fb 981
ip 0T =g Spgf Pu (6.281)

Using now equation Eq. (6.278]) we get after some trivial algebra

1
0= —EpQA—ld’ + gp2A_1Cb (6.282)

This implies
a=1 (6.283)

as we wanted to shown.

2) Practical Method
Now we are going to use the so-called practical method based in Theorem Using

s@’(x) = %(%A“b(a:) (6.284)
and

sA? = 9w — gfilwtAS (6.285)

it is easy to see that the starting Green function should be (0|TA%(z)w’(y)[0). Then
Theorem [6.7] tells us that
s <0|TAZ(x)wb(y)|0> —0 (6.286)

that is

(0T A @9, 4" W)0) = (0Ta,u" @) (y)]0)

|

—gf (0Tw! (@) A5 (@)@ (y)l0)  (6.287)
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We now take the Fourier transform obtaining

2‘, - a adc C
EPPGZI;(p) = —ip, A" (p) — gf X1 (6.288)
where X% has been defined before. Multiplying by G™*#A~! we then get
1 .
pHG;ﬁac — _EpuA_lac + Z-gffdexgebA—lch—w;mf (6289)

which is precisely Eq. (6.274) The result in Eq. (6.278)) can be easily obtained knowing
that the only vertex of the ghosts is

TNe

..... R S g fbepH (6.290)

Then

d_
a.(. ...... .(.b = a( ...... b + .a/.( A .(b. (6291)
p K

which means ) .
7 7
A®(p) = Péab 39 fodeph X deb (6.292)

or in another form
iA—lab — p25ab . igfadcp“XﬁCb AL (6.293)

which is precisely Eq. ([6.278]). The proof of transversality follows now the same steps as
in the formal case.

6.3.4 Gauge invariance of the S matrix

We have shown before the gauge invariance of the S matrix using the equivalence theorem
and the fact that the generating functionals corresponding to different gauge conditions
only differ in the source terms. The proof used some properties of the Coulomb gauge and
this can raise some doubts about the genera validity of the argument.

We are going to show here, using the Ward identities, that the functionals Zr and
Zpiar corresponding to the gauge conditions F' and F 4+ AF, respectively, only differ in
the source terms. As F' and AF are arbitrary the proof is general. We have

ZplJS, J;) :/D(...)ei[Seff+fd“:v(JﬁA"“er)} (6.294)
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Then
1 OAF?
— — 4 | pa a __ —a 4 ( ) b;,t
ZpiAF — ZF /D( )/dmz §FAF w/dyaAb()sA()
SAF(z) }
d4 —— sy (Sef f+sources) 6.295
/ Souty) ) (6.295)

We use now the Ward identities in the form that corresponds to the generating functional
Z, that is

0= /D( ) / d%[J““SAZ + J sy + Msw — swn) el {Sers HpAM FIigitntnw)} (6 9296)

Taking the derivative in order to n%(x) and after setting the ghost sources to zero, we get
1 a -—q 7 7 4 (Jo AR i Di

0= / D(---)[EF (z) + iw?(z) / dry[JPs AL + T sqﬁi]} ellSers [ 2 (JEAM+Ti00] - (6.297)

or

(] / D - )ei{Setssourees) _
(6.298)
= /D(...)Z‘wa(x)/d4y[JubSAZ+Jis¢i]ei(56ff+sources)

/ D(---) (—%F“AFG) ¢i(Ses s +sources) _

- ar (] (4 []) e
|

— AF® [% / D(--- )iw"(z) / d4y[J“bsAZ+Jis¢i]ei(s‘5ff+soums) (6.299)
B RN SAF(z)
N /D { /d DAL (y) Au(y)+ o) OV )]

+iw® (x) AF () / dy[J"s AL, +Jls¢2]} Sef s -+sources)

We get therefore

/D(- ) <—%F“AF“—@“($) /d4y

/D ZW ( )AFG /d4 JﬂbsAb +st¢] eff+sources)

5AFG(JE) b SAF® ] (S, f s +sources)
SAL (1) sl )+5¢i(y)s¢l(y)]> o

(6.300)
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We can then write

Zpiar —ZF
= /D( .. )z/d4x [iwa(gj)AF‘l(x) / d4y(JMbSAZ + J13¢z)] ¢! (Sef fsources)
_ /D(m)ei{Sefer/d4y[JZ(y)A““(y) + J;®i(y)]}
(6.301)
where
(I)z(y) = ¢z(y) +1 / d4l’[wa(l’)AFa(:E)s¢i(y)] (6.302)
and
AL(y) = Au(y) +i / d'z[@ () AF® (x)s Af, (y)] (6.303)

The difference between the generating functionals Zrpyar and Zp is only in the functional
form of the source terms. We can then use the equivalence theorem to show that the
renormalized S matrix are equal in both cases.

SR Ap=SE. (6.304)

6.4 Ward Takahashi Identities in QED

6.4.1 Ward-Takahashi identities for the functional Z[J]

We will now derive again the Ward identities for QED, that we found in our study of
renormalization, using now the functional methods. The generating functional for the
Green functions for QED is given by, in a linear gauge,

Z(Ju 1) = / D(Ap, 3, P)eiSesst] a4 om (6.305)

where J,,, 77 e ) are the sources for A, 1 and o respectively. The effective action is given
by,

Seff = /‘1]/43j [EQED - 2—15(8 - A)?| = Sqep + Sar (6.306)
where 1 B
Loep = _ZF“”FW + ¢ (iv" Dy, — m)i . (6.307)
where
D, =0, —ieA, (6.308)
with our convention that e = |e| and the electron charge is given by ¢. = —e < 0. SgErp

is invariant under local gauge transformation of the group U(1) that we write as,
0A, =0, A
0 = ieAy
0 = —ieAy)



228 CHAPTER 6. NON-ABELIAN GAUGE THEORIES

The S.rs contains the part of the gauge fixing that it is not invariant under these trans-
formations. Therefore the Ward identities take the form,

<5§<§F [%] i Ji) f [%] Z2(J) =0 (6.309)

This can be written in our case as, putting back the explicit integrations,

0= /d4 [ o"o, ( (;; >8 A+ JHO A+ZeA77(% —zeAnzgn] Z(J*,m,m)  (6.310)
After an integration by parts we get,
/d4x A [—EDG < 5(; ) OuJ" 4 iem :; zenzgn] Z(J" mn) = (6.311)
This can be written as
[EDO ( 0 ) +0 J“—zen( 0 ) —|—ze77< 0 ﬂ Z(J,1m,m) =0 (6.312)
19 10, 107 10

6.4.2 Ward-Takahashi identities for the functionals W and I

From the point of view of the applications it is more useful the Ward identity for the
generating functional of the irreducible Green functions. This problem is simpler than in
the case of non-abelian gauge theories, that we just discuss, as the the previous equation
is linear in the functional derivatives with respect to the different sources (we notice that
if we had chosen a non-linear gauge fixing this would not be true, even in QED). The
linearity allow us to write immediately

) ) )
— e + ien—— M) = 31
57, > Zenwﬁ —I-zenwn} W (J,m,m) =0 (6.313)

where W is the generating functional for the connected Green functions,

O d* + Lma <

Z(J* 7, ) = W) (6.314)
As we saw the generating functional for the irreducible Green functions is given by,
DA, ,0) = W) — [ d'alI" A+ 76+ (6.315)
We also have the relations
ow — ow
- - = 6.316
nT TR v= z5ﬁ P Y= 0m ( )
and oT oT oT
J = —— i p=_— .= 6.317
1 514“ ;N 51/} N 51’[) ( )
where, as usual, the fermionic derivatives are left derivatives. We can them write
1 or or —or
—-00,A* — 0 — — — = 6.318
6 12 M(;A €5¢TZJ ie w(ST,Z) ( )

This equation is the starting point to generate all the Ward identities in QED. Its applica-
tion it is much easier than the equivalent expression that was proved using the canonical
formalism. The functional methods make this expressions particularly simple.
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6.4.3 Example: Ward identity for the QED vertex

To convince ourselves that this equation reproduces the Ward identities that we already

2
know, let us derive the Ward identity for the vertex in QED. We apply 5—_ to
&;Z)a (y)5¢5(2)
the master equation. We get then
3
o i)
0va(y)ovp(2)0AH ()
2 2
=—ie 5—F_(54(z—ac) — 5—I‘_(54(y—w) (6.319)
51/1a(y)5¢5(95) 51/101(‘7:)51/15(2)
This equation means
DT s, 2,) = —i€ [Dpalw,y)d (2 — @) — Tgalz,2)0(y — )] (6.320)

Taking now the Fourier transform to both sides of the equation, with the momenta
defined as the Fig. [6.3] we get,

Figure 6.3: Definition of the momenta for the vertex.

¢'Tu(p',p) = —ielS™ (p) — S ()] (6.321)

This is precisely the well known Ward identity, Eq. (4.I55).

6.4.4 Ghosts in QED

We said before that the generating functional for QED was given by,

Z(Ju,mm) = / D(Ay,, 1, et | Aot Lor+ TuAl+Tb+yr] (6.322)

®Note that our convention is that e = |e|.
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where Logp is the usual Lagrangian for QED and the gauge fixing term was,

1
Lor=——(0-A)?. (6.323)
2€
In fact this is not strictly true. If we use the prescription for the gauge theories, we would
get instead,

Z(Ju,n,ngf) = /D(A}U1/}7Ejw7w)eifd4x[Eeff+J“Au+77w+¢77+wc+Cw} (6.324)

In this expression w e w are anti-commuting scalar fields known as the Faddeev-Popov
ghosts as we saw before. Although in physical process they never appear as external states,
it is useful to introduce also sources for them to discuss the Ward identities.

In the previous action, the Lagrangian L.g is
Leg = LqeD + Lar + La (6.325)

where
Log=—-wlOuw (6.326)

The reason why in QED we can work with the functional Z instead of Z is because the
ghosts do not have interactions with the gauge fields and can be integrated out (Gaussian
integration) and absorbed in the normalization. Nevertheless, for the Ward identities

it is useful to keep them. The effective Lagrangian, Leg, is invariant under the BRS
transformations given by,

([ 6y = iewby
) = —iehwh
0A, = 0,wb (6.327)
0w = ¢(0-A)f

| w=0

The parameter 6 is an anti-commuting (Grassmann variable). The BRS transformations
on the physical fields are gauge transformations with parameter A = wf and therefore
Logep is left invariant. The transformations in the ghosts w and @ are such that the
variation of Lop cancels that of Lg, just like in the non-abelian case. The invariance of
the integration measure and of S,y allows us to write immediately the Ward identities
for the generating functionals. The BRS transformations allow us to obtain the Ward
identities in a quick way without having to resort to the functional I. This method is
based on the fact, as we saw in Theorem [6.7], that the application of the operator dgrg to
any Green function gives zero, that is

5BRS<0|TAH1"'w"'w"'¢"'a"'|0>:0 (6.328)
Let us show two simple applications of the method in QED.

1) The non-renormalization of the longitudinal photon propagator



6.4. WARD TAKAHASHI IDENTITIES IN QED 231

This result is equivalent, as we have seen, to the statement that the vacuum polarization
is transversal. It is proved easily starting with the Green function, (0| T4, |0), and using

oBrs (0] TAw |0) =0 (6.329)
This gives
% (0] [T A0 A, [0)6 — (0] TH,0]0) 6 = 0 (6.330)
After taking the Fourier transform we get
%kz“GW(k:) = —k,A(k) (6.331)

where the ghost propagator is the free propagator

A(k) = (6.332)

k2
because the ghosts have no interactions. Multiplying by the inverse propagator of the

photon we get

1 k
kM= 22
§

e G™1r(k) (6.333)

Therefore

ke G~V (k) = %k%? = kG o) (k) (6.334)

This shows that the longitudinal part of the photon propagator is equal to the free longi-
tudinal part and therefore does not get any renormalization.

2) Ward Identity for the Vertex

For the vertex we start from
dprs (0] Twyp [0) = 0 (6.335)
This means

% (0] TO" Ay |0y = —ie (0] Twwiprp |0) + de (0] Twipiw |0) (6.336)

After taking the Fourier transform we get

7

£

¢“iT, =iT (6.337)

where we have defined

= G (q)S(®)il"S(p) (6.338)
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= +ieA(q)S(p) — ieA(q)S(p) (6.339)

The last equality results from the fact that ghosts have no interactions in QED in a
linear gaugeg. Putting everything together we get

i

gq“GW(Q)S (p)iT"S(p) = ieA(q)S(p) — ieA(q)S(p') (6.340)
Using
%k”GW(k) NG (6.341)

and multiplying by the inverse of the fermion propagators we get again the well known
the Ward identity for the vertex,

g " (p',p) = —ie[ST (p) — ST ()] (6.342)

6.5 Unitarity and Ward Identities

6.5.1 Optical Theorem
The S matrix, (Heisenberg 1942), can be written in the form
S=1+4T (6.343)
Then its unitarity SSt = 1 implies,
2ImT = TT" (6.344)

If we insert this relation between the same initial and final state (elastic scattering) we
get

2Tm (i|T|i) = <¢|TTT|¢>

= > HSfITI) P (6.345)
f

*Also note that A(g) = FT (0| Tw@|0) and = (0] T@wi) |0) = — (0] Twinhah |0), hence the change of
signs in Eq. ([6339).
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where we have introduced a complete set of states. This relation can still be written in
the form,
Ttotal = 2Im TRstie (6.346)

forward

known as the optical theorem. What we call here o, it is not exactly the cross section,
because the flux factors are mixing. It is for our purpose the quantity defined by

Ototal = Z ‘ <f‘T’Z> ‘2 (6347)
f

Unitarity establishes therefore a relation between the total cross section and the imag-
inary part of the elastic amplitude in the forward direction (the initial and final state have
to be the same).

6.5.2 Cutkosky rules

To show that unitarity is obeyed in a given process we have to know how to calculate the
imaginary part of Feynman diagrams. Of course there is always the possibility of doing
explicitly the calculations and retrieve the imaginary part, but this only possible for simple
diagrams (see below). Therefore it is useful to have rules, known as Cutkosky rules, that
give us the imaginary part of any diagram. We will state them now.

Rule 1

The imaginary part of an amplitude is obtained using the expression

2Im T =—-» T (6.348)

cuts

Rule 2

The cut is obtained by writing the amplitude i1 = - -- and substituting in this expression
the propagators of the lines we cut by the following expression,

o Scalar fields
A(p) = 270(p°)d(p* — m?) (6.349)

e Fermion fields
S(p) = (P4 m)2m0(p°)d(p* — m?) (6.350)

e Vector gauge fields (in the Feynman gauge)

Guw(p) = —g,w2779(p0)5(p2 — m2) (6.351)

In these expression the 6 functions ensure the energy flux. The Cutkosky rules are
complicated to prove in general (see G. 't Hooft, ”Diagrammar”, CERN Report 1972) but
we are going to show in the two explicit examples how they work.
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Example 6.1 Free propagator

For the free propagator of a scalar field the amplitude is
T ! (6.352)
= —F—— .
p% —m?2 +ic

The imaginary part is obtained using

1 1
e P <E> —imd(x) (6.353)
Therefore
T=P (ﬁ) —imé(p* —m?) (6.354)
The imaginary part is then
2 ImT = —216(p* — m?) (6.355)
Using the Cutkosky rule we get
2 ImT = —276(p* — m?)0(p°) (6.356)

which is precisely the same result. The function 0(p°) tell us that the fluz of energy
is from left to right.

Example 6.2 Self-energy in ¢°

Let us consider the self-energy in the theory given by the Lagrangian,
1 1 A
L= 56@8% — §m2¢2 - §¢3 (6.357)

The self-energy is given by the diagram in the Fig.[6.4 The corresponding amplitude

\\*’/
p—Fk

Figure 6.4: Self-energy

15

d4p ) i
T (N2 |
A ( Z)\) / (27?)4 p2 —m2 4+ e (p — k:)2 o 1 e (6 358)

Let us calculate the imaginary part of T by two methods, first doing the explicit
calculation and second using the Cutkosky rule.
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i) Explicit Calculation

o d*p 1
iT _)\2/ 2m)2 (p2 —m2 + ie)[(p — k)2 — m? + ie]

= 2/ d'p /1d:n !
2m)t J, (p2 +2p- P — M? + ig)?

B dp ! 1
- [ <2w>4/0 M T PE AP

P = —xk
A = PPy M?P=m?-Kx(l—x)—ic
The amplitude is then

d4p 1 1
. 2
iT=x / (27T)4/0 Ay

The integral is divergent. Using dimensional reqularization we get

A d 1 d
7= r(a-¢ A=(2-%)
672" < 2)/0 du ’

Choosing on-shell renormalization, Tr(k? = m?) = 0, we get

(a) (25|

where

Tr =T — T(k* = m?)

2 1
“mt (3) ], @
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(6.359)

(6.360)

(6.361)

(6.362)

T 1672 \ = 2

1672 1—z(l—2z)—ic | 1672

In this expression 3 = 7’2—2 and the function L(B) is given by

1
L(B) = /0 dzln[1—B(1 — z)z — ic]

ImL(8) = —my /1 — % 0(8 — 1)

2

It satisfies

Therefore

ImT = — A
1672

[ImL(B3) — ImL(1)]
and we get finally,

A2 4m? 4m?
ImT =—1/1— — 01— —
T T6n 2 < >

2 1 2 1.2 _ s
A <g—C+O(€)>/dx[1—1—glnm ka(l —z) —ie
0

—m2z(l —z) — ie]

o /()ldxln[l_ﬁ$(1_$)_i€]= N0 - L)

(6.363)

(6.364)

(6.365)

(6.366)

(6.367)
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The 0 functions ensures that there is only imaginary part when the intermediate
state could also be a final state (production of two particles of mass m).

it) Using the Cutkosky rules
Using the rules we get

4
2ImT = — (i) / (;lﬂ]; -

3 [Ty o000 — )50 — )0 — ! — K+ p)

(2m)?0(p°)0(K® — p*)o(p* — m*)o((p — k)* — m?)

(2m)
(6.368)
Using now the result
1
[ pow056* ) = [ o (6.369)
We get
d°p 1 1
_ 12 4
2ImT = A /(2#) d3p'— 500 370 216*(p' — k +p) (6.370)
or
dBp 1 1
2 0 0 0

k= (50 ; p=E+m2,p) ; v = VPP +m2 —p) (6.372)

Therefore we get

d3p 1

2 ImT :AQ/ ST +m2)2ms(\/§— 2/F % + m?)

R _am?

Pl + m? % s
V Ip12+m?
S 4m? 4m?
1—-— - .
=% 5 0 < 5 ) (6.373)
Using s = k% we get
)\2 4m? 4m?

which is the same result as we got in the explicit calculation.

6.5.3 Example of Unitarity: scalars and fermions

As an example of checking the unitarity let us consider a theory described by the La-
grangian,
— — 1 1 —
= WP — mip + 50,60 — §M2¢>2 + gPihe (6.375)

We will show unitarity in two cases (cutting fermions lines):
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i) Scalar Self-energy

The self-energy of the scalars is given by the diagram in Fig. 6.5 to which corresponds
the amplitude,

Figure 6.5: Fermion contribution to the scalar self-energy.

4 . .
iT:g2/(d p4Tr[ - L (6.376)

2m) p—m+icp—F—m+ic
Applying Cutkosky rules we get,

ZImT:—ZT

cuts

—— g [ e Trl(+ M)~ o+ m))2mO*)5(* — )

(2m)
2m)0(k° — p°)o((p — k)> — m?) (6.377)
To show the unitarity we calculate the cross section,
p 2
k
o=> | (6.378)
f /
p
We get
o= Z liga(pyo(@)2 = —g* > Tr[(p +m)(—§ +m)] (6.379)
f

where we have used Zspms v(p')o(p) = —(—¢'+m) and 3 u(p)u(p’) = p+m. Therefore

o= —g / dpsTr[(p+ m) (—p + m)] (6.380)

where dps is the phase space of two particles, that is,

d3 d3 11
/d P2 —/ L 52m)t(k —p—p)
2p 2p"

d4 d4 /
/(27.‘_) (271‘) (277)9(]70)(5(]72 — mz)(2ﬂ')9(p/0)5(p/2 _ m2)(2ﬂ.)464(k_p_p/)
(6.381)
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We conclude then that

2 ‘p 0y 5,2 2 0_ .0 2 2
7= =0 [ G emBE — mEmB — )6 — b~ m?)
Tel( -+ m)(p — f +m)]

(6.382)
Comparing we obtain

2ImT = o

(6.383)
ii) General case

Let us consider the general case of two internal fermion lines. The amplitude T is repre-
sented by the diagram

(6.384)
=1

The amplitude T is given by

4
iT = [ GE[Tswrs-»)

(6.385)
Where we have defined the amplitude i7" by

(6.386)

Therefore
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On the other hand

Therefore

Tr [?(75 )T (—p + m)]

__ / dps T [T+ m)T'(— -+ m)]

= > [ap)Tv@)?
7

~ / dps T [(§ + m)T (4 +m)T’

o =2ImT
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(6.387)

(6.388)

(6.389)

If the lines to be cut were scalars the result would be the same. In this case there will
be no minus sign from the loop but there will be no minus sign from the spins sum. The
proof is left as an exercise.

ki
feo

2Im

6.5.4 Unitarity and gauge fields

(6.390)

In the previous slides we have shown that unitarity holds for theories with scalar and
fermion fields. We are now going to show that the proof of unitarity for gauge theories
is more complicated and requires the use of the ward identities.
in the fact that the gauge fields in internal lines have unphysical polarizations while the

The problem resides
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final states should have only physical degrees of freedom. This difference would lead to
a violation of unitarity in gauge theories. However we will show that the ghosts in the
internal lines will compensate for the this and will make the theory unitary as it should.
Let us define the following amplitudes

k k
. p1 N ) = 4l
_ : 1 ...... ( ......
I ko ~~~ 2 o ~ ks P2

D1 k1 a
iTab — 5
" v,b
p2 ko
P Mo
iTt= _ = b (6.391)
p2 ko
where
ky =p1 +p2 — k1 (6.392)

Using these definitions we can write the amplitude in the form (the factor 1/2 is a
symmetry factor for the gauge fields and the minus sign is for the loop of ghosts)

. d4k 1 a CL[l/ / *[l/ / /V/ a [lCLI / *[l/ /
il = / (%)14 {iTugGW(/q)Gg?,(kz)T Vvt pab N9 (e ) ALY (o) T b} (6.393)

Applying the Cutkosky rules we find for the imaginary part

d4k1 2 0 0 2 2 1 abrpxabuy abrxab

1
= / dpo [ET[}BT*“W” — T“bT*ab] (6.394)

Now we have to evaluate oioa1. As the ghosts are not physical we have
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21 ky a
7= Z l/’b
p2 ko ’
— / dp2 Y (s“ (ky)e T“b (6.395)
Pol

where the factor 1/2 comes now from identical particles in the final state. Writing

> et (ky)et (ky) = P (ky) (6.396)
Pol

we get

/ Aprg TETSAL P (5 P (1) (6.397)

We now use the result (see problems)
kHnY + kEYnH

P (6.398)

P (k) = g 4
where n* is a four-vector that satisfies n- ¢ and n?> = 0. We get
§T53T[I“V P (k) P (ky) =
1 1

- Tab' . T*ab‘
2( ka) - ( n)kz-n

1 brxab,
=5 Ta T

1
ki-m

1
ko -m

1
ki -

(Tab . 77) . (T*ab . kg) (kl Tab) (T] T*ab)

= N

(kl Tab )( 'T*ab'kg)—l—

1
(77 . Tab) . (kl . T*ab) 5

DO |
3
— [\’)lb—‘

1
(k1 T ko) (- T* ) + g(W'Tab'ﬁ)(le*ab'b)

N |

)

KT = kT

+=(n- TP ko) (ky - T - (6.399)

l\’)l}—t

— ki -T% ky=0 (6.400)
kAT = kT

we get

1
§T55TJCL P (k) P (kz) =
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1 1 1
:_TabT*abuV _ _Tab kq - T*ab .
9 uy Tk Wiy
1 1 1 1
. _T*ab ke - Tab . _ _Tab . T*ab k
N e
1 1 1 1
. Tab -k T*ab _TabT*ab _TabT*ab
5 2) Won T2 )
1
:§T55T*QW — pabpab (6.401)

Therefore after the sum over polarizations is correctly taken in account we obtain,

1
o= / dps [ngST*“bW A (6.402)

Comparing with the expression for 2Im7T we get

o =2ImT (6.403)

as we wanted to show.

It should be clear that the ghosts with their minus sign of the loop played a crucial
role in subtracting the extra degrees of freedom. Also the Ward identities were necessary
to relate the gauge field amplitudes with the ghost amplitude.
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Problems for Chapter 6

6.1 Show that T'(R) is related with the Casimir operator of the representation R , Ca(R),
through the relation,

T(R)r = d(R)Cy(R) (6.404)

where 7 is the dimension of the Group G and d(R) is the dimension of the representation
R. The Casimir operator, Cy(R), is defined by

>N TRTE = 6i5..Ca(R) - (6.405)
a,k

6.2 Show that a different choice for the auxiliary conditions x** = 0 leads to the same
result. For this consider an infinitesimal variation

X+ ox*=0 a=1,..m (6.406)
Show that one gets

Tad(%a)d(Xa) det({@, X}) = Tad(Pad(Xa + OXa) det({@, x + dX}) - (6.407)

6.3 Show that for infinitesimal transformations

6B, (1) = — / P Eafa). ' 0)Cw)
Shfe) = o [ @yde).a w)Cw) (6.405)

that is, the constraints C, are the generators for the time independent gauge transforma-
tions.

6.4 Show that it is always possible to find a gauge where A3 = 0 a=1,..r.
6.5 Derive the results of Eq. [6.94

6.6 Show that the imaginary part of the amplitude does not depend on the renormalization
scheme. For this evaluate it in MS and MS for the theory described by the Lagrangian of
Eq. 6357 as in Example
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6.7 Consider the %qﬁ?’ theory of Problem Prove unitarity for the self energy of this
theory, that is show,

2 T --»- - =Y <! (6.409)
7

6.8 Consider the theory described by the Lagrangian of Eq. (6.375). Redo the proof for
the case where the intermediate states are scalars, that is,

ki 2

ko ‘

2Im (6.410)

6.9 Show that the integral that results from cutting n internal lines is equal to the phase
space integral of n particles. Use this result to make a general proof of the unitarity.

6.10 Show that

ke + K
L

P* (k) = —gt Fn (6.411)
where k* e¥(k,1),eP(k,2) and n? are four independent 4-vectors satisfying,
n-elk,o0) =0 o=1,2
e(k,1)-e(k,2) =0
k-e(k,o)=0 o=1,2
k=0
” =0 (escolha conveniente)
e(k,o)=-1 o=1,2 (6.412)
Hint: The most general expression for P*¥ is
PY = agh” + bk"EY + ent'n” 4+ d(K*n” + E'nt) . (6.413)

Use the previous relations to find a, b, ¢, d.

6.11 Prove the Ward identities,
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KIT® = kT
— ki T ky =0 (6.414)
KhTE = kT
where Tg,lj and T are defined in Eq. (6.391).
6.12 Show that the tensor F}, for the Yang-Mills fields satisfy the Bianchi identities,

DZbFSU + ngFgu + ngF/ij =0 (6'415)
or
ijb*F“" b_ (6.416)
where
s v a _ % chvpo o (6.417)

6.13 Explain the geometrical meaning of the Bianchi identities.
Hint: See the article of R.P. Feynman in Les Houches, Session XXIX, 1976, North Holland,
1977, Pags: 135-140.

6.14 Consider the Yang-Mills (YM) theory without matter fields.
a) Show that the equations of motion can then be written as

V'Ba:*pa

Ll 5o 6.418
VxEr=-98 4 Je (6.418)
ﬁxé“:—a£a+*¢]“

Evaluate p%, *p%, J% and *.J.
b) Show that the 4-currents jj; = (p%, J%) e i = ("p, *J) are conserved.
6.15 Show that Tr (*F),, F*") is a 4-divergence. Comment on its inclusion in the action.

6.16 Show that the following Ansatze (S. Coleman, Phys. Lett70B (77), 59)
Ala — A2a =0
A% = A% = (20 4 2%) + 2?¢%(2° + 2P) (6.419)

where f® and g are arbitrary functions, is solution of the YM equations of motion in the
absence of matter fields. Discuss this solution.

6.17 Consider the Ansatze of Wu-Yang for static solutions of the SU(2) YM equations of
motion.

A(]a — 7@

G(T) Aia — Eaij xji;) (6420)

2 r
a) Derive the equations that F' and G should obey.
b) Show that they are satisfied for FF = —1 /g and G = constant. Show that this solutions
correspond to p* = *p* =0 and J% =*J% = 0. (p%, ... are defined in Problem [6.14]).
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c¢) For these solutions describe the potential, the fields and evaluate the energy.

6.18 Consider QED with a non-linear gauge condition

F=0,A" + % A A" (6.421)

a) Write the L.¢; and show that sL.r¢ = 0, where s is the Slavnov operator.

b) Evaluate the vacuum polarization at I-loop. Discuss the renormalization program,
giving special attention to the vertices proportional to A. Consider the theory without
fermions (pure gauge).

¢) Show the invariance of the renormalized S matrix with respect to the parameter \.

d) Verify the previous result, showing that the diagram of the figure below, potentially
dangerous for the anomalous magnetic moment of the electron, does not give a contribu-
tion.

e) Derive the Ward identities for the functionals Z and I". Write the generating functional
of the Dyson-Schwinger equation for the ghosts, that is

or
o=
f) Evaluate at tree level 7 + v — v + . Compare with the result in the linear gauge.
g) Evaluate at tree level the amplitude T+ for et + e~ — ~ + . Verify that ki, 7" # 0
and ko, TH” # 0 where ki and ko are the photons 4-momenta. Use the Ward identities to
verify these results. Is there any problem with this result?

(6.422)

6.19 Consider the theory that describes the interactions of the quarks with the gluons,
Quantum ChromoDynamics (QCD) given by the following Lagrangian

Locp = —iFﬁyF“”“ + Zlﬁ?(z‘lﬂ— ma)ij b5 (6.423)
where .
Ff, = 0, A% — 0,A% + g f*c Ab AS
(Dyp)ij = 0i0, —ig <§>Z] Al (6.424)
The index a = 1,2,...,n labels the different quark flavours, (up, down, ---, top). To

quantize the theory consider the gauge condition,
1

% (8, AP")? (6.425)

Lop =—
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for which the ghost Lagrangian is

Lg = 0@ 0w + gf " O'w" Abw® . (6.426)

To renormalize the theory we need the following counterterm Lagrangian,

1
AL = —2(Zs—1) (0,47 — 0,AL)" — (Za— D)gf "0, AL A A

1 T [
—19°(Zs = ) fOfOCALATANA 1Y (2 — V)it A Ot

W o, (A
=Y ma(Zie = VU + (Z1 = 1)g Y iy (7> YA
« &3 B

+(Zs — DO @" 0"w® + (Z7 — 1)g f* 0w Abw® . (6.427)

a) Verify the expression for L.
b) Consider the amplitude

P1 k1 "
T = "
v = Vb
p2 ko

(6.428)

Evaluate at tree level T, ﬁfj Verify that k' Tﬁfj # 0.

c) Verify the calculation of the previous item evaluating k|7’ ﬁfj through the Ward identities.
d) Supposing that the gluons could be final states, the amplitude for the physical process

q+ q — g+ g where g is the gluon is given by

M = (ke )s"TLe" (ky)s” | (6.429)

where €# (k1) and s are polarization vectors for spin and color, respectively (and also for
¥ (k) e s?). Tt is known that for a physical process M should vanish when one makes the
substitution e (k) — k*. How is this result compatible with the previous statements?

e) Show that the following relations must hold,

L _Zi_Zn _ V7 (6.430)
Zy Zz Zs \Z3
f) Evaluate 7y, Zs, Z3, Zg and Zy, using minimal subtraction and verify explicitly that
I Zg = ZoyZr.
g) Evaluate the contribution from the fermions to Z4 e Z5 and verify that they also obey
the above relations.

h) Evaluate the renormalization group functions 3, y4 and yp.



248 CHAPTER 6. NON-ABELIAN GAUGE THEORIES



Chapter 7

Renormalization Group

7.1 Callan -Symanzik equation

7.1.1 Renormalization scheme with momentum subtraction

In Quantum Field Theory a renormalization scheme has two components. First there is
the process, known as regularization, that isolates and controls the infinities that appear
in the Feynman diagrams. The regularization is arbitrary, the only requirement is that
is should maintain the symmetries of the theory. For theories without gauge fields there
are many alternatives. For gauge theories it turns out that the best, and perhaps unique,
method is dimensional regularization.

After the regularization we have to specify a systematic method to remove the di-
vergences and to define the parameters of the renormalized theory. We call this process
renormalization scheme. There is a great arbitrariness in the choice of the subtraction
method that leads to the renormalized theory. The physical results should not depend on
this choice. This is the content of the renormalization group: The physical results should
be invariant under transformations that only change the renormalization scheme.

We will start by studying the renormalization schemes with momentum subtraction.
Depending on the point in the external momenta space that we choose, we can have
different forms of this scheme. We will exemplify with the A¢* theory.

On-—shell renormalization

The on-shell scheme is defined by a Taylor series for the external momenta on-shell. For
the self-energy, for instance, we get,

2(p%) = £(m*) + (p° = m*)T'(m?) + 5(p?) (7.1)

With the on-shell conditions,

S(m2) =0
X (p?) 0 (7.2)
8]92 p2=m?2

249
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In terms of the irreducible two point function, Fg) (p?), defined by,

Th(p) = p* —m* = 2(p°) (7.3)
We get,
I (m?) =0
ort) ., (7.4)
— B -
0P | o2
For Fg) a convenient choice it is,
p; =m?
Fg) (p1,p2,P3) = —A for ) (7.5)
s=t=u= 4
3

In this case the parameters m? and X\ are the physical mass, and except for kinematical

factors, the cross section for s =t =u = §m2 respectively.

Intermediate renormalization
This scheme corresponds to a Taylor expansion around zero momenta, that is,

2(p%) = 2(0) + = (0)p* + Z(p°) (7.6)
The finite part of i(p2) obeys the conditions,

%(0) =0
8_% o (7.7)
8]) p2=0

)

These conditions translated to I‘g can be written as,

r{2(0) = —m?

2) (7.8)
oy
dp

We still need a condition for the normalization of the coupling constant A. This is obtained

)

from I‘g with the following condition,

4
LY (pr.p2ps) = A for  pr=py=p3=0 (7.9)
In this scheme m? is not the physical mass and A cannot be measured directly experi-
mentally, because the condition p; = 0 does not belong to the physical region. As we will
see, we can nevertheless express the physical quantities in terms of these parameters.
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General case

The two previous examples are particular cases of a general scheme, where the normaliza-
tion conditions are functions of several reference momenta, &1, &s... such that

0 €)= —m?

or'?
p) . =1 (7.10)
p 2__¢2
p —52

F%) (£3,84,85) = —A

7.1.2 Renormalization Group

Let us now consider two renormalization schemes R and R’. As they both start from the
same unrenormalized Lagrangian,

L=Lr+ALr=Lpr +ALR (7.11)
we should have
or=2;""(R)go : Oh=2;"""(R)ey. (7.12)
Therefore we get,
¢ =2,"*(R.R) ¢r (7.13)
where )
Zy(R')
/ _“9
Zs(R,R) = Zo(F) (7.14)

These relations indicate that the renormalized fields in the two schemes are related by
a multiplicative constant. The constant should be finite as both ¢g/ as ¢r are finite. In
a similar way,

Ar = ZyNR,R)Z(R,R)Ar
m% = m%+om*(R,R) (7.15)
where
Z\(R)
Z\(R' =
)\(RaR) Z)\(R)
sm*(R',R) = om*(R')—om*(R) (7.16)

are finite quantities The operation that takes the quantities from one renormalization
scheme, R, into another scheme, R/, can be seen as a transformation from R into R’. The
set of these transformation constitutes the Renormalization Group.
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7.1.3 Callan - Symanzik equation

We are going now to give a mathematical form to this invariance under the renormalization
group. The form of the renormalization group (RG) equation depends on the renormal-
ization scheme used. We are going to start by obtaining the equations for the RG in the
scheme with momentum subtraction, the so-called Callan-Symanzik equation.

We start by noticing the identity,

0 i i i
— | = —(—1 , 7.17
om <p2—m(2)—|—ze> p2—m(2)—|—ze( )p2—mg+zs (7.17)

This means that the derivative of an unrenormalized Green function with respect to the
bare mass, is equivalent to the insertion of a composite operator %¢2 with zero momentum,
that is,

™)

ng = —ZF¢2 (0,p4) (7.18)
The irreducible renormalized Green functions are given by,

T3 (pis Asm) = ZPT0 (pi; g3 mo)

(7.19)
T (pipis A m) = 2 25T () (p; pis Mo mo)
Using this we can write the previous equation as,
8 —n/2+(n . —n/2~(n
o2 Z,"*r (s, )\,m)] = —iZp 2P (0, pi, A m) (7.20)
and therefore
n, 192y ,—nj2rm) | p-nj2_0 ) _ ., -nf2nm)
We therefore get,
0 ndlnZy (n) . (n)
[8mg T2 om? }FR =1 Zplgg
om? om0 o\ 0 ndlnZy| () (n)
— et — = — = 'y’ = —iZgel 7.22
[8mg omZ om om2ox 2 Om? ] R 14020 g2R (7.22)
This can still be written as
[m% + By m} i) = —im?ol'y), (7.23)

which is the Callan-Symanzik equation for the ¢* theory, where o, 8 and ~ are dimension-
less functions. These functions are defined by
o\
2m2@
om?
om?

B = (7.24)
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v = mi——— (7.25)

(7.26)

The function « is not independent of . In fact, if we choose the normalization condi-
tions at p; =0
Fg) (0,\,m) = —m?

(7.27)
2 .
Ffzﬂ)R(O’ 0,\,m) =1
We get then,
a=2(y-1) (7.28)

As the quantities Fg) and F((;;)R do not depend on the cut-off, we expect that «, 8 and
are cut-off independent. To see that we put n = 2 and take a derivative in order to p?

0

0 0 . 0
ma—m + 65 — 27} 8—p2fg%)(p, A,m) = —zm2aa—p2ffb£R(0,p, A,m) (7.29)
Setting p? = 0 and using
ori
=1 (7.30)
2
Op 20
We get then
0
.9 (2)
=im“(y—1) | =T 0,p,\,m 7.31
g (v—1) [8})2 521 (0, )Lzzo (7.31)

which shows that v is cut-off independent. Then, as o = 2(y — 1), we must have that « is
also independent of the cut-off. As a and y are cut-off independent, so is 8. As «, 8 e 7y are
dimensionless and independent of the cut-off they can only depend on the dimensionless
coupling constant A, that is,

a=a(N)
B =B(N) (7.32)
=7

We will mostly interested in the Minimal Subtraction (MS) scheme (see below), so
we will not calculate the functions «, 8 and ~ for the Callan-Symanzik equation in the
¢* theory. We will indicate, however, how they can be easily obtained. Consider, for
instance, the function S(\). Noticing that

o\ om? 0
a—m%(Ao,A/m) —a—m%WA(AO,A/m)
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om?2 1 9

5= =M (o, A/m) (7.33)
0

we obtain from its definition,

0 0 — 0 —
B =mz Ao, A/m) =mo—[Z(do, A/m)Ao] = =AoA 5+ [Z (o, A/m)] (7.34)
or in other form 5
B = 81 A[ln Z (X, A/m)] (7.35)

where, by definition, A = Z)\¢), and therefore Z = Z N 123) .

The one-loop result gives,

3o A2
Zy =1+ o 21 +0(\3)
Zy =1+ O()\3) (7.36)
Therefore
— 3\ . A?
and to first order,
- 3, A
InZ =— 6.2 In - + (7.38)
Therefore, for ¢*, we have
3\2
BA) = ——= +0(\%). (7.39)
167

7.1.4 Weinberg’s theorem and the solution of the RG equations

We now discuss an important theorem due to Weinberg. This theorem deals with the
asymptotic behavior of the one-particle irreducible Green functions (1-PI), in the Eu-
clidean region (p? < 0) for values non-exceptional of the momenta (no partial sum van-
ishes).

Theorem 7.1

If the momenta are not exceptional and if we parameterize them by, p; = ok;, then
the 1-PI Green functions Fg) behave in the deep Fuclidean region (o — oo and k;
fized, p? < 0) in the following way:

li_)m '™ (ki A, m) = 0 " [ag(In o) + a1 (Ino)™ + - -] (7.40)
and
lim T (0k;, A\, m) = 02 "[ah(In o) + d;(In o) + - -] (7.41)

2
o— 00 ¢
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We will not make the proof of the theorem (see for instance the second volume of
Bjorken and Drell) but we just note that the powers of o are the canonical dimensions,
in terms of mass, of the respective Green functions. If the canonical behavior is the one
observed asymptotically depends on the sum of the logarithms. If this sum gives a power
of o, for instance, 07, then the asymptotic behavior is modified to *~"~7. The exponent
~ is known as the anomalous dimension. We will show how to use the Renormalization
Group to perform this sum of logarithms and therefore obtain the anomalous dimensions.

7.1.5 Asymptotic solution of the RG equations

From Weinberg’s theorem we have that Fg) > F((;;)R for any finite order in A in the deep
Euclidean region (o0 — o0). If we assume that this remains true, even after summing all
the orders in perturbation theory, we can neglect the second term in the Callan-Symanzik

equation and we obtain an homogeneous differential equation,

0 0
- = (n) (o). _
ma + ﬁ()\)a/\ ny(A) | Tagg (pis A,m) =0 (7.42)

where I‘g;; is the asymptotic form of I' gl). The meaning of this equation is that, in
this asymptotic region, a change in the mass parameter can always be compensated by
appropriate changes in the coupling constant and in the scale of the fields.

To solve this equation we start by defining a dimensionless quantity f%) using dimen-
sional analysis,

T (pi, A, m) = mA="T (p; /m, A) . (7.43)

asy

This dimensionless function, fgl), obeys the relation

0 0\ =) [ Di B
<m% + 0’%> T (JE,/\) ~0. (7.44)
Then we have
mi + a3 m" T (ops, A, m) = 0 (7.45)
om do asy AT
or
9, 3+( —4)| %) (pi, A\, m) = 0 (7.46)
mam 080’ n asy Py A, ) = .

Using this equation we can exchange the derivative with respect to the mass with the
derivative with respect to the scale in the Callan-Symanzik. We get then

[ 2B ) + (o 4)} L) (i, Ay m) = 0 (7.47)

To solve this equation we remove the terms without derivatives with the transformation,

() d:c

rr )(ap,,)\ m) =ot™" nfo ) p(n )(api,)\,m) . (7.48)

asy
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Substituting in the differential equation we see that those terms disappear and we get a
differential equation for F (™)

0 0
A

05— ﬁ()\)a—] F™(gp, A,m) =0 (7.49)
Now we introduce t = Ino. We can the write,

57— I x| P m) =0 (7.50)

To solve this equation we introduce the effective coupling constant A(t, \) as solution
of the equation,

IN(E,N)

=B\ 51
B s (7.51)
with the boundary condition A(0,\) = A. To see that this definition will give us the
solution we write,
A(t,N) dr
t= / — 7.52
. B 72

and take the derivative with respect to \. We get,

1 ox 1
0= ﬁﬁ ~ 5 (7.53)
or _
- O\
BA) — 5(/\)5 =0 (7.54)
Using now the definition of X we get
0 0]~
[a — (/\)a} A(t,A) =0 (7.55)

The differential operator in the last equation is exactly the same that in the equation
for F (")(etp, A,m). Therefore F' (") obeys that equation if it depends on ¢t and A through
the combination A(t, A). Then the general solution for ngl)), is

A y(z)
T®) (opi, \,m) = gt o B2 R0 (1, X2, \),m) (7.56)

asy

To have a physical meaning for this result we notice that

n [ 212 gy

X 1(2) A ()
o B@yde _onls maydeon ) do

A B(=)

X y(x) X y(2)
—"Jo ﬂ(x)dxe—n X g(x)dx

_ e dz —n [ Y\ N))d (7.57)
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Therefore

t N “n 2y ) dr _

T (opi, A, m) = o o YAW AN = s e pin) (pi, N(t, ), m) (7.58)
X

If we set 0 = 1(t = 0), we get the result that e" Jo 597 p(n) i Fz(irsl})f Then we get finally the

solution for the RG equation,

T (0pi, A, m) = o7 o TAE AT (5 X1, 1), m) (7.59)

asy

In this form the solution has a simple interpretation. The effect of making a change of
scale in the momenta p; in the functions, ng) it is equivalent to substitute the coupling
constant A, by the effective coupling constant A, except for multiplicative factors. The
first factor results simply from the fact that ng) has canonical mass dimension 4 — n in
terms of mass. The exponential factor is the anomalous dimension term. It results from
summing up all the logarithms in perturbation theory. This factor is controlled by =y, the
anomalous dimension. We will see later how to calculate the anomalous dimension in any

theory.

7.2 Minimal subtraction (MS) scheme

7.2.1 Renormalization group equations for MS

Let us look now at other forms that the renormalization group equation can have. The
statement that the renormalization is multiplicative can be expressed in the form,

L) (pi, Ao, mo) = Z"*T% (pi, A, ) (7.60)

where p is the scale used to define the Green functions. The left side of this equation does
not depend on g, but the right-hand side does, both explicitly and implicitly through A
and m. We have then 5

ua [Z n/2F( )(pl,)\ m ,u)] =0 (7.61)
or

0 0 0 n
(u@ + By +ming— m) i — o (7.62)

We have defined the RG functions,

B(A,@> = u@
J ou

m Olnm
m | A, — = 7.63
gt ( u) S (7.63)
m 1 O0lnZy
() =

This equation has the advantage over the Callan-Symanzik equation of being homo-
geneous, without approximations. The difficulty comes from the fact that these functions
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depend on two variables, A and 2, making it difficult to get a solution for the equation.
There is, however, a renormalization scheme where the dependence on m/u disappears and
therefore the equation has a simple solution. This scheme is called Minimal Subtraction
(MS) that we will describe now.

7.2.2 Minimal subtraction scheme (MS)

The minimal subtraction scheme is related to the method of dimensional regularization.

1
The divergences of the integrals appear, in this method, as poles in — where ¢ = 4 — d.

€
The minimal subtraction scheme consists in choosing the counter-terms to cancel just these
poles. Let us give the example of the self-energy in A¢*. This corresponds to the diagram
of the Fig. [ 1]

“_+_13

Figure 7.1: Diagram for self-energy in ¢*.

We get

d?k i
2m)4 p2 — m?2 + i

-imm) = i [

1 .T(1-4d/2)

= Tl T

25 e/? (7.64)

where e =4 — d.

1 _T(~1+¢/2)

2(]72) = )‘327_‘_2:“ m—2+te (2\/E)E
m? 3
A (%) T(—1+¢/2) (2V7)F (7.65)

We now use the result (7 is the Euler constant and ¢ (z) the logarithm derivative of the
I function)

¥(2)
r(-1+ %) =— g + T2 40() (7.66)
and e u
(E) —1+eln (E) (7.67)

to get the final result,

»(p?) = Am” [2 +9(2) + 2In(p/m) + 2In2¢/7 + O(e) (7.68)

S 3272 | e
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Therefore in the minimal subtraction we have to add the counter-term

Am? 1
MS _ 19
A£¢2 =352 6(15 (7.69)

If we had used momentum subtraction at the scale u, that is, Yr(p? = u?) = 0 we
would get a different counter-term differing by finite terms.

)\ml

AﬁMOM —
3272 e

-+ w( ) + In(p/m) + In2y/7| ¢ (7.70)

We see that, by definition, the counter-term Lagrangian when expanded in Laurent series
in € only contains the divergent terms.

As usual the counter-term constants are defined by

$o =\/Zyo
mo =Zmm (7.71)

)\0 :,UEZ)\)\

The renormalization constants, Zgs, Z,, and Z) in minimal subtraction should have the
form,

Zm =1+ br(N)/e" (7.72)

Zy =1+ icr()\)/a
r=1

Therefore the coefficients of the renormalization group equation are independent of
and, as they are dimensionless and also independent of m, they should depend only the
coupling constant. This simplifies the solution of the renormalization group equation,

0 0 0 n
(3 + 5 + e =m0 ) T =0 (779)
Using dimensional analysis we have

d 0 9 | 1) _
[m%ﬂ 4)+“@+08]F (op,m, A, ) =0 (7.74)

and therefore we can write,

0 0 0 (n) —
|:O'a—0_ - 55 - (7m - 1) ma—m +ny + (’I’L - 4):| FR (O-pama /\nu) =0 (775)
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This equation has the solution,
ng) (Upia m, )\7 ,U,) = U4_n6_nf(§ 'Y(X(t )dt'r( )(pla ( )7X(t)7 M) (776)

where we have introduced the effective mass 7 (t) and the effective coupling constant A(t).
These are defined by,

%:5@) C o Nt=0)= 2\
7.77
d_TZ—t(t) = [’Ym(A) - 1%@) . mit=0)=m 0
The solution of this equation is
m(t) = m elomAE)-1ldt
— m e teo X )dt
= me tef;(t)d Wm(z) (7.78)

7.2.3 Physical parameters

The parameters defined by the minimal subtraction are not physical parameters. We can
however calculate the physical parameters as function of those. As physical parameters
we mean an element of the S matrix or the position of the pole of the propagator. For
these the following theorem is valid:

Theorem 7.2

Any physical parameter P(\, m, ) satisfies the following renormalization group equa-
tion:

0 0 0
DPAm, ) = g+ BA) gy +amma s

B PA\,m,pu) =0 (7.79)

Proof: Let us consider first the propagator A(p?) that satisfies the renormalization
group equation,

[D+29]A(p* A, m, 1) =0 (7.80)
We can write a Laurent series in the neighborhood of the polep? = mg
AP* A m,p) = 5—— Ui s +A (7.81)
pr—my

The position of the pole my(\,m, ) and its residue R*(\,m, ) satisfy renormaliza-
tion group equations that can be obtained by the application of the operator (D + 27)
to the previous equation. Equating the residue of the poles we get

Dmy(A,m, ) =0 (7.82)
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[D+~v(AN)]R(A,m,u) =0 (7.83)

for the physical mass and for the residue at the pole. Now for an element of the S
matriz we have (Sg = R"F("))

D lim R"T™ = lim D(R"T™)

pi—mg pi—mj
= lim [nDRR"'T" 4+ R"DI™
p;—m3
= lim [-ny+ny]R"T" =0 (7.84)
p;—m3

and this ends the proof.

We will see later how these results can be used to relate the physical parameters with
the parameters of the theory.
7.2.4 Renormalization group functions in minimal subtraction
We saw before that we have
b0 =/Zs9
mo = Zmm (7.85)
)\0 = ,UEZ )\)\

and that in MS the renormalization constants have the form,
Zy =1+ 72 ar(\)/e"
Zy =143 72,b(N)/e" (7.86)

Zg =1+372e(N)/e".

Let us now see how to evaluate 3,7, and 7.

i) Determination of 5()\)

By definition
oA
BN = Han (7.87)

This quantity is finite in the limit € — 0. This means that before we take the limit ¢ — 0
it must be an analytic function of €. It is then convenient to define

BN =pAe=0)=dp, (7.88)

where

B(A, ) = do + die + dae® + - -- (7.89)
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with coefficients d, to be determined. Now we use the fact that Ag does not depend on
the scale . Then

a I3
= u—(uZ
0 "o (HEZ\N)
€ €N 8Z>\ € A
= ep A+ p B(A’E))\W + uEZrB(N ) - (7.90)
This can be rewritten as
N Z
sMﬁ+mm@<@+a%f>:o. (7.91)

Using the expressions for Z, and ﬁ we get

E)\—Fal)\—i-)\z%+(d0—|—dlg—|-d2g2_|_...)

r=1

1 da,
1 E —la,+ A =0. (7.92
+,,:15T <a+ dA)] 0. (7.92)
We conclude then that d, = 0 for r > 1 and that

da 1 da,
e(A+di)+ [a1)\ + dy + dy <a1 + /\d—/\1>} + ZT: = [ar-q—l/\ + dy <ar + Aﬁ)

da,
+d <ar+1+/\ ‘Z;lﬂ =0. (7.93)

Equating equal powers of € we obtain,

A+di =0
Mdo+dy (ar+2%8) =0
ax 0o+ai|a o=
da, da,
arr1A + dg <aT+Ad>\> + dq <aw+1+>\ d)—\H> =0. (7.94)
This gives,
dy = -\ (7.95)
BN = do = 221 (7.96)
IERA) '
d d
2 O _ a

Therefore the S(\) function depends only in the coefficient of % in Z,, that it is easily
obtained in perturbation theory. Also we see that the residues of the higher order poles
can be calculated in terms of the simple pole (lowest order in perturbation theory). For
example for A¢? one can easily obtain,

3N 1

Zy=1+ -2 ... 7.98
AT (7.98)
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Using this we obtain for the 8 function,

dal

BA) =A== = ed ( il > 3\’ (7.99)

) dx \1672) ~ 1672’
given exactly the same result as we have obtained using the momentum subtraction
method.

For gauge theories there is a small modification because we have in this case gy =
ue/ 2Zgg. A trivial calculation gives,

dy=—g/2 (7.100)

1 dal
/8 g :—92— 7.101
(0) =35 (7101)

1 2da7n+1 d
- —B(9)— (gar) , 102
29 4y 5(9)dg(9a) (7.102)

where, as before,
Zy=1+ ay(g)/e" . (7.103)
r=1

#1) Determination of ~,,(\)

We start from mg = Z,,m. Applying “8% we get

0Z, om
0 = p—— L h——
Hgy M Imiig
A 0, dlnm
= A E)—— L ph————— 104
e (7.104)
As ,uma% = Ym, We get the equation
- 0
ANE)=—+Vm| Zm =0 7.105
50 e) 55+ ] (7.105)
which leads to
db 1 [, db, dbri1]
<’ym+dlﬁ> +;; [doﬁJr’ymerrdl | =0 (7.106)
Comparing the powers of £ we get
dby
m = —d1— , 1
T =~y (7.107)
dby 41 db,
—d = B(N)—— + Ymbr , 1
1 BT+ (7.108)

where

—A A¢p?  theory
dy = (7.109)
—g/2 gauge theories

As in the case of 3, we see that =, only depends on the residue of the simple pole.
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iit) Determination ~y(\)

Here it is easier to start from the definition of v(\)

1 0 11 0

AN=-pu—InZy==-—pu—=27=, . 7.110
7(A) Pap e = 57,1 (7.110)
Rearranging we get
- 0
[ﬁ()\,s)a — 2fy()\)] Zy=0. (7.111)
Using the expansion of Z; we obtain,
dCl > dcr dc’r‘—l—l
=20 +dior + Z [ —2y¢, == =0 (7.112)

Comparing now the powers of ¢ we get,

1) =5dio (7.113)
dcry1 dey
—d; = = B(\ )— - 2v¢r (7.114)

where the coefficient d; was obtained before. We can conclude by saying that the coefficient
of the simple pole in the renormalization constants uniquely determines the the functions
B, 7vm and v as well as the residues of higher order poles.

7.2.5 [ and v properties

We have adopted a particular renormalization scheme. With other scheme we would have
another definition of the parameters of the theory and different 3, ~,, and 7 functions. We
are now going to discuss the aspects that are independent of the renormalization scheme
used. Let us consider then two different schemes (both mass independent). Then

g = gF,(9) Fy(9) =1+ 0(g*)
Z(g) = Zm(9)Fm(g)  Fml(g) =1+0(¢g%) . (7.115)

Z4(q") = Zs(9)Fs(9) Fy(9) =1+ 0(g")

The 1 in the functions F' expresses the fact that in lowest order (tree level) there is no
ambiguity. Using the above relations we can see how are related the functions S, ,, and
~ in the two schemes. For definiteness we consider the case of a gauge theory.

We have

. 9, OF,
B = e = n-aBe) = 50 (B + 52 )
(o) = gl = uGEE m) = n(g) — Bla) 5
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1l _ 1 i (4 — 1 2
V() = 2uaﬂln2¢(g)—’Y(g)+25(g)aglnF¢- (7.116)

The functions B,~,, and v will only coincide if the schemes are identical, in which case
F, = F,, = Fy = 1. However the following properties are scheme independent:

i) The existence of a zero of 3(g)
If 5(go) = 0 then f'(g) = 0 for g, = goFy(go0). Notice that, in general, gy depends on the
scheme, that is gy # g).

1) The first derivative of 3(g) at the zero

Let B(go) = 0. Then

856/;?6) _ {g_j% [5(9) <F9+986—1;g>”g0

OF,
OF, 0P 1 9 (Fg +ga—g)
= |Fp+9532+9-+8
995, T9%5, (g)Fnggaa_f;g 39
go
op
= — . A1
(o) @
iit) The first two terms of ((g)
Let 8(g) = bog® + b1g® + O(g"), and
Fy(g) =1+ ag*+O0(g") - (7.118)
Then
9 =g+ag’ +0(g") (7.119)
and
g=9 —ag®+0(g") . (7.120)
Therefore

) = ﬁ(g)a%(gFg) — (bog® + big® + O(g"))(1 + 3ag® + O(g"))

= bog® + (3aby + b1)g” + O(g")
= bo(g” —3ag” + O(¢") + (3abo + b1)(¢” + O(g""))

= bog® +bg®+0(7) . (7.121)
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iv) The first term in ~(g) and ~,,(g)

Let
g) = cg®+0(g")
m(g) = dg®>+0(g") . (7.122)
Then as 5(g) = O(g?) it is clear that,
Y(g) = cg?+0(g")

(g) = dg”? +0(g") . (7.123)

v) The value of v(gp) and v,,,(g0) if B(go) =0

This result is obvious. As we will see next, all these results are necessary because they
control the physical results and these can not depend on the renormalization scheme used.

7.2.6 Gauge independence of 5 and ~,, in MS

The renormalization group equation in MS was written for the A¢* theory. Let us now
consider the modifications that appear in gauge theories. For these we have to introduce
a gauge fixing term,

1

Lop=——(0- A)2 , (7.124)

2€
where we have chosen covariant gauges of the Lorenz type. As there are no corrections to
the longitudinal part of the propagator there is no need of a counter-term for this gauge
fixing term. Therefore if we define, as usual,

Ar =712 Al (7.125)
we get
Loar=—L 0 4 =L 4y (7.126)
2¢ C2ezy 0 Y T 2g T Y '

This means that the gauge parameter gets renormalized in the following way,
§o = ZaE . (7.127)
The renormalized irreducible Green functions, in general will depend on &, that is,
L (g.m. & w) = Z3°T (g0, m0. G0 ) (7.128)

The renormalization group equation takes then the form,

160,92 a0, T (g, ey = 0, (7.129)

0 0 0
pa—+ B(9,8) 5 + vm(g, ) mo— o€

ou dg om
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where
0 0
5(g,8) = ua—fzu@(ﬁlfe)

10
- 50238

= —2va(9,§) (7.130)

and we assumed that 3,7, and y4 could depend on the parameter £&. However the
dependence on £ is not arbitrary and should obey certain constraints. To see that let us
consider a dimensionless Green function corresponding to gauge invariant operators. Then

%Go(go,mo,&],s) =0 (gauge independent) (7.131)
0
and
Go(go,mo,&0,€) = G(g,m, &, 1) . (dimensionless) (7.132)
Therefore P
1
8§G (7.133)
and this gives
DG = |2 4 00,92 1 o(g.0m2-| Glg.m, &, 1) =0 (7.134)
G = 86 P\g, ag 9, om g,m,q, 1) =9, .
where 5 8
_ 99 . - =
But now G also obeys the renormalization group equation
0 0 0 0

Using the equation for DG = 0 we can substitute the derivative with respect to £ by
derivatives in order to the other parameters, obtaining a renormalization group equation
similar to that of theories that are not gauge theories, that is,

0 0
[@—Fﬁ +5,,m I }G—O, (7.137)
where
B=pB-pd Fm = Ym — 00 (7.138)

Let us now evaluate the commutator [Dg, D]G = 0. We get

op ap (9,0 0 00 00| O
{[as ﬁa_g‘ﬁa_g‘ a_s} +[as+ }as
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Oym 0Vm do do 0
Zm 377§ | m— =0. A
+ 3 +p 39 39 ag}mam}G 0 (7.139)
We introduce now the functions 3 and 7,,, and the operator
— 0 0
D= € + pa—g , (7.140)
to write the previous equation as,
0 (== = Ip 9
_ — -~ 0Jo = 8
Multiplying the equation DgG = 0 by (DJ) we get
0 —. 0 0
Do) — D Dé)m— =0. 142
(D) -+ (D)5 + o(DS)m - G =0 (7.142)
Comparing both equations we see that
— — _ap = _ —80
Dp= g and D7, = ﬁa—g . (7.143)

These equations ensure that the physical results are gauge independent. In fact B = 0
has physical consequences. Then D f = 0 and D 7,, = 0 showing the the zeros of
and the anomalous dimension of the mass, 7,, are gauge independent. Also, if § = 0 we

obtain,
5<@> - 255, [p 3]3

dg dg 0g
9=+ Op B B
= 5.0P 505, =0 (7.144)

This shows that the first derivative of 5 at the zero is gauge independent. Finally as
p=0(g®) and 6§ = O(g?) we also get,

B=pB+0(g) . (7.145)

These results do not depend on the scheme adopted. If we adopt now MS we obtain
the following theorem,

Theorem

In the minimal subtraction scheme we have p = o = 0 and therefore
' _
D=g¢ © P=8 and 7= (7.146)

and B and vy, are gauge independent in all orders.
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Dem: We just give the proof for p, for o it is similar.

g mg— 997
p—gaflng— 7, 0¢ (7.147)

Then

o 8 al a9

1 d
= p+ B <pa1 +98i§1> +0(1/€%) (7.148)

and we get therefore,
p=0. (7.149)

7.3 Effective gauge couplings

7.3.1 Fixed points

As we saw in the last section the asymptotic behavior of the irreducible Green functions
depends on the asymptotic behavior of the solutions of the equations for the effective
coupling constant, A(t), and effective mass, m(t), which are,

d) oy oY

B =B AN0) =)

dt_ (7.150)
@ = ) =1)m)  ; mO) =m

From these equations we see that variation of the effective coupling and effective mass with
the scale are controlled by the functions 8 and ~,,, respectively. To study the asymptotic
behavior of A we are going to assume that $(\) has the form given in Fig. [(.2

A

BN

|

A1 A2 A

Figure 7.2: B()\) as function of A.

The points 0, \; e A2 where §()\) vanishes are called fized points. This is because if
A is at one of these points at ¢ = 0 then it will stay there for any momentum scale as

(% = O>. The fixed points can be of two types:

1. Ultra-Violet (UV) stable fized point
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Are those in which 8/(A\) < 0. It is the case for the point A; in the figure. In this
case B(A) > 0 for A < Ay and S(A) < 0 for A > A\;. Theniffort =0 0< A< )\
then t = oo A — Aj;. On the other hand if \{ < A < Ay as t — o0 also A — ;.
Therefore in the interval 0 < A < Ao the coupling constant is always lead to Ay when
t — oo, that is, for large momenta.

2. Infra-Red (IR) stable fized point

Are those for which 8(\) > 0. This is the case of points 0 and Ao in the figure. We
can easily see that as t — oo the coupling constant moves away from 0 and Ay, but
it is attracted to them in the limit ¢ — 0.

We can now study the asymptotic behavior of the solutions of the renormalization
group equations. Let us suppose that 0 < A < Ao. Then
tlgago At AN) =N\ (7.151)

The way it goes into A\; depends on the first derivative of S(A). Let us assume that near
A1 we have

BA)=aAd—=A) ; a>0

B'(M)=-a<0 (7.152)

Then B
At A) = A+ (A= Ap)e ™ (7.153)
that is, the way it approaches the fixed point is exponential in the variable ¢. It will be

larger if |5/(A\1)| = a gets larger. We saw that the solution for the effective mass equation
was,

m(t) = meteo 1mNdt’ (7.154)
If tlim X = \; then we have for t — co
—00
m = me I mA) (7.155)
This shows that if 7, (A1) < 1 then m(t) — 0 as t — oco. In the same approximation
t
/ ANt ~ v (7.156)
0
and therefore the asymptotic solution is
lim T (ops,m, A, p) = o AT (py 0, Ay, ) (7.157)

This shows the the effective dimension of the fields is not 1 but 1+ (A1). This explains
the name of anomalous dimension for ().

In general it is difficult to determine the zeros of the S function. This is because for
that one would need, in general, results beyond perturbation theory. However 3(\), ¥, (\)
and () have a trivial zero at the origin. If it happens that it is a UV stable fixed point,
then it means that as the scale gets larger the coupling constant get smaller. In the limit
t — 00, A — 0. For this reason these theories are called asymptotically free. It is easy to
see that this happens if §/(0) < 0. In the following we will discuss in which theories this
can happen.
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7.3.2 [ function for theories with scalars, fermions and gauge fields

We will now show that only non-abelian gauge theories can be asymptotically free, that
is, only these verify the property 5'(0) < 0.

i) Theories with scalars

We have already seen that for the simplest scalar theory, A¢*, we have

3\2
B(A) = T6:2

and therefore it is not asymptotically free. Let us now consider a more general theory
with scalar fields ¢; with couplings

+ oY (7.158)

L1 = —Nijredidjdrde (7.159)
where repeated indices are summed over. Then
diire(t _ - -
Bijk@ = ;7];6() - A()\an)\k]mn + )\ijmn)\kémn + )\ikmn)\jémn) (7160)

with A > 0. The theory is not asymptotically free because there are always g functions
with positive derivatives. As an example we have

dM 111

g = Pun = A Ima* >0 ;W (7.161)

ii) Scalar and fermion theories with Yukawa interactions

The most general interaction term for this theory is

Lr=— Njudidibnde+ > 0 (A%, + iBls) 0 d, | (7.162)

1,5,k a,b,k

>0

where A and B are real matrices. Now it is no longer possible to show that

because of the fermion loop of order A? or B? with a negative sign. If we define (¢%)q =
Al + 1Bl ys, we get

dg’ o o
167T2d—i = (Trg'g’Mg’ + Te(g"g")g’ + Mg/
Ligtigi 4+ Loigtigi 4 9gd gl gi

+t59'979 + 59979 +29°97g" (7.163)

where MY = %)\ikgm)\jkgm. Using this result we can prove the following theorem:

Theorem

The most general theory with fermions and scalars is not asymptotically free
because %Tr(g“gi) > 0 and therefore it is not possible to have g; — 0 as
t — 00.
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Proof:
sn2 L rn(gitg) = 87T2£Z\gi ?
dt dt ab

a,b,i
= Tr(¢'¢'NTr(g"¢") + Tr(g'g’T) (Trg'g’T)

1 L 1 R
+§Tr(glg”g” g+ §Tr(g”glg”gj )

+2Tr(¢'g"Tg'g’") + MV Tr(g"T¢7) (7.164)
Now the last four terms are positive. Also the first is larger that the second. This gives
o d it i i YTy ( o it i it g it
872 2 Tr(g'g') = 2| Tr(g' /) Tr(g'g’") + Tr(g'g’ g’ o) (7.165)
The right-hand side is positive as it can be written as
8% 2 Tr(9'g") > (gap9ea + Geabia) (G000 + ghlail) > 0 (7.166)
as we wanted to show.
iii) Abelian gauge theories
Let us consider the case of QED. We have
Ze= 275237 = 771 (7.167)

The renormalization constant Z3 can be calculated in the vacuum polarization represented

in Fig. [T.3]

Figure 7.3: Vacuum polarization in QED.

The result is

2
_ 1
27 1y 1;2 o (7.168)
Therefore p 5
1 al e
Ble) = 5e2E =153 >0 (7.169)

If we had scalar electrodynamics, the renormalization constant Z3 would be obtained from
the diagrams in Fig. [7.4]

The result is

2
-1/2 e 1
Z =1 - 7.170
3 T e ( )
and this gives 8(e) = 45% > 0. Therefore the abelian gauge theories are also not asymp-

totically free.
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Figure 7.4: Vacuum polarization in scalar electrodynamics.

iv) Non-abelian gauge theories

Let us start with the pure gauge theory. The wave function renormalization for the
gauge fields is obtained from the one-lop diagrams of Fig. In MS we obtain

Figure 7.5: Vacuum polarization in a pure non-abelian gauge theory.

2
2 (13 1
Zap=14—=—— | —— - A71
=141 (5 - €) am (r.17)
where C(V') is the Casimir operator defined before. In this case it is for the adjoint
representation to which belong the gauge fields (vectors).

The renormalization constant for the triple vertex, Z, is obtained from the diagrams
in Fig. We get

Figure 7.6: Vertex in a pure non-abelian gauge theory.

¢ (17T 3¢ 1
2T 8 gl o

Z1=1
1 + 6 5
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Therefore we get for the renormalization of the coupling constant,

2
Zy= 22 =1- 2 <

11
1672

. @(V)) % .. (7.173)

Using Z4 and Z, and the definitions of 5 and v we get

3
__g 1u
B=-1623 Ca(V) <0 (7.174)
and )
_ 9 1/13
VA= 1625 < 3 5) Co(V) (7.175)

Therefore the pure gauge theories, without matter fields, are asymptotically free. Notice
that the dependence on the gauge parameter, £, has disappeared from (3 in agreement
with a general result that we have shown before.

The inclusion of fermions and scalars minimally coupled it is now trivial. The interac-
tion Lagrangian is dictated by the covariant derivatives,

Lint = g0 ;Th A
g
+ig;0 ;TG AP
+g2¢:Tgijngk¢kAZAub (7.176)

where T% and T§ are the generators in the representations to which the fermions and
scalars belong, respectively. To find the contribution of these articles to the 8 function we
have to calculate their contribution to Z,. The easiest is to use the results that generalize

QED, that is,
Z,=7;? (7.177)

and calculate the contributions of the fermions and scalars to Z4. This comes from the
diagrams in Fig. [[7l The result is

Figure 7.7: Contribution from fermions and scalars to vacuum polarization.

2[4 1 1
Zg(fermions + scalars) = 1+ 13? gT(RF) + gT(Rs) B + - (7.178)
Therefore for fermions,
g’ 4
S(fermions) = T(RF) , (7.179)

T 16723
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and for the scalars,

3
1
B(scalars) = 1g?§T(RS) (7.180)
Putting everything together we get
3
g 11 4 1
== |—— =T —T(Rs 181
8= 15 |5 CaV) + ST(RR) + 5T(R,) (7.181)

where the quantities T'(R) are defined for a given representation by
Tr(T°T°) = T(R)6% (7.182)

For a theory with Majorana fermions or real scalars, the coefficients in front of T'(Rr) and
T(Rg) are multiplied by an additional factor of 1/2.

B function for QCD

Let us now consider a simple and important example, QCD (SU(3)) with three families
of quarks. For SU(N) we have
Co(V)=N (7.183)

and as the quarks are in the fundamental representation we have,

T(Rp) = % (7.184)

Then

f= 37372

where N, = is the number of families or generations. We get then

33 4 1
16% [—— Fox I 2Ng} (7.185)

B = 12; [— 5 _34N9 ] (7.186)
Therefore for SU(3) the theory is asymptotically free if
33 —4N, >0 (7.187)
which gives
Ny< 2 N, <8 (7.188)

Therefore there are allowed 8 families of quarks, or 16 triplets of SU(3).

7.3.3 The vacuum of a NAGT as a paramagnetic medium (y > 1)

There is an interesting argument (Nielsen 1981, Hughs 1981) that allows to understand
what is different in the non-abelian gauge theories for them to be asymptotically free.
The fact that charge decreases at short distance can be seen as an anti - shielding of the
vacuum, that is,

e<1 (7.189)
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The problem in understanding this result derives from the fact that we do not known
any material with € < 1. In QED the charge grows at short distances and therefore the
vacuum is a normal dielectric with € > 1. The vacuum must have a permeability given by

(we use ¢ = 1),
pe =1 (7.190)

Therefore the anti-screening corresponds to 1 > 1. Therefore the vacuum of a non-abelian
gauge theory is a paramagnetic and this concept can be better understood.

The magnetic permeability can be obtained from the density of energy of the vacuum

in an exterior field,
L

w0 = 3Bl (7.191)

Nielsen and Hughes have shown that p = 1 4 x, where the magnetic susceptibility x is
given by

. 1
X~ (D¢ (‘g + 72s§> (7.192)
53

where s is the spin, ¢ the charge, v the gyromagnetic ratio and s3 the projection of the
spin along the external magnetic field. We have therefore for the different types of fields:

o Scalars
XS ~ —%q% <0 (diamagnetic) (7.193)
e Fermions (yp = 2)
xXF ~ (—1)g%2 <—% + 1> = —%q% (diamagnetic) (7.194)

e Gauge bosons (yy = 2)

1 22
Xv ~ q%/2 <—§ + 4> = gq%/ (paramagnetic) (7.195)
Therefore we get,
22 4 1
XTotal ~ 3(]\2/ - gﬁﬂ - gqg (7.196)

Comparing with the g function we can make the correspondence

1
QX2/ — §C2(V)

q% — T(RF)

g% — T(Rs) (7.197)

This analogy tells us that the vacuum of a non-abelian gauge theory can be understood
as a paramagnetic medium.
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7.4 Renormalization group applications

We consider the Grand Unified Theory (GUT) with the gauge group SU(5), that is

SU(5) > SUL(3) x SUL(2) x Uy (1) . (7.198)

The unification takes place at the GUT scale Myx. Using the renormalization group
equations and the low energy data on the coupling constants, it is possible to determine
the scale My as well as other predictions for the theory at the low scale, which we take
to be the scale Mz. For this we need to know how the different coupling constants evolve
with the scale.

7.4.1 Scale My

We start by writing the covariant derivatives for the unified theory and for the theory with
the broken symmetry.

23 a
SU(B): Dy = 0 +igs » AL (7.199)
a=0

a

8
SU(3) x SU(2) x U(1) : D, = 8, +igs ZGZE

3
. ca Y
+igo ga AZ§ +ig 53” (7.200)
At the scale Mx where the unification takes place we have

95 =93 =92 =01 (7.201)

where g1 is the coupling constant of the abelian subgroup of SU(5). However for the
abelian groups there are no constraints in the normalization of the generators, and there-
fore the the generator A\° of that U(1) can be normalized in a different way from the
hypercharge. We must have

g\ =4Y (7.202)

As X0 is a generator of SU(5) it is normalized according to
Tr(A2Ab) = 259 (7.203)

that is, for the fundamental representation we must have

2 (7.204)
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Now, for the fundamental representation, we have

dy

do

ds (7.205)

et

1%

0

R

and the hypercharg can be read directly. We obtain,

—2/3
—2/3
Y = —2/3 (7.206)
1
1

Therefore Y = _\/g)\o and ¢ = —\/ggl. This allows to determine sin? Ay at the GUT
scale My,

2 3
) g 591 3
sin“ Oy (Mx) = = = - 7.207
(Mx) *+9? gp+in 8 (7.207)
Also, for future reference, we note that
3
q? = : g . (7.208)

7.4.2 Scale M,

Let us look now at what happens at the scale M. The evolution of the coupling constants
is governed by the RGE equations for the three gauge groups in the broken phase

dg;
T T M .2
dt h (7.209)
These § functions are given by
3
g | 4 1
fi= 152 |~ 5 C2(V)+ Zj: ST(RE) + Zk: 5T (Rs,) (7.210)

where the sums are over all the fermion and scalar physical states of the theory at a given
scale. Given the form of Eq. (Z.210]), it is usual to define

1 3

= b 211
B 62 Vidi (7.211)

Y
'Remember that our convention is such that Q = T + 5
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and therefore the b; are defined by the bracket in Eq. (C2I0). Before we evaluate them

let us introduce Eq. (.211]) into Eq. (7.209]). We get
dgi _ _bi_ 5
dt ~ 16m2 Y

(7.212)

Let us solve this equations before we evaluate the beta function coefficients b;. For that
it is usual to introduce the generalization of the fine structure constant, that is, we define
_9%

=i 7.213
= (7.213)

Multiplying both sides of Eq. (T.212]) by ¢; and doing some trivial algebra we get,

dOéi _ bz 2
et (7.214)

Rearranging and integrating between some initial (p;), and final scale (u¢), we get

I de b f
/ a_‘); _ %/ dt (7.215)
o f
1 b; b; Kt
I R N 7.216
[ OéiL o (0 = 5 n(w) ( )
and finally
-1 -1 bz M?"
a (pp) = a; (ui) = -In 2 (7.217)

As at the unification scale My we have, by definition (see Eq. (.201))), that
] = g = (3 = Q5 (7.218)
where a5 is the SU(5) unified value, and we can write the final solution

b; M3
-1 S| ) X .
a; (n) =oa5 + in In <7> , 1=1,2,3 (7.219)
We can rewrite these equations in terms of electromagnetic fine structure constant o(u)
and of the strong coupling equivalent a,p), that are measured at the weak scale, to obtain

_ 1, b3 M
a; () =a51+gln (7

o be (M
a tw)sin? O (u) = az' + —1In <—2> (7.220)
4 1

N 4 b M?
%wwwm%mﬁw+gmG%>

*Remember that ¢ = In(u).
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From these equations we obtain,

In

M3 127 1 8 1
= - = 7.221
w? —8b3 + 3b2 + 5b; [a(,u) 3 ozs(,u)} ( )

That allows to determine Mx, once a(p) and as(p) are known, at a given scale p, and

3(by — b3) n 5(b1 —ba)  a(u)
5b1 + 3by — 8b3 5b1 + 3by — 8bs as(u)

sin? Oy (1) = (7.222)

which allows to determine sin? @y at the scale u = My, once a(My) and ay(Myz) are
known. Finally we can also solve for the value of a5_1. We get

_ 1 a(p)

—1 1

= —3b3 + (bb1 + 3b .22
a; =« (,u)5b1 35y — 80 3bs + (5b1 + 3b9) a5 (1) (7.223)

Now we turn to the evaluation of the coefficients b; first in the Standard Model (SM)
and the in the Minimal Supersymmetric Standard Model (MSSM).

Standard Model

In the SM we have the gauge fields, N, = 3 families of leptons, Np = 2N, = 6 quark
flavours and one Higgs. With this information we can find the coefficients b; for the SM
using the definition

b,:——CQ Z T(Rp,) +Z T(Rs,) (7.224)

where we have modified Eq. (Z2I0]), as the sum in the fermions is done separately for
each chirality. This is important for the SM as the model is described in terms of left and
right-handed fermions.

e SU(3)

For SU(3), we have Cy(V3) = 3 and the quarks are in the fundamental representation,
therefore T'(Rp;) = 1/2. Then the counting goes as follows,

11 2 1
by=—5 X3+ Nyx | x5 x2+1+1) | =-7 (7.225)
——
Gauge quarks

where the meaning of (2 + 1+ 1) is that we count the up and down components of each
(SU(2)1) doublet and then the corresponding right-handed quarks for each generation.

e SU(2)

For the SU(2) we get
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11 2 1 2 1 1 1 19
bo=——x2 4+ Ny x| Nox =X = - X = - X —=—— 7.226
>T 3 N cX3X3 T 3% [T 373 6 (7.226)
N—_—— N— — ——
Gauge quarksy, leptons Higgs

where N, = 3 is the number of colors.
e U(1)

Finally for the U(1) part, with the correct normalization, we have

blzgx %x > <§>2+%x > <§>2 (7.227)

scalars

3 2 1\? 2 2 1\? 2 2\ 2
blzgx Ny x §x<—§> X2+§X(_1)2+NCX§X<6> ><2+Nc><§><<—>

3
—_———
Leptonsg Quarksy, Up—Quarksg

Leptonsy,

2 [1\? 1 1\?
+ N, x §x<§> +§><<§> X 2
N———— N———

Down—Quarksg Higgs
1 41
=4+ T -1 (7.228)
~~
Higgs
So in summary we have for the SM,
41 19
_ —_-7 S .22
bl 10 ) b2 6 ; b3 7 (7 9)

Now let us look to see what are the results for My, sin? Ow (Mz) and agl. We will
use th)eE current values from the Particle Data Group. These are (without worrying about
errors

a_l(MZ) = 127916, «s(Mz)=0.118, Mz =91.1896 GeV (7.230)
we get

Mx = 6.7 x 10" GeV, sin?Oy (Myz) = 0.208, a5 =41.48 (7.231)

3Not only errors but also the difference between different renormalization schemes. Also this discussion
is at one-loop level.
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At the time that this GUT model was proposed by the first time, the constants were
not known so precisely as today. Also the bound on the lifetime of the proton was much
lower than today. So at that time the model was completely consistent. However after
many years of dedicated experiments for find the decay of the proton, the lower limit was
substantially improved and also after LEP the coupling constants are known with greater
precision. So today the value for My is too low, the same being true for the value of
sin? @y (M) (the best value today is around sin? fy (M) = 0.230 E)

This can be seen very clearly if we use Eq. ((2I7]), with p; = Mz and plot the 042-_1 as
a function of In(u?/M%). This is shown in Fig. [[.8 We clearly see that the agreement is

60

50

40

< 30

20

10

I I N B
10

12

n(GeV)

Figure 7.8: Evolution of «; as function of the scale p in the Standard Model for a SU(5)
minimal GUT theory.

quite poor with today’s values.

Minimal Supersymmetric Standard Model

Let us now turn to the MSSM. Below the GUT scale the gauge group is the same as in
the SM, but the particle content is larger, more than duplicated in relation to the SM.
We summarize in the Table [.1] the particle content and their quantum numbers under
G = SU.(3) ® SUL(2) @ Uy (1).

With the values in Table [(.I] we can calculate the contribution of the various particles
to the b; coefficients. We will do it in succession for the three groups and for the different
supermultiplets.

e SU(3)

— Gauge Supermultiplet

4 Again, without discussing the very small errors and the dependence on the renormalization scheme.
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Table 7.1: Particle content of the MSSM. Note that Q@ = T3 + Y/2.

Supermultiplet | SU.(3) ® SUL(2) ® Uy (1)
Quantum Numbers

Vi= (N, W (1,1,1)

Vo = (A%, W) (1,3,0)

Vs = (g, W4") (8,1,0)
Li=(L,L); (1,2,—1)
Ri= (I, 15); (1,1,2)

Qi = (Q.Q) (3,2, 3)

D; = (dg, d$); (3,1, %)

U = (g, u$); (3,1,—4)

Hy = (Hy, Hy) (1,2,-1)

H, = (H,, Hy,) (1,2,1)
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We first do it in general for any gauge group and then apply it to the cases of interest.
The gauge multiplet has a gauge boson contributing with

11
p gauge boson __ _3 CQ(V)

(7.232)

and the left-handed gauginos in the adjoint representation of the gauge group. These

therefore contribute

and therefore

where SM stands here for super-multiplet. Applying now to SU(3) we get

: 2
{gaugnos _ g CQ(V)

p gauge SM _ -3 CQ(V)

bgauge SM -9

— Left-handed Lepton Supermultiplet

b;eptonSL SM -0

— Right-handed Lepton Supermultiplet

b?{_;eptonsR SM -0

— Left-handed Quark Supermultiplet

(7.233)

(7.234)

(7.235)

(7.236)

(7.237)
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2 1 1 1
bQuarksLSM:_X_X2 T x %9

3 372 T 373
Quarksry, Squarksy,

— Right-handed Up-Quark Supermultiplet

2 1 1 1
bUp—QuarkR SM “ - - -
3 33t 3%3
S~—— N—~—

Up—Quarksy Up—Squarksg

— Right-handed Down-Quark Supermultiplet

2 1 1 1
bDown—QuarkR SM _ Sz - %z
3 33 T 373
~——
Down—Quarksy Down—Squarksy
— Up type Higgs Supermultiplet
bUp—Higgs SM 0
3 =
— Down type Higgs Supermultiplet
bDown—HiggsSM -0
3 =
e SU(2)
Gauge Supermultiplet
We get
bgauge SM 6
5 =
— Left-handed Lepton Supermultiplet
2 1 1 1 1
bLoptonsLSM: Sz I =2
2 32 T 3%3 T3
SN—— SN——"
Leptonst, Sleptonsr,

— Right-handed Lepton Supermultiplet

b2Lept0nsR SM -0

(7.238)

(7.239)

(7.240)

(7.241)

(7.242)

(7.243)

(7.244)

(7.245)



285

7.4. RENORMALIZATION GROUP APPLICATIONS

— Left-handed Quark Supermultiplet

ks SM 2 1 1 1 1 3
szuar SL = NC 5 X 5 +NC g X 5 == NC 5 == 5 (7246)

N—— ~——

Quarksry, Squarkst,

— Right-handed Up-Quark Supermultiplet
by P Quarkr SM _ g (7.247)
— Right-handed Down-Quark Supermultiplet
szown—QuarkR SM -0 (7248)
— Up type Higgs Supermultiplet
; 1 1 2 1
pUp—HiggsSM _ - - ZxZ = Z 7.249
2 3537 373 T2 (7.249)
SN——" SN——"
Higgsu Higgsinoy
— Down type Higgs Supermultiplet
; 1 1 2 1 1
bDown—nggsSM _ - - “ - = 2
9 3 X 5 + 3 X 5 5 (7.250)
SN—— SN——"
Higgsg Higgsinog
e U(1)
Gauge Supermultiplet
We get
paanee SM _ (7.251)
— Left-handed Lepton Supermultiplet
(7.252)

2 2
X —1 ><2+1>< —1 X2 =—
3 2 10

Sleptonsry,

2
bchptonsL SM _ g « g

Leptonsy,
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— Right-handed Lepton Supermultiplet

3 2 1 3
bLeptonsR SM — = _1 2 - _1 2 — _ 7.253
Leptonsy Sleptonsy
— Left-handed Quark Supermultiplet
Quarks, SM 3 2 (1\? 1 [1)\? 3.1 1
bl :gXNCX §>< 6 X2+§X 6 X 2 :NCX5X1—8:1—0(7254)
Quarks, Squarks;,

— Right-handed Up-Quark Supermultiplet

2 2
Up—Quarksg SM 9 2 2 1 2 3.4 4
bl p—Quarksg = 5 X Nc X 5 X <§> + 5 X § == Nc X 5 X § = g (7255)

Up—Quarksy Up—Squarksg

— Right-handed Down-Quark Supermultiplet

_ 3 2 1\? 1 1)\ 2 31 1
leOWH QuarksRSle 5><NC>< § X <—§> —|— § X <——> :NCXEX§ — g (7256)

Down—Quarksy Down—Squarksy

— Up type Higgs Supermultiplet

. 3 1 1\2 2 1\? 3 1 3
leggsu SM _ 2 - - 9 - _ 21 = = - = — 7.257
1 5 13 \z) =T 3x(g) ~ 572710 (7.257)
Higgsu Higgsu

— Down type Higgs Supermultiplet
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2 2
miggsasM _ 3 | L (DN o 2 IV o 23 L3 5
b, 7 X 3><<2>>< —|—3>< 5) % :X3= 15 (7.258)
Higgsq Higgsq
Now we put everything together to obtain fro the MSSM,

3 1 4 1 3 3 33
! gx<10+5+10+5+5>+10+10 x +5 5

1 3 1 1

—_— 64N S IO |
by 6+ gx<2+2>+2+2
1 1

Now let us look to see what are the results for My, sin? 6y (Myz) and ()45_1 in the
MSSM. Using the same inputs as for the SM, Eq. (Z.230) 1 , we get

Mx =21 x10'% GeV, sin0y (Myz) = 0231, o' =24.27 (7.260)
we immediately see that these values are quite good. This can be seen very clearly if we

use Eq. (T2I7), with p1; = Mz and plot the a; ' as a function of In(y?/M2). This is shown
in Fig. [[.9 and the agreement is excellent.
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Figure 7.9: Evolution of «; as function of the scale p in the MSSM for a SU(5) minimal
GUT theory.

5 Again we do not take into account errors and the difference between different renormalization schemes.
Also this discussion is at one-loop level and the effects of the supersymmetric particles not decoupling at
the same scale (thresholds) are not taken in account.
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We can still go a step further. We know that supersymmetry must be broken above
the electroweak scale, so what we have done in Fig. is not quite correct because we
are running with the MSSM content down to the weak scale. Of course each particle will
decouple at its mass, but assuming that their masses are not much different we can assume
that there will a scale Mgysy, below which we will have the SM RGEs. We can redo the
calculation taking now the evolved SM values at Mgysy as the boundary conditions for
the MSSM evolution. In Fig. and Fig. the results are shown for various values of the
SUSY scale. We see from these results that if the SUSY scale is much higher than, say

60 =T 60 <
50 4t 50 at
40 40
L) L)
$ 30 s 30
1 T N 02-1 T
" a, /-< " /»<
10 @t 10 a
0 0
10° 10* 108 10%? 106 10° 10* 108 10%? 106
JU(GeV) H(GeV)

Figure 7.10: Evolution of «; as function of the scale in the MSSM for a SU(5) minimal
GUT theory. On the left panel Mgysy = 500 GeV and on the right panel Mgysy = 1000
GeV.

60 60
‘\ ‘\
50 a 50 a?
40 40
T ———
F"§ %0 F"§ %0 / &(
a aQ-L
20 — 20
1 1
10 G 10 G
0 0
10° 10* 108 10%? 106 10° 10* 108 10%? 106
UGeV) UGeV)

Figure 7.11: Evolution of «; as function of the scale in the MSSM for a SU(5) minimal
GUT theory. On the left panel Msygy = 10* GeV and on the right panel Mgysy = 108
GeV.

1 TeV, the good agreement starts do disappear. Before we end we should emphasize that
these are one loop results, without many fine details, like thresholds (talking in account
that not all the supersymmetric particles decouple at the same scale) and the important
two-loop effects.
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Problems for Chapter 7

7.1 Verify Eq. (ZI63). For this notice that 3¢ = dd—%i where /% is determined from the
following diagrams

OF

-~

A /
~ -

~ -

7.2 Evaluate in minimal subtraction (MS) the renormalization constant Z3 for QED,
Eq. (Z168]).

7.3 Evaluate in MS the renormalization constant Z3 in scalar electrodynamics, Eq. (Z.170]).

7.4 Consider a non-abelian gauge theory, with symmetry group G and without matter
fields. Evaluate the renormalization constants for the gauge field Z4, and for the triple
vertex, Z.

7.5 Consider a non-abelian gauge theory in interaction with scalar and fermion fields.
Evaluate the contribution of these to Z4 and Z;. Use these results together with those of
Problem [74] to determine the  function of the renormalization group for this theory.

7.6 Consider the Standard Model of the electroweak interactions. Considering all the
fields in the theory, determine the coefficients by, by e b defined in Eq. (7.224]).

7.7 Consider now the Minimal Supersymmetric Standard Model (MSSM).Considering all
the fields in the theory, determine the coefficients by, bs e b3 defined in Eq. ((.224)) for this
theory.
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Appendix A

Path Integral in Quantum
Mechanics

A.1 Introduction

The ususal formulation of Quantum Mechanics is given by the Schrodinger equations,

L0
iho; la(t)) = H |a(t)) (A1)
onde ,
H=1 +V(@) (A.2)
and
[Q, P] =ih (A.3)

This formulation it is equivalent to another made using path integrals, due to an idea
of Dirac and developed by Feynman [11] 12]. To see this we observe that in quantum
mechanics. we know how to answer any question about a system, if we know how to
calculate the transition amplitudes,

(b(t")]a(t)) = (b 1) |a) (A.4)

Sao estas amplitudes de transigdo que sao definidas em termos de integrais de caminho.
Conforme a representagao escolhida para os estados |a) e |b) as expressoes para o integral de
caminho vém diferentes. Assim vamos analisar separadamente os casos das representacoes
no espago das configuragoes (coordenadas), no espago de fase e por meio de estados coe-
rentes (espaco de Bargmann-Fock).

A.2 Configuration space
Introduzimos os estados |g) e |p) tais que

291
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Qlg) = qlq) ;. Plp)=plp)
(d'lg) =0(¢" —q) ;o (Plp) =060 —p)
(alp) = (plg)" = e (A.5)
Entao
arstlat) = [ Diger il 400 (A.6)

onde D é uma medida de integracao definida pelo limite

n—1 nm /2
D(q) = lim H dgp [m] (A7)

sendo n o nimero de intervalos em que se fez a particao do intervalo (¢;,t). O limite
n — oo € bastante complicado e s existe prova matematica para certas classes de potenci-
ais. A Eq. (A.6) permite uma interpretagdo da mecanica cldssica como limite da mecéanica
quantica. De facto quando 7 — 0 a maior contribuicdo para a amplitude vem das tra-
jectodrias que minimizam a ac cdo, isto é, as trajectdrias cldssicas. A mecénica quantica é
entao vista como o estudo das flutuacoes a volta da trajectéria classica.

A.2.1 Matrix elements of operators

Usando a propriedade dos integrais de caminho

/D( ) iS(fi) — /dq /D zS (f,t) /D( ) 1S(¢,7) (A8)
onde t; <t < ty, é facil mostrar que
<Qf’tf| O( |(]2, i /dq/dq/'/D ZS(qf tyia )
(0} [ DS eme (A9
Entao se O for diagonal no espaco das coordenadas, isto €, se

(d"|O|d) =0(d)(d" —d") (A.10)

obtemos

(4.t O lai i) = / D(q) €SUDO(q(2)) (A11)
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A.2.2 Time ordered product of operators
Seja O1(t1)Oz(t2) -+ - Op(ty) com tg1 > tg > --- > t,. Entao é facil de mostrar que a

ordenagao no tempo é automaética no integral de caminho, isto é,

(g5, t7| O1(t1)Oa(t2) - - - Onltn) lais ti) = /D(Q)eis(f’i)oloz'“on (A.12)

Este resultado é particularmente importante, pois permitira escrever as funcgoes de Green
de produtos de operadores ordenados no tempo como simples integrais de caminho de
produtos dos equivalentes cldssicos desses operadores.

A.2.3 Exact results I: harmonic oscillator

Para alguns potenciais é possivel calcular exactamente o limite introduzido em (A.5). Para
esses casos o integral de caminho é portanto perfeitamente bem definido. Esses potenciais
nao sao muitos, mas sao particularmente importantes. Para o seguimento interessa-nos
discutir dois deles. O primeiro é o oscilador harménico definido pelo potencial

w2
V(Q) = m7Q2 (A.13)

Para este caso obtém-se, (os integrais sao gaussianos e por isso podem ser explicitamente
calculados)

(fli) = (M) 2 exp {z% [(qfe +¢7) cot wt — m} } (A.14)

27 sin wt sin wt

Este resultado vai ser util adiante.

A.2.4 Exact results II: external force

Consideremos agora uma forca exterior tal que o potencial é dado por

V(Q) = ~QF(t) (A.15)
Neste caso obtemos
inj2 17
me:[i%Fjgleﬂm> (A.16)

onde S(f,i) é a acgao calculada ao longo da trajectéria classica,

2 t
. m (qf — i) f t—t; tr—t
S(f,i) = M) dtF(t :
(i = G [T (o= =



294 APPENDIX A. PATH INTEGRAL IN QUANTUM MECHANICS

ty [ty
+L / / dt'dt" F(GH ") F(t") (A.17)
2m Jy i,

onde G(t',t") = % —Inf(#,t") é a fungdo de Green simétrica para o problema ¢ = F(t)/m
com as condigdes na fronteira G(0,t") = G(¢/,0) = 0.

A.2.5 Perturbation theory

A importancia do resultado exacto para a forca exterior deve-se ao facto que usando
esse resultado podemos formalmente resolver o problema dum potencial qualquer. Para
isso notemos que a derivagao funcional em realagdo a fonte F(t) faz baixar Q(t). Mais
explicitamente

(1R ive = 75 i (A18)

onde (|) significa calculado na presenca da fonte exterior (i.e. para o hamiltoniano
H = P%/2m — QF(t)). Entao para um potencial arbitrario V' (g) temos

(fliy = / D(q)eififdt[%mf—wq)]

~ exp {—z’/t:f dtv [%} } (Slide| (A.19)

Esta expressao formal torna-se muito tutil quando a exponencial é expandida em série.
Entao todos os integrais sao do tipo gaussiano e podem ser exactamente executados.
Obtemos assim a teoria das perturbacoes. Claro que sé tera significado se houver um
parametro pequeno no potencial. E importante notar que enquanto se faca teoria das per-
turbacgoes nao hé qualquer problema com a indefinicdo matematica do integral de caminho,
pois todas as integracoes sao gaussianas.

A.3 Phase space formulation

Para este caso obtemos

. t .
(a5t rlai ts) = / D(p, q)e' i lpi-hwa)] (A.20)

onde h(p,q) é o hamiltoniano clédssico e a medida é dada pelo limite

n n—1
Hdps H dqy
D(p,q) = lim =— 1 (A.21)
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A fase da exponencial é novamente a acgdo cldssica expressa nas varidveis candnicas p
e q. Se h(p,q) depender quadraticamente de p como é usual, pode-se fazer a integragao
gaussiana em p e a expressao reduz-se a do caso anterior, equagao (A.4).

A.4 Bargmann-Fock space (coherent states)

Nesta representacao usamos fungoes analiticas de varidvel complexa para descrevermos os
operadores a e a' ( [a,a’] = 1). A correspondéncia é feita do modo seguinte. As funcoes
analiticas geram um despaco de Hilbert com o produto interno definido por

(alf) = / G20z = 5(2) () (A.22)

211
Os operadores a e al sao representados neste espaco por
0

a— —
0z

al » % (A.23)

Dado um estado |f), representado pela funcao f(Z), a accao do operador A em |f) produz
outro estado que também pode ser representado por funcoes analiticas. Se designarmos
por g(Z) essa fungao temos

9@ = @Al = [ G e FAEOIE (A20)

onde A(Z,&) é o kernel do operador A. Uma representagao explicita para o kernel é facil
de obter. Para isso introduzimos os estados |n), definidos por

n) = \% 0) (A.25)

E facil de verificar (ver Problema A.2) que com a definicio de produto interno acima
introduzida estes estados sao ortonormados, isto é (fi,|fn) = dmn.

Entao

GAaly = 30 ﬁ (n] Alm) (ml )

271'2 [

dedé .z zn mo
= /2—m.€ & [mzm ﬁAn,mﬁ] f(&) (A.26)
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Portanto

zTL m
Az =) —=Aum—— (A.27)
et Vvn! vm!
O kernel de qualquer operador é assim obtido desde que se conhecam os seus elementos
de matriz na base |n).

J& vimos como se representam estados e operadores. Vamos ver como representar
produtos de operadores. Sejam dois operadores A; e Ay e um estado |f). Seja ainda

PR 7,010 (A28)
X

mm=W@m=/

Entao

mmm:=/§§f%uwmw

211

dndn dédé 7 _ - 3
/;TZ’/% 6_556_7777 Al(E, 77)142(ﬁ7 g)f(é)

_ /@gﬁg@[/gﬂﬁfﬁAﬂZmbﬁf)f@

211 211

dédé —€F _ _
= = A A2
|55 e a2 05© (4.29)
Portanto o kernel do operador A3 = A;As é obtido por convolucao dos kernéis de A; e
Ao, isto é

@@m:/@@awmQM@m@ (A.30

211

A.4.1 Normal form for an operator

Como ja sabemos representar estados, operadores e produtos de operadores ja temos toos
os ingredientes para fazer mecanica quantica neste espaco. Ha contudo um outro assunto
que é importante tendo em atencdo que pretendemos aplicar este formalismo em teoria
quantica dos campos. Trata-se da forma normal dum operado. O operador A na sua
forma normal é definido por

ama™

A= AN — — A.31

isto é, os operadores de destruicao estdo a direita dos operadores de criagdo. O kernel
normal é definido por

! Notar que em teoria quantica dos campos tem que se proceder ao ordenamento normal do hamiltoniano
para definir o zero da energia.
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m

= ; \/——. m (A.32)

isto é, é obtido por subtituicao directa dos operadores de destruicao por z e dos de criagao
por Z. Para um operador dado na sua forma normal este é o kernel imediato de obter. E
contudo diferente do kernel atras definido. Para ver a relacao entre eles notemos a seguinte
relagao

ﬂa:=§j£§mm
M- TaE

:(/%% € f(E) (A.33)

211

O kernel €% é portanto uma funcio delta neste espaco. Usando este resultado obtemos

AN m
EAlf) = Z \ﬁ"”" EAE

nlvm! dzm

_ dgdg —§§ Z€E =n¢m
Zj o " F(©)
déd s = _
=/§§f%ﬁﬂﬁ@m> (A34)
donde resulta
Az, €) = e* AV(z,6) (A.35)

Esta relagdo é muito importante pois permite imediatamente escrever o kernel dum ope-
rador qualquer uma vez que seja conhecida a sua forma normal. Isto é particularmente
atil em teoria quantica dos campos onde o hamiltoniano é dado na sua forma normal.

A.4.2 Evolution operator

Podemos obter agora a expressao para o operador de evolucao nesta representagao. De
acordo com aquilo que acabamos de dizer, para um intervalo infinitesimal, devemos ter
para o kernel de U

U(z, &, At) = % e At h(E9) (A.36)
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onde h(z,&) é o kernel normal obtido por substituigao directa dos operadores al e a pelas
varidveis complexas Z e £. Notar que quando At — 0 o kernel do operador de evolucao se
reduz ao kernel da identidade, €*, que como vimos é a funcéo § neste espaco.

Para um intervalode tempo finito ¢ =ty — t;, dividimos o intervalo em n intervalos

t
At = —
n
20 21 29 e Zn—1 Zn (A.37)
Entao
U(zl, ZO) ~ ezlzo—iAth(El,Zo)
U(QQ, Zl) ~ ezgzl—iAth(Ez,Zl)
UZny 2n1) o~ eFnon-17iAth(GEnz0-1) (A.38)
Aplicando agora a regra de multiplicacao dos kernéis obtemos
" dzdz d
_ R kAZk _
UZyp tpizit) = nh_)n;o/ H = exp { Zk Zh—1
k=1 k=1
n—1 n
— Z Zr2r — 1 h(fk, Zk_l)At (A39)
k=1 k=1
ou seja
1z si2 )i (1L (Goezi)—h(z
U(Ef,tf;zi,ti) — /D(Z,?) 02 (Zfo‘i‘Z@Zz)‘f‘lfti [Ql(zz ZZ) h(z,z)]dt (A40)

Nesta expressao Zf(ty) e z;(t;) sao fixados pelas condigoes fronteiras mas Z¢(t;) e z;(ty)
sdo arbitrarios. A fase da exponencial é novamente a acgdo, agora escrita nas variaveis
complexas z e Z. Para ver isso basta lembrar que

%(pdq + qdp) = %(zd? —Zzdz) (A.41)

A.4.3 Exact results I: harmonic oscillator

Também aqui vamos analisar os casos importantes em que ha resultados exactos, nomeada-
mente o oscilador hamonico e o caso das fontes externas. Comecemos pelo oscilador
harménico. O hamiltoniano é dado por

Hy=wala (A.42)
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Trata-se portanto dum caso em que o hamiltoniano é dado na forma normal. Este problema
pode ser resolvido exactamente. Temos

U(Zys,zi,t) = lim

= lim
n—oo

onde
Z1 i
22
X = .
Zn—1 |
€
Z(]a_
0
B = .
0

|
]

Nl
e
0
>

|
o~
&

S|

|

kzk—l}

n—1 —
/ I1 dzpdZk [ XAX{XB+BX]
Pt 2

;X =

; B

(217227 tee 7En—l)

(0707' o 707Zna)

com zy = z; € 2, = zf. A matriz A de dimensao (n — 1) x (n — 1) é dada por

onde se definiu

—a 1 0
0 -—a

t

a=1-—ihw—
n

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

As (n — 1) integragoes gaussianas podem ser facilmente feitas usando o resultado (ver

Problema A.3),

H dzdzy, e ZAztuz+zu
2

obtemos entao

= (det A)~1 e#47w

1

(A.48)
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Uo(Zf,2zi3t) = lim [(detA)_1 eEA?lB}

n—oo

= lim [(det A)~1 effZif(A”)nfm] (A.49)

n—oo

E f4cil de verificar que para a matriz A se tem

ab=m se k>m
(A e = (A.50)
0 se k<m
e portanto
detA=1 (A.51)
e
AL = () (=) (A.52)
donde se conclui que
b\ " '
lim a2(A_1)n_11 = lim (1— ﬂ) = et (A.53)
n—o00 n—o00 n
Obtemos entao finalmente
Uo(Zf, zi3t) = exp {Efzie_i“t} (A.54)

Podemos verificar que este resultado é da forma e’ onde S é a accdo calculada ao longo
da trajectéria classica. De facto a estacionaridade do expoente da exponencial da

i ; 2z iw?z] dt}

6{%(3f2(tf)+§(ti)2i) +/t;f [

1. 1 1 1
= §zf52(tf) + iziéz(t,-) — §zf52(tf) - iziéz(t,-)

+ / ! [62(2 — iwZ) — 62(2 + iwz)] dt (A.55)

t;

pois 0Zy = dz; = 0. As equagoes de movimento sao portanto
Z—iwz =0 Z(ty) = 25

com (A.56)
Z4+iwz =0 z(t;) = 2
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que tém como solugao

2(t) = 2z ewti=t)

(A.57)
Z(t) = zp et
Substituindo estas solugoes no expoente obtemos
1 tr[1 _
3 Zrz(ty) + ziZ2(t)] + / [5(7373 —Z%) —iwZz| dt
t;
— Ele e’iw(ti—tf)
= Zyz et (A.58)

para t =ty — t;, como queriamos mostrar.

Um outro resultado importante do oscilador harménico é que a evolucao dum estado
sob a accao de Hy = wala é particularmente simples neste espaco das funcées de varigvel
complexa. Seja f(Z) a representacao do estado |f). A evolugao debaixo de Hy é dada por

Do) f(z) = / e e zeet ()

21

— f(zeh (A.59)

isto é, é reduzida & multiplicacdo por e~ **

Z—oZe Wt (A.60)

Isto é importante para descrever a matriz S, em que os estados assimptéticos evoluem de
acordo com o hamiltoniano livre.

A.4.4 Exact results II: external force
Seja o hamiltoniano

H =wa'a— f(t)a’ — f(t)a (A.61)

Este hamiltoniano também conduz a um resultado exacto. Usando os mesmos métodos
que foram utilizados para o oscilador harménico pode-se mostrar que neste caso também
temos

U(zy, 2i;t) = U0 (A.62)

onde S(f,i) é a accao calculada ao longo das trajectoérias cldssicas (ver Problema A.1).
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A.5 Fermion systems

Vamos generalizar os resultados anteriores ao caso de sistemas de fermices. Comegamos
com sistemas com dois niveis com os operadores at e a tais que

{aT,a} =1 ; a? =a* =0 (A.63)

Para efectuar a construcao anterior vamos tentar representar estes operadores num espago
de Hilbert de fungoes analiticas. Isto é possivel se considerarmos fungoes (de facto poliné-
mios) com coeficientes complexos em duas varidveis que anticomutam 7 e 7, designadas
por variaveis de Grassmann e que obedecem a

m4+mm=0 5 B =n"=0 (A.64)

Entao qualquer funcao P(n,7) terd a forma
P(n,7) = po -+ pi7] + D11 + P21y (A.65)

A.5.1 Derivatives

Neste espago a derivagao é definida por (as derivadas sdo esquerdas)

P _~

oP
— o — A.
a7 D1 — P12 (A.66)

De entre todas as fungbes nas variaveis 7 e 77 definimos o subconjunto das fungoes analiticas
tais que

0
a5l =0 (A.67)

isto é as funcoes analiticas tém a forma
f=l+ fin (A.68)
A.5.2 Dot product

No espago das fungoes analiticas define-se o produto interno

(9,f) =30 fo+ 91 f1 (A.69)

este produto interno pode ser representado por um integral desde que definamos a inte-
gracao convenientemente (ver equagao (A.74)) .
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A.5.3 Integration

A integracao nas variaveis de Grassmann é definida pelas relagoes

/ﬁnnz/ﬁﬁﬁzl
dpl= [d71=0 (A.70)
fai=]

Notar que a integracao assim definida é semelhante a derivacao. De fact?

/an:aP ; /dﬁpzép
/ dijdny P = 90P (A.72)

Devido a forma da equacgao A.62 é claro que se tem

7 =82=0 (A.73)

e que portanto o integral duma derivada é zero. Consideremos agora a mudanca de

varidveis nos integrais. Seja
U §
N=A(2 A.74
<77> <§> (A7

Entao obtemos

nn = (A11€ + A128) (A€ + Af)
= (An1Ag — A1pAn)EE
— det A &F (A.75)

Pelo que

/ dndnP(n,7) = / dEde (det A)Q(E, ) (A.76)

onde Q(&,€) é o polinémio que se obtém de P(n,7) por substituicio de n e 77 por £ e €.

2 Estamos a usar a notacio compacta

Q|
Il

(A.71)

— 0
o=2

S
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Finalmente notemos que se definirmos a conjugagao complexa de f por

f="Ffo+fin (A.77)

entao podemos encontrar uma representacao integral para o produto interno dada por

(9, f) = /dﬁdn e Mg f (A.78)

Para vermos isso calculemos o integral. Obtemos

/ dijdn e g f
=/mmm—WM%+mmm+ﬁm

=9gofo+ a1 f1

= (9, f) (A.79)

A.5.4 Representation of operators

Os operadores a e al podem ser representados por

a— 0
al =7 (A.80)

E facil de ver que com estas definicoes temos a® = a'? =0 e aa’ + afa = 1.

Consideremos agora os estados [0) e |1) = a' |0) a que correspondem as funcoes 1 e 7.
Entao podemos encontrar o kernel de qualquer operador

A= "|n) Ay (m] (A.81)

De facto

(Af)n = Z 7" Anm (ml|f)

n,m

— [ g S A € £

- / dEds e~ A@.€) £E) (A.82)
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onde
=D T Apm " 5 n,m=0,1
Para o produto de operadores é ficil de ver que temos como anteriormente

Ay Ay(7m) = / dEdE e A,(7,€) As(Eo1)

A.5.5 Normal form for operators

Seja um operador definido por

A= Z|n nm (M| = ZaT"|0 (0] a™ Ap

n,m

O projector do estado base é

logo
A = ZAW” cgfn emafa gm .

= Z Aﬁx o™
n,m
O kernel normal é entao definido pela substituicao a' — 7 e a — 7, isto é
Z AN T
O kernel da identidade é €™, isto é
M= [ deds e £
0 que permite obter a relagdo entre o kernel usual e kernel normal. De facto

atram sl = ;—Z ()

- / dEde % T e [ (F)
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(A.83)

(A.84)

(A.85)

(A.86)

(A.87)

(A.88)

(A.89)

(A.90)
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0 que permite escrever a relacao procurada

A, m) = €™ AN (77,n) (A.91)

Finalmente seguindo um raciocinio analogo ao do sistema de bosoes € facil obter o kernel
do operador de evolugao
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Problems for Appendix A

A.1 Show the result expressed in Eq. (A.62]). Show also that

tr _

iS(fi) = zp e T g / dt |zp U0 f(1) 4 F(2) e R0 2

ti
Ly ty . ,

_ / dt [ at Tty et payag — o) (A.93)

t; t;

This result it is useful in many applications (see, for instance, Eq. (B.9)).
A.2 Show that the representative of the states |n) and |m), % and %, respectively,are
orthonormalized, thyat is, (fy|fm) = On,m-
A.3 Show that for gaussian integrals we have

/H dZ;dEk e—EAz+Ez+Eu _ (det A)—l eﬂfrl“ (A94)
T

Notice that the exponent is the staionary point.

A.4 Show that for gaussian integrals of Grassmann variables we have

n
/Hdﬁkdnk eZﬁkAkZW'f‘Z(ﬁkgk"'gknk)
1

— det A X8k (A reée (A.95)

Compare with the result of Problem [A.3l
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Appendix B

Path Integral in Quantum Field
Theory

B.1 Path integral quantization

Vamos aqui generalizar os resultados do apéndice A para o caso de sistemas com um
numero infinito de graus de liberdade que sao os que interessam em teoria quantica dos
campos. Para evitar complicacoes com indices e com problemas decorrentes da invariancia
de gauge vamos estudar o caso do campo escalar cuja accao classica em presenca duma
fonte exterior é

S(¢,J) = So(¢,J) + / dz V(x) (B.1)
onde
So(¢,J) = / dix Eama% — % m?¢? + J¢} (B.2)

¢é a accao do campo escalar livre acoplada a uma fonte exterior. Vamos primeiro estudar
este caso, isto é, supor que V = 0. O caso geral é facil, de obter a partir deste, como
veremos mais a frente. O hamiltoniano é dado por

1 1 , 1
H= / Bz [gwgp + 5 (Vo) + §m2¢§p - J%} (B.3)
e podemos introduzir os operadores a(k) e a'(k) tais que num certo instante

Gop = /Jk: [a(k‘) ke | al (k) e_“;'f} (B.4)

— / dk [a(k) 57 — af (k) 7] (k) (B.5)

309
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entao
1 = [ i [l Balk) ~ £t Fyal (k) = F(t. Fra(r)| (B.6)
onde introduzimos a transformada de fourier espacial da fonte,
f6]) = [ ' e e, ) (B.7)
e onde definimos
~ 3 4
de=—2F  _ dF o sk~ m2)e(0) (B.S)

(2m)32w;  (2m)?

usando os resultados do problema A.1 podemos escrever imediatamente o kernel do oper-
ador de evolucao

U(Ef,tf;z,-,t,-) = exp{/cik |:§f(k) e_iw(k)(tf_ti) Zz(k)

tf . o .
_H'/ dt |:§f(k) e—zw(k)(tf—t) f(t7 k)—i—f(t, k) e—zw(k)(t—ti) Zz(k)]

t;
1[4 Y T By i) () p T
5 ) [ TR e FR) (B.9)

A matriz S é entao definida como o limite

lim o U(ty,t;) emtiHo (B.10)

—ti,tf—00

onde Hj é obtido a partir de H fazendo J = 0. Na representacao que estamos a usar a
accao de e~ 0 ¢ uma simples multiplicacao (ver eq. [A.G0)).

Z—Ze W (B.11)

Portanto o kernel da matriz S é

S(Zpz) = lim  exp [/dkif(k)zi(k)] exp{/ k[

—t;,tf—00

ty . o S .
i / [Z27(k) B f(t, k) + F(t,k) e Bz (k)]

t;
LY (Y B i) (t) e T
[ TR e £t R (B.12)

O primeiro factor é aquilo que é necessario para passar do kernel usual para o kernel
normal. O restante pode ser interpretado se definirmos
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Gas = /dk; [zz(kz) e R L 7, (K) R (B.13)

Como Zy nao é o complexo conjugado de z; entao ¢, ¢ dado em termos de condigoes na
fronteira com frequéncias positivas para t — —oo e frequéncias negativas para t — oo.
Estas s@o precisamente as condi¢oes na fronteira de Feynman. Com estas convengoes e
notacoes obtemos para o primeiro termo

-, —

- [tr . R .
/ dk / dt [zf(k;) B £t B) + Ft, k) ek zi(k)}
t;
_ /d4:17/cZk:J(x) [Efeiw(k)t_iﬁ.erzi(k) e_iw(k)t+u;‘.f]
- / 2] ()6 () (B.14)
e para o segundo
/ dk / dt / dt’ F(t, k) e B (¢ )
_ /d4xd4xlj(x)J(x/)/dk i (k) (t—t ) iR (7 )
= /d4xd4az’ J(z)Gp(z —2')J(2)) (B.15)
pois
/ e e—iw k)=t +iF- (@)
_ /Jk: e i) (=) ik E=F) gy _ 47y
+/Jl<: (k)= )i E=F) g1 _ )
) / 1
_ 4 —ik-(x—x’)
z/dk:e k2 —m?2 +ie

=Gp(z—1) (B.16)

Notar que as condigoes na fronteira mistas conduzem ao propagador de Feynman. Podemos
portanto finalmente escrever o kernel normal da matriz S na presenca da fonte .J,

SN(zJ%Zi)‘J _ eifd4x J (@) das () e—% J drzd*a’ J(z)G(z—a')J(z") (Bl?)
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Para se obter o operador S substituimos ¢,s por ¢, e fazemos o ordenamento normal,
isto é

S()(J) —. eifd4m J(z)pop () . e—% J drzd*z’ J(2)G%(z—2')J(z") (B18)
Como o funcional gerador das fungoes de green é (0|Sy(.J)|0) obtemos imediatamente
Zo(J) = e—%fd4xd4x’J(x)G%(x—x’)J(x’) (B.19)

Este resultado permite resolver o problema de qualquer potencial V(z). De facto é facil
de mostrar que no caso geral os kernéis estao relacionadoss por

SN = exp [—i/d‘lxv <Z,5J‘5($)>] SY|,—, (B.20)

e o operador S é

_. [ d*zJ(z)pop(x) . . 4 )
S=:e : exp[ Z/dxv<i<5j(a;)>] Zo(J)] ;_, (B.21)

ou seja

Z(J) = exp [—z‘/d‘lx 1% <$>] Zo(J) (B.22)

com
Z()(J) _ e—% J drzd*a’ J(2)G%(z—a')J(2") (B23)

Estas expressoes permitem calcular qualquer funcao de green com as regras usuais da
teoria das perturbacgoes. A quantificacdo usando os integrais de caminho conduziu aos mes-
mos resultados (em teoria das perturbagoes) que a quantificagdo candnica. As expressoes
para os funcionais geradores embora déem resultados perturbativos duma forma imediata
nao sao as mais uteis quando estamos interessados em encontrar resultados validos para
além da teoria das perturbagoes. Para esses casos (identidades de Ward, etc) é mais til
ter uma expressdo formal em termos dum integral de caminho. E isso que vamos agora
estudar.

B.2 Path integral for generating functionals

O ponto de partida é a expressao para o kernel da matriz 5,

S(zpzi) = _t_lgn_)oo D(z, z) o3 [ Ak[Z(kt )z kit )47 (ki) 2(k 1)

exp {z /:c dt / ik [%(E(k’,t)z(k‘,t) 2k, )2k, 1)
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—w(k)z(k, )z (k;,t)—V(z,z)H (B.24)

com as condigoes na fronteir

Z(k,ty) =Z¢(k) eiwty
(B.25)
2(k,t;) = zi(k) e”™b

Em vez das varidveis z(k,t) e Z(k,t) vamos introduzir os campos cldssicos ¢(Z,t) e 7(Z,t)
definidos por

O(7,1) = / dk[ (k,t) &% £ 2(k, 1) e “] (B.26)

(7t) = —i / dk w(k) [=(k1) 77 —Z(k, 1) &7 (B.27)

Estas férmulas sdo obviamente sugeridas pelas relagdes entre ¢, Top € a(k), af(k) expres-
sas nas equacoes [B.4 e [B.5] sé que aqui nao se trata de operadores mas sim de campos
classicos. Comecemos por escrever a ac¢ao em termos das novas varidveis,

/tdt/dk;[ D2k, t) — 5k, )2 (k1))

—w(k)z(k,t)z(k, 1) = V(Z, 2)]

/d3 / dt[ (100 — aom)——w

5O — S8~ V(8) (5.25)

Introduzimos agora novas variaveis ¢1(Z,t) e m1(Z,t) definidas do modo seguinte

¢(f7 t) = ¢as(f7 t) + ¢1(fv t)
(B.29)

ﬂ-(fv t) = a(]qb(f’t) + ¢1(f7t)

onde

Gas.in (T, 1) = / dk [zin(k) ek 4 2 (k) emke (B.30)

! N#o h4 restricbes em =(k,t;) € z(kts).
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Gao o (1) = / Bk [Zou (k) € + zone() &= ] (B.31)

onde in =t — —o0 e out =t — +00 com

{zmw>w%>
(B.32)

zin(k) = 2;(k)

O campo ¢,s tem portanto as condicoes fronteira apropriadas para o problema e satisfaz
a equacao de Klein-Gordon

(D + m2)¢as =0 (B33)

Escrevemos a accao nas novas variaveis

/d3 / dt [1 70y — Oom) — —w — —(8k<z$)2 — %m2¢2 —V(¢)
tz

Jorbi],

+/d3x /tif dt [ﬂ@oqﬁ — %(TF% + 27000 — (0o9)?) — %(ak¢as)2 - %(8/%(251)2

— Ok @asOk 1 — %m%is - %m%% — mPpasd1 — V(9)

3 1 tf
d’x |—=m¢
2 t

t
+/d39€ /tlf dt [——Wl (30%5) + 00¢PasOo®1 + 5 (30¢1) - %(3k¢as)2
1 2 1 2,2 1 2,2 2
_§(ak¢1) - 8k¢asak¢1 - 5771/ ¢as - §m qbl —m qbasqbl - V(¢)
1 1Y
= /dsx |:§a(]¢as¢as + aOQSasqbl - §7T¢:|
t;

/&%/ ﬁP_m+ @@ww—%m%%4d@]
tr

= /dgx [50¢as¢ - %OOQSaSQSaS - %77¢:|

t;

/$‘/ it [~ 37t + 3000061 — st~ V(o) (B.34)
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Vemos que no segundo termo as variaveis ¢; e m; estao separadas e m; aparece quadrati-
camente. Isto permitird eliminar m; como veremos no seguimento. Analisemos contudo
primeiro o termo que tem as condigoes na fronteira. Usando as defini¢Oes de ¢, ¢ € 7
podemos escrever

[ 1 I
1 d X 60¢as¢ - §ao¢as¢as - §7T¢
t

i

= /Jk {zf(k)zi(k) - % [Z(k,tp)z(k, ty) +2(k, ti)z(k, t;)]

—i [2(k, t7) — z(k) e t]® — i[z(k:, t) — 2 (k) eiwtq?} (B.35)

Nesta expressao o primeiro termo d& a passagem do kernel usual para o kernel normal,
o segundo cancela exactamente o termo na fronteira na definicao inicial de S(Z¢, z;) e os
altimos tém que ser estudados em detalhe. Reunindo tudo até este ponto a expressao do
kernel normal da matriz S é

SN(¢as) = lim D(¢, ) exp {—i /(Zk; [(z(k‘,tf) — 2i(k) e—iwtf)2

—t4,tf—00

+ (3k 1) — 24 (k) ')’ ]}
exp {/d?’x /t;f dt [—77% + %@@13”@ — %mzqﬁ% — V(gb)] } (B.36)

Esta expressao ja esta préxima do resultado final. Falta s6 mostrar que os termos dentro
da primeira exponencial tendem para zero quando —t;,ty — oo. Esta é a parte mais
delicada do argumento. Vamos expo-lo por passos:

i) Fungoes rapidamente decrescentes

Queremos que I(t) = [ d3z (%, t) seja integravel. Dizemos entdo que fungdes como
71 (%, t) sdo rapidamente decrescentes (RD) quando |t| — oo.
ii) Informagao sobre Z oui(k,t) € 21 (k,t)

Da definicao ¢ = ¢, + ¢1 resultam as defini¢Ges

2(k,t) = 2i(k) et + 21 (k, t)
(B.37)
z(k,t) = zf(k) e 4+ z1(k, )

As condicoes na fronteira dizem-nos que Zj oui(k,t) € z1,(k,t) sdo fungées RD quando
t — +o00 e t = —oo respectivamente, mas nao nos dizem nada sobre Z ;, € 21 out, que sao
precisamente os limites que precisamos.

iii) Informagdo sobre os limites z1 ou € Z1in

Informacao sobre os limites 21 ou¢ € Z1,in Obtém-se a partir do seguinte raciocinio,
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T o= 7 — 0y
_ / dk {ico(k)=(h, 1) — Aoz (k. )] &7
— liw(k)z(k, t) + oz (k, t)] ek}
= / dk [zg(k,t) e RT | (k. 1) e’”} (B.38)

Para que 7 seja do tipo RD quando |t| — oo também teremos que ter z2(k,t) e Za(k,t)
RD nesses limites. Vejamos qual a informagao contida neste resultado.

et{ — +o00

Obtemos entao que a funcao

zo(k,t) = 0pz(k,t) +iw(k)z(k,t) (B.39)

é RD quando t — +o00. A informagao sobre Zs(k,t) ndo tras nada de novo ja que esta
contida nas condigoes fronteiras. De facto

lim Zo(k,t) = lim [0vZ(k,t) — iw(k)Z(k,1)]

t—+o00 t—+o00
= iw(k)Zp(k) €' 4+ 0071 ou (K, 1)
—iw(k)Z (k) et — iw(k)Z1 ou(k, 1)
= RD t — 400 (B.40)

ef— —00
A informacao contida nas condigoes na fronteira é
Zo(k,t) = 0pz(k,t) — iw(k)Z(k,t) = RD t— —o0 (B.41)
iv) Demonstragao que z1 ou; € Z1in SG0 RD

Da definicao

O(Z,1) = s + I1 (B.42)
resulta
A(T,1) = Gasin (T, 1) + b1 (T,t) = —00
(B.43)
(T, 1) = Gas.out(Tr ) + Prow(T,1) t — +00
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ou seja

Z(k,t) = Zin(k) € + 2y in(k,t) t— —o0

(B.44)
2(k,t) = zour (k) e + 21 qui(k, 1) t — +o00
Mas usando os resultados anteriores
00z(k,t) — iw(k)z(k,t) =RD t— —o0
= iw(k)Zi(k) €™ + 00Z1 (k. 1)
—iw(k)Zim(k) e —iw(k)Zym(k, 1) (B.45)
ou seja
El,in(k7 t) =RD t — —o0 (B46)
e igualmente
21 out (k,t) = RD t — +oo (B.47)
Isto quer dizer que
$1im=RD t—= —00
(B.48)
¢1,0ut = RD t— 4+
isto é, assimptoticamente
¢ = ¢as + RD (B.49)

v) Resultado final

Estamos agora em condigoes de atacar o nosso problema. Temos

~ i 2
lim [ dk [E(kz,ti) — 2p(k) e“"ti]

ti——o0

= lim [ dk [Fa(k) - Z5(k) €8+ Z (k)]

ti——o00

—  lim [ dk [(Em(k:)—zf(k))z et 19 (7, (k) — 2 (k) €“Z, (k. t:)

ti——o00

+2 (k)|
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=0 (B.50)

Para o outro termo obter-se-ia 0 mesmo resultado. Chegamos portanto ao resultado

SN (¢as) = /'D(gb,ﬂ') eXp{—%/d% W%}
X exp {Z / d'z B@ml@%l - %m%ﬁ - v<¢)} } (B.51)

onde a integracao é feita sobre os campos ¢ = ¢, + ¢1 com as condigoes fronteiras
apropriadas. Fazendo a integragao sobre m; obtemos ( a menos duma normalizagao)

0 = [ Do) o it vio)
— / ’D(qﬁ) eifd4x[ﬁ(¢1)—(V(¢)—v(¢1))] (B_52)
P=pas+p1
Na presenca de fontes exteriores obtemos

SN (as, J) = /¢ s D(¢) et ¢alL@)=(V(9)=V($2))+¢] (B.53)
=@as+P1

Normalmente nao estamos interessados na matriz S mas no funcional gerador das
fungoes de Green. Por defini¢ao

2(J) = 8(w )| (B.54)
Obtemos portanto a expressao fundamental
Z(J) = / D(g) et Aol +7d] (B.55)

B.3 Fermion systems

O uso de varidveis de Grassmann permite escrever expressoes de integrais de caminho para
a matriz S e para o funcional gerador das funcoes de Green Z para este caso. Nao vamos
aqui repetir os calculos que fizémos para os sistemas de bosOes, mas antes apresentar
somente os resultados deixando as demonstracoes para os problemas.

O ponto de partida é a definicdo do funcional gerador das funcgoes de Green em presenca
das fontes exteriores fermiénicas. Este é dado po

2 Comparar com a definicio do caso bosénico, equacio [5.10]
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Z[n,m] = (0] T exp {i/d‘*w (@(2)¥(x) +P(x)n(x)) | |0) (B.56)
Entao as fungoes de Green

G* (@1, yn) = 01 T (1) -~ p(@a)P(yn) -~ b (yn) [0) (B.57)
sao dadas por

G¥(z1,...,yn) = i (B.58)

i0n(yn) - - 1069(y1)i07(2n) - - - 167 (21)

onde as derivadas sao esquerdas, isto é

f / dy(y)n(y) = —P(a) (B.59)

e por convenc¢ao a ordem da derivagao é a indicada, isto é

0 0
. C B.60
ion(yn)  107(21) (B.60)
Consideramos agora o lagrangeano de Dirac livre
L= - m)v (B.61)

Pode-se mostrar (ver problema B.2) que o funcional gerador é neste caso dado por
Zoln, 7] = e~/ d'zd*y M(@)Spx=y)n(y) (B.62)
onde S%(x —y) é o propagador de Feynman para a teoria de Dirac livre, dado por

4 .
Sh(x —y) = / B (B.63)
(2m)4 p—m+ic

Seguindo métodos semelhantes ao do caso bosénico podemos também mostrar que este
funcional gerador pode ser representado pelo integral de caminho,

Zoln, 7] = / D(gh, ) i 4% [L@)min] (B.64)

Tendo o funcional gerador para a teoria livre podemos formalmente escrever o funcional
gerador para qualquer teoria fermidnica com interacgoes. Um exemplo é dado no Problema
B.4.
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Problems Appendix B

B.1 Mostre que as fungdes de Green
G2n(x17 s 7yn) = <0’ Tw(xl) e ¢(%)E(y1) e E(yn) ‘0> (B65)
sao dadas por

B "7
W01(yn) - - 0n(y1)ion(zy) - - i07(21)

G*(z1,...,yn) (B.66)

B.2 Mostre que o funcional gerador das fungdes de Green para a teoria de Dirac livre é
dado por

Zoln, 7] = e~ 1 dad*y @)k @=y)n(y) (B.67)

B.3 Mostre que o funcional gerador das funcoes de Green para a teoria de Dirac livre se
pode representar pelo seguinte integral de caminho

Zoln, 7] = / D(gh, ) i | ¢'x [L@)min] (B.68)

B.4 Considere o lagrangiano seguinte,

L) = T~ m)b+ 30,606 — 3m?

—gib(x)P(z)d(x) (B.69)
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que descreve a interac¢ao dum campo de Dirac com um campo escalar.

a) Mostre que

Zln, 7, =exp{—z'g [tz <%> (%) (%)} Zolnw ) (B.70)

onde
Zoln, 7, J] = e~ J 'ad*y[i@)Spa—yn@)+ 3T @)Ar(@=9) ] (v)] (B.71)

e Ar é o propagador livre do campo escalar.

b) Mostre que Z[n,7, J] se pode exprimir por meio do integral de caminho

Zn, 7, J] = / D, P, ¢) &/ “ele@+Iormtin] (B.72)
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Appendix C

Useful techniques for
renormalization

C.1 pu parameter

The reason for the pu parameter introduced in section is the following. In dimension
d =4 — ¢, the fields A, and v have dimensions given by the kinetic terms in the action,

/ddaz [—i(auAy — 0, A+ iy - O (C.1)
We have therefore
0 =—d+2+2[4)] =[4,) =3d-2)=1-5%
(C.2)
0 =-d+1+2[] =[] =3d-1)=5-5

Using these dimensions in the interaction term

Sr= /ddw ey, A* (C.3)
we get
[S1] = —d+[e] +2[¢] + [4]
= —4+€+[€]+3—€+1—%
= ] — % (C.4)

Therefore, if we want the action to be dimensionless (remember that we use the system
where h = ¢ = 1), we have to set

323



324 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

le] = = (C.5)

We see then that in dimensions d # 4 the coupling constant has dimensions. As it is more
convenient to work with a dimensionless coupling constant we introduce a parameter
with dimensions of a mass and in d # 4 we will make the substitution

nm

e—ep (e=4-4d) (C.6)

while keeping e dimensionless.

C.2 Feynman parameterization

The most general form for a 1-loop is [

. dk LM .. febp
ThHe E/ .
@n) DoD1 - Dn s (1)

where
Di = (k+1)? —m? +ic (C.8)

and the momenta r; are related with the external momenta (all taken to be incoming)
through the relations,

J
i=1
n
ro = Zpi =0 (C9)
i=1
as indicated in Fig. (C.IJ). In these expressions there appear in the denominators products

Pv,b

p1 k

Figure C.1: Conventions for the momenta in the loop.

of the denominators of the propagators of the particles in the loop. It is convenient to

! We introduce here the notation 7" to distinguish from a more standard notation that will be explained
in subsection
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combine these products in just one common denominator. This is achieved by a technique
due to Feynman. Let us exemplify with two denominators.

1 ! d
— = / SR (C.10)
ab 0 [ax+ b(1 —x)]
The proof is trivial. In fact
1 T
dx = C.11
J i~ e (€11
and therefore Eq. (C.10) immediately follows. Taking successive derivatives with respect
to a and b we get
1 T 1 p—1 1— q—1
_ (p+q)/ P Uik ) i (C.12)
arb?  T(p)I'(q) Jo [ax + b(1 — x)]P™

and using induction we obtain a general formula

1 1 1—z1
 — :F(n)/ d:z:l/ dxg---
aiag---an 0 0
dmn—l

1—g— - —Tpo
/0 [a121 + agxo + -+ apn(1—21 — - —2p1)]"

(C.13)

Complement C.1

Let us take a closer look at Eq. (C.I3) and derive it in a different way that will make more clear
the range of variation of the Feynman parameters. We follow closely the argument of Gross [13].

We start with the definition of the I function,

I'(a) = / dt t*te™t (C.14)
Making a change of variables we also get
1’\ o0
(0) _ / dt t* e te (C.15)
a® 0
We consider first the case of two denominators using Eq. (CI5) with o = 1. We get
1 oo (o)
- / / dty dty e~ (trattzb) (C.16)
ab o Jo
Now we introduce 1 in the form -
1= / dt 6(t —t1 — t3) (C.17)
0
in Eq. (CI6) to get
1 o0 o0 oo
— = / / / dt dty dty 5(t — t; — ty) e~ (Fratt2b) (C.18)
ab o Jo Jo

To continue we scale the variables t; = tx1 and to = tas. We then get

1 oo o0 oo
— = / / dxy dxe (1 —xqp — :Cg)/ dt t e~ t(@ratazb) (C.19)
ab o Jo 0
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Now we use the definition in Eq. (CI3) to obtain

1 e[ 1
! 1
:/0 d.’L’l [.Ila + (1 — Ilb]2 (020)

in agreement with Eq. (CI0). The nice thing about this procedure is that it can generalized easily
to obtain

;n:r(n)/ooodxl.../omdxn[ Mom——an) (C.21)

ajaz - a a121 + ag®e + -+ + anty]

1 l—my- oz 1 )
=I'(n / dx / dz,,_ _
) 0 ! 0 1[G1I1+02$2+~--+an(1—:171~-~:cn,1)]

where the limits in the last equation can be understood by the fact that the delta function defines
an hyperplane that constrains the variables. For instance consider the case of n = 3. One gets the
condition that defines a plane in the 3 dimensional space,

1—$1—$2—$3:0, (022)

as can be seen in Fig. As the z; are positive, we immediately see that they obey, for the case

3
x2

" hN

T >

0 1

x1

Figure C.2: Graphical representation of the constraint of Eq. (C22) on the Feynman
parameters. On the right panel the projection on the z1xo plane.

of n denominators,

71 <1, ma<1l—21, 23<1—21—290, -+, Tp1 <l—a1— —Tp_o (C.23)

Before closing the section let us give an example that will be useful in the self-energy
case. Consider the situation with the kinematics described in Fig. (C.3).

We get

dk 1
L= / 2m)d [(k+p)? — m3 +ie] [k? — m3 + ie]
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Figure C.3: Kinematics for the self-energy in ¢3.

ddk 1
= da: Y 5
(k2 +2p-kz+p>x—miz—m(l—x)+ i

/ / dk 1
= dx
[k2 4 2P - k — M2 + i)

dk; 1
— /daj/ d L — (C.24)
[(k+ P)2 — P2 — M? + i

where in the last line we have completed the square in the term with the loop momenta
k. The quantities P and M? are, in this case, defined by

P=uxp (C.25)

and
M?=—zp?> +miz+m3(1l—x) (C.26)

They depend on the masses, external momenta and Feynman parameters, but not in the
loop momenta. Now changing variables k — k — P we get rid of the linear terms in k£ and

finally obtain
d
1_/cu/ndk (C.27)
— C + i€]?

where C' is independent of the loop momenta k and it is given by

C = P? 4+ M> (C.28)

Notice that the ie factors will add correctly and can all be put as in Eq. (C.27).

C.3 Wick Rotation

From the example of the last section we can conclude that all the scalar integrals can be

reduced to the form ; ,
d®k k2
%m_/@ﬂdW—C+kW (C.29)
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It is also easy to realize that also all the tensor integrals can be obtained from the scalar
integrals. For instance

/ d’k kot 0
(2m)d [k2 — C +ig™

/ kKR 1w / d'k K (C.30)
Cml k2 —C+iq” d’ @) K2—C +id™ '

and so on. Therefore the integrals I, ,, are the important quantities to evaluate. We will
consider that C > 0. The case C' < 0 can be done by analytical continuation of the final
formula for C > 0.

To evaluate the integral I, ,, we will use integration in the complex plane of the variable
kY as described in Fig. We can then write

Im k,OAL

Figure C.4: Integration contour path for the Wick rotation.

dd_lk k27"
Lo = / — /dko — - (C.31)
(2m) [kg — k2 -C+ z‘e}
The function under the integral has poles for

KO =4 <\/ k|2 +C — ie> (C.32)

as shown in Fig. Using the properties of functions of complex variables (Cauchy the-
orem) we can deform the contour, changing the integration from the real to the imaginary
axis plus the two arcs at infinity. This can be done because in deforming the contour we
do not cross any pole. Notice the importance of the ie prescription to be able to do this.
The contribution from the arcs at infinity vanishes in dimension sufficiently low for the
integral to converge, as we assume in dimensional regularization (see the details below in
Complement [C.2]). This means that

400 —300 400 +i00
/ dk0+/ dk0:0:>/ dkoz/ dk® (C.33)

—00 +i00 —100
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We can then change the integration along the real axis into an integration along the
imaginary axis in the plane of the complex variable k0. If we write

+00 +00
K0 = ikY com / dk® — i / dk?, (C.34)
and k2 = (k°)2 — |k|2 = — (k%)% — k|2 = —k%, where kg = (k:OE,E) is an euclidean

vector. By this we mean that we calculate the scalar product using the euclidean metric
diag(+, +,+,+),

Kp = (k%) + [k (C.35)
We can them write . )
. _ d°kg k:ET
[rm =q(=1)"" m .
m=i-1) / @m)? Tk2 + C] (C.36)

where we do not need the ie because the denominator is strictly positive (C' > 0). This
procedure is known as Wick Rotation. We note that the Feynman prescription for the
propagators that originated the ie rule for the denominators is crucial for the Wick rotation
to be possible.

Complement C.2

In the argument that allowed for the Wick rotation it was claimed that the integrals over the circles
at infinite vanish. Let us be more careful on this point. We just start with the simplest integral,

d%k 1
Ton = / e 12— Ctid” (C.37)

We begin by using the following representation for the denominator,

1 o0 ) 2
— (_4 d —12(C—k*=—ie) C.38
k2 — C + i€ ( ’)/O ze ( )

which can verified by direct integration noticing the crucial role of the ie prescription. This
representation is related to the Schwinger proper time method [14]. Now we differentiate both
sides with respect to C' to obtain,

1 (=)™ [ ~1,—i2(C—k?—i
_ dz 2™ 1 2(C—k~—ie) )
= Cid™ - Tm) /0 z 2" e (C.39)

Now introduce this in Eq. (C.37) and separate the integral in k. We get,

=1k 1
Iom = =7 [ dk® ————
* / (W/ 2 —C +iq

d—1 \m 0
_/652 )f/dko (F_(Z)) / dz Zm71€7i2(07k27i6)
7T m 0

d—1 7\m oo o
:/ d k (_Z) / dZ Zm_l/dko e—iz(c—(k0)2+k}'k—i€) (0'40)
(2m)d T'(m) Jo
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We now go to the plane of complex k% = [k°|(cos § + isin ). Therefore
(K92 = |kY)? (cos 26 + i sin 26) (C.41)

and the integral in £° will be
/dko e*iz(cf(ko)erl_c:l;fié) — efiz(CJrl_c‘-l_c‘fie)/dkoefz\ko\zsin29€7iz|k0\200520 (042)

and it will vanish in the circle at infinity for any value of §. This shows that for Iy ,, we can perform
the Wick rotation. This is also true for the general case of I, ., as the exponential vanishes faster
than any power. This concludes the proof that we are allowed to perform the Wick rotation that
lead to Eq. (C30). We also note that the integration on the circles also vanish for finite values of
|kY|, as they are equal and with opposite signs.

C.4 Scalar integrals in dimensional regularization

We have seen in the last section that the scalar integrals to be calculated with dimensional
regularization had the general form of Eq. (C.36). We are now going to find a general
formula for I,.,,. We begin by writing

/ Ay = / dk & A, (C.43)

where k =/ (k%)? + k|2 is the length of the vector kg in the euclidean space in d dimen-
sions and df24_1 is the solid angle that generalizes spherical coordinates in that euclidean
space. The angles are defined by

kg = k(cos 01,sin 01 cos 02, sin 01 sin O, sin Oy sin Oz cos O3, ... ,sinfy ---sinfy_1) (C.44)
We can then write )
/ dQy_, = / sin 092 d; - -- / dfy (C.45)
0 0
Using now
/7r o™ dg = 7 L) (C.46)
sin =T —== .
0 r(m2)
where T'(z) is the gamma function (see section [C.6]) we get
g
T
dQg 1 =2 — (C.47)
/ (4)
The integration in & is done using the result
[ae 2t (s)ctonpem
0o @O 2T(m) | '
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and we finally get

(-~ L(r+§) Tm—r—9)
(477)% r($) I'(m)

L = iCT™™T8 (C.49)

Before ending the section we note that the integral representation for I, ,,, Eq. (C.29), is
valid only for d < 2(m — r) to ensure convergence when k — oo. However the final form
in Eq. (C.49)) can be analytically continued for all values of d except for those where the
function T'(m — r — d/2) has poles, that is for (see section [C.0)),

m—r—g#o,—l,—Q,... (C.50)

For the application in dimensional regularization it is convenient to rewrite Eq. (C.49)
using the relation d = 4 — e. We get

—Z‘ﬂ 4_7T§ oprm L2+1r—35) T(m—r—2+73)
o =y <C> ¢ r2-5) T'(m)

(C.51)

C.5 Tensor integrals in dimensional regularization

We are frequently faced with the task of evaluating the tensor integrals of the form of

Eq. (C1),
dk | Ry YT

= oo o5y i
The first step is to reduce to one common denominator using the Feynman parameteriza-
tion technique. The result is,

L 1 12— —Tn—2 dek kM1 ... kM
e = T /d / dn_/
) o U, Tl | @n)d R+ 2k P— M2 +id]”

1 l—z1——zpn_2
T / doy - / dap_y I (C.53)
0 0

o = (C.52)

where we have defined

dk k. ke
) E/ .54
(2m)d [k2 + 2k - P — M? + ie]"” (C.54)

that we call, from now on, the tensor integral. In principle all these integrals can be
written in terms of scalar integrals. It is however convenient to have a general formula for
them. We start with the result,

I _/ d’k 1
0= ) @m)d K2 +2k-P— M2 +id"

o JT(n—d/2) (1\"¥?
- (4m)d/2 (=1) '(n) <6> (C:55)
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where we used the result in Eq. (C:49) and use the definition of the I' function,

(%)Z = ﬁ /OOO dtt*~te=t¢ (C.56)

to write

@m)d K2 +2k-P— M2 +id"  (4m)d2 T(n) J ¢ '

Now we use

d 1 2%k,

= C.58
OPF 2 4+2k-P =P +id" " 22k P M2 1" (©5%)
to show that
R _(=1)PT(n—p) O 0 1
(k2 +2k-P — M2 +i€e]” 2 I'(n) 0P, OPy, [k2+2k- P — M? + ie]"?
(C.59)

We then use Eq. (C.57)) to write

/ ddk 1 — Z (_1)77/_17# /OO dt tn—p—l—d/2e—tC
(2m) [k2 + 2k - P — M2 +ie]" P (4m)4/2 L(n—p) Jo

; €/2 o)
= ! (—1)n_p7(4ﬂ-) / / dt t”—p—3+e/2e—tc
1672 T(n—p) Jo
(C.60)
Inserting Eq. (CH59) and Eq. (C.60) into Eq. (C.54) we finally get the result
 (4m)/? < dt 0 0
Iﬁl bp _ ? ( _1)” / n—3+e/2 o —tC 61
1672 T'(n) (=1) o (2t)P t oF,, 0B, ’ (C61)

where C' = P? + M?. After doing the derivatives the remaining integrals can be done
using the properties of the I' function (see section [C.6]). Notice that P, M? and therefore
also C' depend not only in the Feynman parameters but also in the exterior momenta.
The advantage of having a general formula is that it can be programmed [I5] and all the
integrals can then be obtained automatically.

Complement C.3

The steps that lead to Eq. (C59) and Eq. (C.60) might pose some questions when n < p, as for
this case the Gamma function has poles. The other question is how are these results related to
those of section [CA? We will just give an example that illustrates this relation and shows that the
final result in Eq. (C.61)) is correct.

Consider, in the notation of Eq. (C54), the integral

d%k kKt kY
Vi E/ y 5 (C.62)
(2m)¢ [k2 4 2k - P — M? + ie]
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that is n = p = 2. With the method of section [C.4l we complete the square and shift the integration

momentum k£ — k — P. Then

i _ / ik BR / dik prpY
2 (2m)4 (k2 — C + ie]? (2m)¢ (k2 — C + ie]?

where we have used the fact that the odd terms in k vanish. We obtain therefore,
nuv 1 v v
IQ = Eg'u‘ 1172 + PHP 1072

Now we use Eq. (C5) and the properties of the I' function (see section [C.6]) to obtain
1 i C
Lo

[Ae—lnc—f—O(E)], E , :WE

Io2=—= [Ac+1-1nC + O(e)]

where 5
Ac=—-—~v+Indr
€

Putting everything together we finally obtain,

i1
I = -
2 1672 2

We now use Eq. (C.61)) that for our case reads

v = i (4m)/? /00 dt (L2 9 0 _e
0

[Cg™ (Ac+1—1nC) + 2(A. — InC)P*P*] + O(e)

T 1672 T(2) (21)? op, op, °
Now 9 8
v —tC _ [(_ ng _ 2pupr] —tC
a7, 9P, e [(=2t)g"" + (—2t)*P"P"] e

and therefore

py __
L= 1672

(4m)</? [—%g‘“’ /OO dt t72F¢/2¢7tC 4 prpv /OO dt t”f/QetC]
0 0
i
1672
i1
T 1672 2

1
(4m)</? [—59#”015/%(—1 + %) + P#P”cf/z‘r(g)}

[Cg™ (Ac + 1 —1nC) + 2(A. — InC)P*PY] + O(e)

(C.63)

(C.64)

(C.65)

(C.66)

(C.67)

(C.68)

(C.69)

(C.70)

where we have used the definition of the I function, Eq. (C72). This coincides exactly with what

we have obtained before in Eq. (C.67).

C.6 I function and useful relations

The I' function is defined by the integral

or equivalently

(C.71)
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/ t* e M dt = T (2) (C.72)
0

The function I'(z) has the following important properties

Mz+1) = =2I'(»)

In+1) = nl (C.73)

Another related function is the logarithmic derivative of the I' function, with the proper-
ties,

P(z) = - InT'(z) (C.74)
Y(1) = —y (C.75)
1
Y(z+1)=v(z) + 2 (C.76)
where + is the Euler constant. The function I'(z) has poles for z = 0,—1,—2,---. Near
the pole z = —m we have (e — 0)
_ (=" (=™
I'(—m+e) = o P(m+1) 4+ O(e) (C.77)
From this we conclude that when ¢ — 0
€y 2 e, (=™ [2

For positive integers the function I'(z) has no poles. But as we have to expand everything
up to order €, before making ¢ — 0, we need the expansion near the positive integers.
Using the definition in Eq. (C.74)) we get for a general n, up to order e

I'(n+e€) =T(n)+T(n)yp(n)e (C.79)
giving, in particular,
ru+§):1—7§+0@% (C.80)

Using these results we can expand our integrals in powers of € and separate the divergent
and finite parts. For instance for the one of the integrals of the self-energy,

] 2
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)

where we have introduced the notation
2
A =—-—v+1Indr
€
for a combination that will appear in all expressions. In a similar way,

ha =g (0 (£)" e 18-

:(4;)2 20 [ T —lnC]

)P(=1+3)
I'(2)

[l l\DIm
S~—

C.7 Explicit formulae for the 1-loop integrals
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(C.81)

(C.82)

(C.83)

Although we have presented in the previous sections the general formula for all the inte-
grals that appear in 1-loop, Eqs. (C.51]) and (C.61)), in practice it is convenient to have
expressions for the most important cases with the expansion on the e already done. The
results presented below were generated with the Mathematica package OneLoop [15] from
the general expressions. In these results the integration on the Feynman parameters has
still to be done (see Eq. (C.53))). This is in general a difficult problem and we will present
in section an alternative way of expressing these integrals more convenient for a nu-

merical evaluation.

C.7.1 Tadpole integrals

With the definitions of Egs. (C.51)) and (C.61]) we get

?

1071 = W C(l + AE — ln C)

" =0

JCR— 29" (34 2A, — 21

1 16772 8C (3+ nC)

where for the tadpole integrals

(C.84)

(C.85)

because there are no Feynman parameters and there is only one mass. In this case the

above results are final.
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C.7.2 Self-Energy integrals

For the integrals with two denominators we get,

i

Inp, = T6.2 (Ac —InC)
o= 16;2 (—A.+InC)PH
= 16;2 % [C’g’w(l +A—1nC)+2(A —1n C’)P”P”]
B o= e [ —C¢™(1+ A~ )P — Cg"(1 + A, — I C)P*
~Cg"(1+ A —InC)P” — 2(A. — In C)PO‘P“P”] (C.86)

where, with the notation and conventions of Fig. (C.IJ), we have

Pr=grt  C=2*ri+(1—z)m3+azmi—zr? (C.87)

C.7.3 'Triangle integrals

For the integrals with three denominators we get,

A it
03 7 16x2 20
po_ 01y
I3 1672 2C P
) 1
o= L= 0g™ (A, —InC) — 2PHPY
3 1672 4C [Cg (Ae~InC) }
7 1
e = — (A +1 P« V(A A+ pPH
A 672 10 [Cg ( +InC)PY + Cg"( +InC)
+ Cg"(—Ac+InC)PY + 2PaP”P”}
uvaf i i 2 o uo v up va af uv
I} = 1672 5C [C (1+ A lnC)(g g7+ gt g"* + g™ g )

+20 (A, —1InC) (gWPaPB 4 gvBpapr 4 grapBph gl pBpr
+g"P POPY + gaﬁpﬂp”) — 4PO‘PBP“P”} (C.88)

where
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Pt = l’lT‘iL—Fl’QT‘g
C = 23ri4a3rd+ 2z 2o 7o+ 21 M3 + T2 M3
2 2 2
+(1 -z —xz2)m3 —z1 7] — 2275 (C.89)

C.7.4 Box integrals

s i1
047 1672 6C2
1 —1
= — — p*
4 1672 6C2
) - ¢ -1 -C’g’“’ _9pHpV
1 1672 12C2 |
. 1T
e = o |C(g" P+ g" P + g'*P”) — 2PPFPY
4 16772 1202 I (g + g + g )
. 1T
Iﬂl/aﬁ _ 4 02 Ae —InC < uo v up ro af uu)
4 16772 2402 | ( n ) g g +g .g +g g
—2C (gWPO‘Pﬁ + gBpaph  grapBph  ghapBpy
+ g"P PPy + gO‘BP”P”> + 4P°‘PBP”P”} (C.90)
where
Pt = vl agrh +agrk
_,2.2,.2.2 2 2
C = ziri+ayry+azr;s+2x1x9r) -9+ 2012371 - 73 + 2022372 - T3

2 2 2 2
+x1mi +xams +x3ms+ (1 —x1 — 29 — x3) MY

—x 77— X9 TE — 237 (C.91)

C.8 Divergent part of 1-loop integrals

When we want to study the renormalization of a given theory it is often convenient to have
expressions for the divergent part of the one-loop integrals, with the integration on the
Feynman parameters already done. We present here the results for the most important
cases. These divergent parts were calculated with the help of the package OneLoop [15].
The results are for the functions 7)***" " defined in Eq. (C52).
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C.8.1 Tadpole integrals

< 1
Div || = —Am?
v 1_ 167‘(2 m
Div 7] = 0
. - 1/_ Z v
Div [Tl" | = 2 4A m? gt (C.92)

C.8.2 Self-Energy integrals

Di [T -
V2 1672
a0 ) 1
: | ¢ p
Div [T2 | = o2 <—§> Acry
g i1
Div [TQMV_ = 1672 12 Ac [(3771% + 3m% - T%)gwj + 47’11“%}
. el i 1
Div [1477] = i (g7 ) A |Gt +2m3 = D) (2 "0+ g4)
+ 67’?7”{7”1’} (C.93)
C.8.3 Triangle integrals
Div [Tg_ =0
Div 7] = 0
o[ = o
3] 1672 4
Div [T“”O‘_ = 167T ( > [ Mt ) + g7 ) + g0 g )]
. ; i1
Div [1§"*°] = 5 = A [(2m1 +2m3 + 2m3) (9" + g™ g + ¢ 9"

—I—QO‘B 2ri'ry + il 4+ (r1 <> o) | + g”ﬁ 2rir] +riry + (r1 <> 7‘2)}

+g"P 2rirt + il + (1 & )| + g 27’1 7‘1 + Tlo‘rg +(ry < 7‘2)]

+gh | 2r) T + rfré’ + (r < ro)| + ¢ 2r1 i + Tf@ + (r < 7“2)}
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+ (=141 ro—13) (g‘”‘g”ﬁ + g*P g + g'P g””‘)] (C.94)

C.8.4 Box integrals

Div [TJ — Div [Tf] — Div [Tf”] — Div {Tg‘”a} ~0
. Suvaf i 1 B B B
Div |:T4 :| W ﬂAE |:g;u/ga + g” gaV + g“ag'/ (095)

C.9 Passarino-Veltman Integrals

C.9.1 The general definition

The description of the previous sections works well if one just wants to calculate the
divergent part of a diagram or to show the cancellation of divergences in a set of diagrams.
If one actually wants to numerically calculate the integrals the task is normally quite
complicated. Except for the self-energy type of diagrams the integration over the Feynman
parameters is normally quite difficult.

To overcome this problem a scheme was first proposed by Passarino and Veltman [16].
These scheme with the conventions of [17, (18] was latter implemented in the Mathematica
package FeynCalc [I8, [19] and, for numerical evaluation, in the LoopTools package [20].
The numerical evaluation follows the code developed earlier by van Oldenborgh [21].

We will now describe this scheme. We will write the generic one-loop tensor integral

b1ty _ (27TM)4—d / J kHL L LMD
T =20 [ @i DDy D (C.96)

where we follow for the momenta the conventions Of section [C.2] and Fig. - and defined
Dy = D,, and m,, = mg so that Dy = k* — mo (remember that r, = = 0. The
main difference between this definition and the previous one Eq. (C.7) is that a factor of
# is taken out. This is because, as we have seen in section [C.3] these integrals always
give that prefactor. So with our new convention that prefactor has to included in the
end. Factoring out the i has also the convenience of dealing with real functions in many
cases From all those integrals in Eq. (C.96)) the scalar integrals are, has we have seen,
of particular importance and deserve a special notatlon It can be shown that there are
only four independent such integrals, namely (4 —d =€)

2
Ag(m3) =27 / @k s (C.97)
- 0

as

2T 1
Bo<r%o,m3,m%>=<m2> / dkH G €

2 The one loop functions are in general complex, but in some cases they can be real. These cases
correspond to the situation where cutting the diagram does not corresponding to a kinematically allowed
process.
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Cofrs s o i ) = CEEE [t ] o (C99)
i Pl [(k+7;)? —m?]
Do(r3y, 73, 735,725, 730, T35, M3, M3 m2)2(2ﬂu)e/ddk’ﬁ ! (C.100)
10571257235 7305 720, 7135 M5 M, - - -, M3 in2 pair [(k+r)2—m3] "
where
22] (ri—7r)? 5 Yij=(0,n—-1) (C.101)

Remember that with our conventions rg = 0 so 7“220 = r?. In all these expressions the ie
part of the denominator factors is suppressed. The general one-loop tensor integrals are
not independent. Their decomposition is not unique. We follow the conventions of [18 20]
to write

1
(27TM)4_d/ d 1
Bt = —~4L— [ dkE! C.102
im? E) [(k+7i)? —m?] ( )
1
(27W)4_d/ d 1
BYW = ——=— [ d*kKkM'EY C.103
im? g [(k +73)? —m?] ( )
on = T / dk ﬁ (C.104)
im? pal k‘—i—n —m?] '
2
(27TM)4_d/ d 1
ow = TR [ gdg g C.105
i H [(k‘ + Ti)z _ mﬂ ( )
27T/L d
prp — BLY 1P
cwr o= /d k k'YK H k+n ] (C.106)
3
(2mp)*~ / d 1
Dt = —— [ dkk* C.107
im? Zl_I [ (k+71;)% —m?] ( )
(2 1
D = “‘72 / dkire ] . (C.108)
i Pl [ k+r;)? —m?]
3
(27TM)4_d/ d
DWP = - k kM EY kP 1
s Ak kK k H kr+n —] (C.109)
(2mpr) / y : 1
pDrre = ——— o [ d*kkFEVERPEC C.110
im? g [(k+7;)? — m?] ( )

These integrals can be decomposed in terms of (reducible) functions in the following way:

Bt = B (C.111)

B" = g" Bo +rir{ Bu (C.112)

Ct = rl'Cy+1rECy (C.113)
2

CH = g™ Coo+ > iy Cy (C.114)

1=1
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2
(g0 + g"ort + gPrY) Cooi+ Y, ririrf Cigi (C.115)

2
>
=1 Zvjvk:]"
3
DH o — ZTZHDZ' (C.116)
=1
3
DM = g" Dyo + Z TZHT}/ D;; (C.117)
ij=1
3
DHe — Z(gul/riﬁ_i_gl/prf_‘_gpﬂr Dqoi + Z 7" Z]k (C118)
i=1 4,5,k=1
DHPe = (g;wgpa + Gup9vo + Guo9vp) Doooo
n Z (g’“’r T g 4 ghPrlrd 4 ghort e (C.119)
i,j=1
—l—gVUTHTP + ngT”T ) DOOZ]
I Z PP Dijig (C.120)
1,5,k l=1

All coefficient functions have the same arguments as the corresponding scalar functions
and are totally symmetric in their indices. In the FeynCalc [22] package one generic
notation is used,

PaVe [1,j,..., {1}, 112, ...}, {m§, m, .. .}] (C.121)

for instance
311(7”10,7710,7711) PaVe [1,17{1”10} {m07m1}] (C.122)

All these coefficient functions are not independent and can be reduced to the scalar func-
tions. FeynCalc provides the command PaVeREducel...] to accomplish that. This is
very useful if one wants to check for cancellation of divergences or for gauge invariance
where a number of diagrams have to cancel.

C.9.2 The divergences

The package LoopTools provides ways to numerically check for the cancellation of diver-
gences. However it is useful to know the divergent part of the Passarino-Veltman integrals.
Only a small number of these integrals are divergent. They are

Div [AO mo )] = Acmd (C.123)
Div [By( 12, m3, m? ) = A (C.124)
Div [B( 12y, mg, m?) )] = —% A (C.125)
Div [Bgo (17, m§, m7)] = 1—12 Ac (3md +3mi —rly)  (C.126)
Div [By1 (17, m, m7)] = lAe (C.127)
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Div [Coo(rf, 17p, 139, mg, mf, m3)] = iAe (C.128)
Div [COOI(HO,r%z,r%mmo’mh]ﬂh } = —11—2 A (C.129)
Div [Coog(rlo,r%z,rgo,mo,ml,m2 )] = —% A, (C.130)

Div [Doooo (t3g, - - -, 3, ...)] = % A, (C.131)
(C.132)

These results were obtained with the package LoopTools, after reducing to the scalar
integrals with the command PaVeReduce, but they can be verified by comparing with our
results of section [CL8] after factoring out the i/(1672).

C.9.3 Useful results for PV integrals

Although the PV approach is intended primarily to be used numerically there are situations
where one wants to have explicit results. These can be useful to check cancellation of
divergences or because in some simple cases the integrals can be done analytically. We
note that as our conventions for the momenta are the same in sections [C.9 and [C.7 one
can read immediately the integral representation of the PV in terms of the Feynman
parameters just by comparing both expressions, not forgetting to take out the i/(1672)
factor. For instance, from Eq. (CII4) for C* and Eq. (C.88) for I}” we get

9 1 1—x1 1T9
Cra(r? vy, 3, m3, m? m3) = —T(3)= / dml/ dxo (C.133)
with
C = 22ri4+ 223 +ayao(ri+ 72 —rd) + zym?d + zomi
+(1 — 21 — x0)mE — 2113 — 297 (C.134)

Explicit expression for Ay
This integral is trivial. There is no Feynman parameter and the integral can be read from

Eq. (C84). We get, after factoring out the i/(1672),

2
Ag(m?) = m? (Ae +1—In %) (C.135)

Explicit expressions for the B functions
Function By

The general form of the integral By(p?,m?,m3) can be read from Eq. (C86]). We obtain
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1 2 2 2
—x(1— 1 —
Bo(p?,m2,m?) = A, — / dz In [ 2= 2)p +z;nl (= 2)mg (C.136)
0
From this expression one can easily get the following results,
210 21, M
mgln —¢ —m7In —4
By(0,m2,m?) = A +1-— :ﬂ — a (C.137)
0 1
Ag(mg) — Ao(mi)
BO(O’m(z)’m%) = ’rr?,2 ) ! (C.138)
0 1
2 A 2
Bo(0,m?,m?) = A.—In"o = 0(”; ) (C.139)
I m

2 A 2

Bo(m?,0,m%) = A.+2-In"= = 0(”; ) 1 (C.140)
7 m

2 2

2y _ m- Ap(m?)
BO(O, 0, m ) = Ae + 1 — ln F = m2 (0141)

Function B|

The derivative of the By function with respect to p? appears many times. From Eq. (C.136))
one can derive an integral representation,

1 pe—
Bg(p2,mg,m§):/ da 21— 2) . (C.142)

0 —p2x(1l —z) + am? + (1 — z)m}
An important particular case corresponds to Bé(m2, m%, m?) that appears in the self-
energy of the electron. In this case m is the electron mass and mg = A is the photon mass

that one has to introduce to regularize the IR divergent integral. The integral in this case
reduces to

1
2 42 2y _ z(1— )
By(m?, A% m7) - = /Od:E m2z? + (1 — x)\?
2
I (C.143)

m?2  2m2 T m?2

It is clear that in the limit A — 0 this integral diverges. Another limit that it is useful
(for instance is needed in the vacuum polarization, see section [C10.7]), is

B}(0,m?,m?) = o3 (C.144)

that can be easily obtained from Eq. (C.142)).
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Function B;

The explicit expression can be read from Eq. (C.86). We have

1 1 —x(1 — 2 2 1— 2
Bl(p2,m(2),m%):—§Ae+/o dxxln[ 1 —a)p +z;nl+( DMl (c1as)

For p? = 0 this integral can be easily evaluated to give

1 1 m2 —344t —t2 —4tint +2t2Int
Bi(0,m2,m?)=—=A.+=1In (—0> C.146
10 ) = mp Aty I A(—1+1)’ (C.146)
where we defined
m2
t=— (C.147)
mp

From Eq. (CI46) one can shown that even for p? = 0 B; is not a symmetric function of
the masses,

Bi(p*, mg, m3) # B1(p®,m3, mg) (C.148)

As this might appear strange let us show with one example how the coefficient functions
are tied to our conventions about the order of the momenta and Feynman parameters. Let
us consider the contribution to the self-energy of a fermion of mass m; of the exchange of
a scalar with mass mg. We can consider the two choices in Fig. [C.H]

g+ra
’l \‘ 'I \‘
p >»—1 > > p p > > > D
g+r q
(ri=p) (ri=-p)

Figure C.5:

Now with the first choice (diagram on the left of Fig. [C.H) we have

. 1
—iXy = 1672 [(¢+mf)B0(p27m§7m§”)+¢Bl(p27m§7m?”)}

{
= 1o [P (B m2.m3) + Bi(p?mZ m3)) +my Bo(p?, m?, mF) | C.149)

while with the second choice we have

. {
— %y = o | — BB, b, m?) + myBo(p?, m, m?) | (C.150)

How can these two expressions be equal? The reason has precisely to do with the non
symmetry of By with respect to the mass entries. In fact from Eq. (CI145]) we have



C.9. PASSARINO-VELTMAN INTEGRALS 345

1 1 (1 — )2 2. (] — 2
B1(p2,m(2),m%) = _§AE+/0 dm:ln[ z(1—2)p ‘1‘22”1‘1‘( x)mo}

1
= —1A6+/ d:p(l—:ﬂ)ln[
2 0

—z(1—2)p? + (1 — z)m? + xm%}
2
u

1 1
= 50t (Ac = Bo(p® mi, mf)) - <§Ae + Bl(pQ,m%m%))

—  — (Bo(p*,m},md) + Bi(p*, m?,md)) (C.151)

where we have changed variables (x — 1 — z) in the integral and used the definitions of
By and B;. We have then, remembering that By(p?, m?, m%) = By(p?, mfc, m?2)

s/

Bl(pQ,m?c,mz) = - (Bo(p2,m§,m3c) + Bl(pQ,mg,m?c)) (C.152)

s

and therefore Eqgs. (C.149) and (C.I50) are equivalent.

Explicit expressions for the C functions

In Eq. (CI33) we have already given the general form of Cj2. The other functions are
very similar. In the following we just present the results for the particular case of p? = 0.
This case is important in many situations where it is a good approximation to neglect the
external momenta in comparison with the masses of the particles in the loop. We also
warn the reader that the coefficient functions Cj, C;; obtained from LoopTools are not
well defined in this limit. Hence there is some utility in given them here.

Function Cj

1
(1 -2 — azg)mg

1 1 1—x1
Co(0,0,0,m2, m?,m2) = —r3—/ da:/ dx
o( 0, M7, M3) ()2 o S

1 1 1—x1 1
= ——2/ dxl/ dxg
mg Jo 0 T1t1 + x2to + (1 e l‘Q)

1 —t1Inty +titoInty +tolnty — t1taInty

_ b C.153
o (T Ty (C-153)
where
PO A (C.154)
1 — m(Q) 3 2 — mg .

Using the properties of the logarithms one can show that in this limit Cj is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal, as it happens in the u — ey problem. Then t = t; = to,

1 —1+t¢t—Int

C(0,0,0,m2, m2,m?) = ——
o( 0, M1, Mm7) m2 (—1+t)2

(C.155)
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in agreement with Eq.(20) of [23]. In the case of equal masses for all the loop particles we
have
2 .2 2 1
C()(0,0,0,mo,mo,mo) =53 (0156)
2mg
Before we close this section on Cy there is another particular case when it is useful to have
an explicit case for it. This in the case when it is IR divergent as in the QED vertex. The

function needed is Co(m?,m?,0,m?, A2, m?). Using the definition we have

1- :cl
1
C 2’ 2’0, 2,A2, 2 — / d /
O(m m mn m ) o 1—2:171—1—3)1)—1—331/\2

. / da 1 — X1
N o Tm2(1—21)? + 2 N2

! T
= — d
/0 ma? ¢ (1 —xz)\2

1 )‘2 / 2 2 2 1
= gz Moz = ~Balm” AN mT) = 2

(C.157)

We have verified numerically, using LoopTools[20, 21], that Eqs. (CI57), (C.I143) and
(C.144)) are verified.

Function Cy

C’00(07 07 07 mgv m%v m%)

/ dxl/l “dx2[ m(i)}

1 1—
_ lAE - % / dg;l/ 1 iy In [:plm% +xom3 + (1 — a1 — :Eg)mg
0 0

4 112
1 2 2
T4 (A - 7/70> " g At - 121@1 —t3) it
4 i Int, (C.158)
A(te — 1)(t1 — t2)
where, as before , ,
t = Z—é Loty = Z—é (C.159)

Using the properties of the logarithms one can show that in this limit Cyg is a symmetric
function of the masses. This expression is further simplified when two of the masses are
equal. Then t =t = i,

12

1 m2 —3 44t —t2 — 4t Int + 2t2 Int
C00(0707 Oym(2)7m%7m%) = Z <A5 —In 0> - S(t _ 1)2

1
= —§Bl(o,m§,m§) (C.160)
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Functions C; and Cj;

We recall that the definition of the coefficient functions is not unique, it is tied to a
particular convention for assigning the loop momenta and Feynman parameters, as shown
in Fig. For the particular case of the C functions we show our conventions in Fig.

p1 (@M p2

(1 1,my) (g+r2,my)

p3

Figure C.6:

With the same techniques we obtain,

5 5 5 1 1 1—z1 x1
C1(0,0,0,m5, m7, m = —/ da:l/ dxo
( 0 1 2) m% 0 0 x1t1 + xoty + (1 — T — 332)
1 11 tl(tl — 2ty + tltg)
- T2 - 2 g Inty
mg [2(=14+t1)(t —t2)  2(=1+t1)*(t1 — t2)
to? — 2t1ta? + 1%ty
4ot oot A hh Ints|  (C.161)
2(=1+t1)"(t1 — t2)" (=1 +t2)
1 1 1—z1 To
C5(0,0,0,m2,m2,m3) = —/ dx / dx
2( 0 1 2) m% 0 ! 0 2l’1t1 + xoto + (1 — T — :Eg)

L [_ tg + lntl
mi | 20t —t2)(—1+1t2)  2(—1—+1t1)(—1+1)°

ity — 212ty — to2 + t12t9? t
102 1712 22 + t1%t2 2111 <_1>] (C.162)
2(—1 + tl)(tl — tg) (—1 + tz) to
1 1 1=y Tk s
Z]( 0 1 2) mg 0 L 0 2x1t1 + x9ty + (1 — T — xg)\ )

where we have not written explicitly the C;; for 7, j = 1,2 because they are rather lengthy.
However a simple Fortran program can be developed [I5] to calculate all the three point
functions in the zero external limit case. This is useful because in this case some of
the functions from LoopTools will fail. Notice that the C; and Cj; functions are not
symmetric in their arguments. This a consequence of their non-uniqueness, they are tied
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to a particular convention. This is very important when ones compares with other results.
However using their definition one can get some relations. For instance we can show

C1(0,0,0,m3,m? m3) = C1(0,0,0,m3,m? m?) (C.164)
CQ(O,O,O,mg,m%,m%) = —CO(O,O,O,mg,m%,m%)—Cl(O,O,O,mg,m%,m%)
_02(070707m%7m%7m(2)) (0165)

In the limit m1 = mo we get the simple expressions,
C1(0,0,0,m3, m?,m?) = C5(0,0,0,m3, m?, m?)

1 3—4t+t2+2Int
S e i (C.166)
my 4(—1+t)

C11(0,0,0,m2,m3,m2) = Co(0,0,0,m3, m? m?) =2 C12(0,0,0,m, m3, m?)
1 —114+ 18t —9t2 +2t3 — 61nt
S L e oom (C.167)
my 18(—1+t)

in agreement with Egs. (21-22) of [23]. The case of masses equal gives

1

C1(0,0,0,m3,m3,m2) = C3(0,0,0,m3, m3, m) = 62 (C.168)

0

1

Cll(0,0,0,mg,mg,m%) = CQQ(O,O,O,m%,mS,mS) =—— (C.169)

12mg

1
012(070707m37m37m(2)) = _m (0170)
0

The package PVzem

As we said before, in many situations it is a good approximation to neglect the external
momenta. In this case, the loop functions are easier to evaluate and one approach is
for each problem to evaluate them. However our approach here is more in the direction
of automatically evaluating the one-loop amplitudes. If one does that with the use of
FeynCalc, has we have been doing, then the result is given in terms of standard functions
that can be numerically evaluated with the package LoopTools. However this package has
problems with this limit. This is because this limit is unphysical. Let us illustrate this
point calculating the functions Cy(m?, 0,0, m2s, m%, m%) and Ca(m?,0,0, m%, m%,m%) for
mp = 100 GeV, mp = 80 GeV and ms ranging from 1076 to 100 GeV. To better illustrate
our point we show two plots with different scales on the axis.

In these plots, C'ZEX are the exact C; functions calculated with LoopTools and CZ-A P are
the C; calculated in the zero momenta limit. We can see that only for external momenta
(in this case corresponding to the mass mg) close enough to the masses of the particles
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Figure C.7:

in the loop, the exact result deviates from the approximate one. However for very small
values of the external momenta, LoopTools has numerical problems as shown in the right
panel of Fig. To overcome this problem I have developed a Fortran package that
evaluates all the C functions in the zero external momenta limit. There are no restrictions
on the masses being equal or different and the conventions are the same as in FeynCalc
and LoopTools, for instance,

cl12zem(m02,m12,m22) = c0i(ccl2,0,0,0,m02, m12, m22) (C.171)

where c0i(ccl2,---) is the LoopTools notation and cl2zem(---) is the notation of my
package, called PVzem. It can be obtained from the address indicated in Ref.[I5]. The
approximate functions shown in Fig. were calculated using that package. We include
here the Fortran code used to produce that figure.

sk sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok sk sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk sk sk ok ok ok sk sk sk ok sk ok ok ok sk ok sk
Program LoopToolsExample

* *
* *
* *
* This program calculates the values used in the plots *
* of Figure 20. For the exact results the LoopTools *
* package was used. The package PVzem was used for the *
* approximate results. *
* *
* Version of 14/05/2012 *
* *
* *
* *
* *

Author: Jorge C. Romao
e-mail: jorge.romao@ist.utl.pt
ke ok ok ok sk ok ok sk ok ok ok ok sk sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok sk sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok sk ok ok ok ok ok sk ok ok ko ok

program LoopToolsExample
implicit none
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LoopTools has to be used with FORTRAN programs with the
extension .F in order to have the header file "looptools.h"
preprocessed. This file includes all the definitions used
by LoopTools.

Functions clzem and c2zem are provided by the package PVzem.

* X X X ¥ X *

#include "looptools.h"

integer i

real*8 m2,mF2,mS2 ,m

real*8 lgmmin,lgmmax,lgm,step
real*8 rcl,rc2

real*8 clzem,c2zem

mS2=100.d0 **2
mF2=80.d0**2

*
* Initialize LoopTools. See the LoopTools manual for further
* details. There you can also learn how to set the scale MU
* and how to handle the UR and IR divergences.
*
call 1ltimi
lgmmax=10g10(100.4d0)
lgmmin=1logl10(1.d-6)
step=(lgmmax-1gmmin)/100.d0
lgm=1gmmin-step
open (10, file=plot.dat, status=unknown)
do i=1,101
lgm=1gm+step
m=10.d0**1gm
m2=m**2
*
* In LoopTools the c0i(...) are complex functions. For the
* kinematics chosen here they are real, so we take the real
* part for comparison.
*

rcl=dble (c0i(ccl,m2,0.d0,0.d0,mS2,mF2,mF2))

rc2=dble (c0i(cc2,m2,0.d0,0.d0,mS2,mF2,mF2))
write(10,100)m,rcl1*mS2,rc2*mS2,clzem (mS2 ,mF2,mF2)*mS2,
& c2zem (mS2 ,mF2 ,mF2)*mS2

enddo

100 format (5(e22.14))
call 1ltexi

end
kkkkxkkkkkk*xx* End of Program LoopToolsExample .F kkkkakskkokk*x
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When the above program is compiled, the location of the header file looptools.h
must be known by the compiler. This is best achieved by using a Makefile. We give
below, as an example, the one that was used with the above program. Depending on the
installation details of LoopTools the paths might be different.

FC =
LT = /usr/local/lib/LoopTools
FFLAGS = -c -0 -I$(LT)/include
LDFLAGS =
LINKER = $(FC)
LIB = -L$(LT)/1lib
LIBS = -looptools
.f.o:
$(FC) $(FFLAGS) $x*.F
files = LoopToolsExample .o PVzem.o
all: $(files)

$ (LINKER) $(LDFLAGS) -o Example $(files) $(LIB) $(LIBS)

Explicit expressions for the D functions
Function D

The various D functions can be calculated in a similar way. However they are rather
lengthy and have to handled numerically [15]. Here we just give Dy for the equal masses
case.

1

2 2 2 2 . 1 1 1-z1 l1—x1—22
DO(O,--- ,0,m*,m~,m”,m ) = F(4)6 drq dxo dxs W
0 0 0

1 1 1—x1 1—xz1—x9o
= —4/ d:L'l/ d:L'g/ d:L'g
m= Jo 0 0
1

C.10 Examples of 1-loop calculations with PV functions

In this section we will work out in detail a few examples of one-loop calculations using the
FeynCalc package and the Passarino-Veltman scheme.
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C.10.1 Vacuum Polarization in QED

We have done this example in section [C.10.1]using the techniques described in sections[C.3]
[C4l and [CHl Now we will use FeynCalc. The first step is to write the Matematica
program @ We list it below:

(kkokokokokokokokkokkokkokkkkkkkkx Program VacPol .m skkskskkskokskokkokkokk ko kokkokokk ok k k%)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017
Author: Jorge C. Romao
email: jorge.romaoQ@tecnico.ulisboa.pt

*)

(* First input FeynCalc *)

(¥ Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(* Now write the numerator of the Feynman diagram. We define the
constant

C=alpha/(4 pi)

I also use the FCE notation available since FeynCalc 6. See manual
for explanations.

*)
num:= - C Tr[GA[mu] . (GS[q] + m) . GA[nul . (GS[ql+GS[k]l+m)]
(¥ Set some Options. This changed from previous versions *)

SetOptions [PaVeReduce ,A0ToBO->True]
$LimitTo4 = True;

(* Define the amplitude *)

amp :=num * FeynAmpDenominator [PropagatorDenominator [q+k,m], \
PropagatorDenominator [q,m]]

(* Calculate the result *)

res:=(-I / Pi~2) OnelLoopl[q,amp]
ans=PaVeReduce [res ,PaVeAutoReduce ->True] //Simplify

(kkkoxkokkkokkkkkkkxkkkkx End of Program VacPol.m #kkkskkokkokskkokkokkokkkokkkk)

30ne should check which version of Mathematica and FeynCalc is used, as conventions may change. We
will indicate in which version these programs were verified. Also the output may change as Mathematica
can order the terms differently. We will try to maintain in my web page [24] a version of the programs as
updated as possible.
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The output from Mathematica is:

2 2 2 2 2 2 2 2 2
Out([2]= (4 ¢ (k + 6 m BO[O, m , m] -3 (k +2m ) BO[k , m , m ])
2 2
(k glmu, nul] - k[mul k[nul)) / (9 k )

Now remembering that,

=— 1
C=_ (C.173)
and
iy (k,e) = —i kK> P, T(k, ) (C.174)
we get
o[ 4 8m? 2 oy 4 2m? 5 5 o
= — |-~ %77 —(1+=5) Bo(k 1
II(k,e) 7932 BO(O,m,m)+3< + 12 ) o(k*,m”, m~) (C.175)

To obtain the renormalized vacuum polarization one needs to know the value of II(0, ¢).
To do that one has to take the limit ¥ — 0 in Eq. (C.I75]). For that one uses the derivative
of the By function

0
Bé(pz,m%,mg) = 8—])2 Bo(pz,m%,mg) (0176)
to obtain
@ 4 4 2 2 8 op 2 2
I1(0,e) = =19 + gBo(O,m ,m*) + 3™m By(0,m*, m*) (C.177)
Using
1
B}y(0,m* m?) = = (C.178)
we finally get
4
11(0,) = —025 = % [5 Bg(O,mz,m2)] (C.179)

and the final result for the renormalized vertex is:

(k) = 3 [—% - (1 - Qk—”f> (Bo(k*,m* m?) — Bg(O,m2,m2))] (C.180)

If we want to compare with our earlier analytical results we need to know that

m2

By(0,m?,m?) = A, —In oz (C.181)

Then Eq. (C.I180) reproduces the result of Eq. (£.54]). The comparison between Eq. (C.180)
and Eq. (4.56]) can be done numerically using the package LoopTools[20, 21].
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C.10.2 Electron Self-Energy in QED

In this section we repeat the usual calculation of using the Passarino-Veltman scheme. We
start with the Mathematica program,

(ks kkxkxkkkkkkxkxkkk*x*x Program SelfEnergy .m sk ks sk kxokkokkkkkkkkkkkk*)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017
Author: Jorge C. Romao
email: jorge.romaoQ@tecnico.ulisboa.pt

*)

(* First input FeynCalc *)

(¥ Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(¥ Tell FeynCalc to reduce the result to scalar functions *)

SetOptions [PaVeReduce ,A0ToBO->False ,PaVeAutoReduce ->True]

$LimitTo4 = True;

(* Now write the numerator of the Feynman diagram. We define the
constant

C= - alpha/(4 pi)

The minus sign comes from the photon propagator. The factor
i/(16 pi~2) is already included in this definition.

I also use the FCE notation available since FeynCalc 6. See manual
for explanations.

*)

num:= C GA[mul] . (GS[p]l+GS[k]+m) . GA[mu]

(* Define the amplitude *)

amp := num \

FeynAmpDenominator [PropagatorDenominator [p+k,m], \
PropagatorDenominator [k]]

(* Calculate the result *)

res:=(-I / Pi~2) OneLoopl[k,amp]

ans=-res;
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(*

The minus sign in ans comes from the fact that -i \Sigma = diagram
*)

(¥ Calculate the functions A(p~2) and B(p~2) *)

A=Coefficient [ans,DiracSlash[p],0];
B=Coefficient [ans,DiracSlash[p],1];

(¥ Calculate deltm *)
delm=A + m B /. ScalarProduct [p,pl->m~2//Simplify
(¥ Calculate delZ2 x*)

ScalarProduct [p,p]l->p2

Ap2 = A
B ScalarProduct [p,pl->p2

/.
Bp2 = /.

aux=2 m D[Ap2,p2] + Bp2 \

+ 2 m"2 D[Bp2,p2] /. D[BO[p2,0,m"2],p2]->DBO[p2,0,m"2]
aux2= aux /. p2->m~2
aux3= aux2 /. AO[m~2]->m~2 (BO[m~2,0,m"~2] -1)

delZ2=Simplify [aux3]
(ko xkkkkkkkk*k** End of Program SelfEnergy .m sk skskskokskkk k%% kkkokkokok)

The output from Mathematica is:

2 2
A = C (2m-4mBO[p, 0, m 1)
2 2 2 2 2 2 2
C(-p -m BO[O, O, m] + (m + p ) BO[p , O, m 1)
Be m e e e e e e
2
P
2 2 2
delm = -(Cm (-1 + BO[O, O, m ] + 2 BO[m , O, m ]))
2 2 2 2
delZ2 = C (-1 + BO[0O, O, m ] - 4 m DBO[m , O, m 1)
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We therefore get@ (in this case C' = _4&)
T
1
A= = [—— +Bo(p2,07m2)] (C.184)
T 2
(6% 1 A 2 m2 9 9
B o= |Vt ) = (14 5 ) Bop?, 0.m7) (C.185)
3am 1 1 2
0 47 |: 3+3m2 O(m)+3 o(m,O,m ):| (C 86)

One can check that Eq. (CI86)) is in agreement with Eq. (£R0). For that one needs the
following relations,

Ag(m?) = m* (Bo(m? 0,m?) —1) (C.187)

2 2 m?
By(m*,0,m*) = A5+2—lnﬁ (C.188)

! m2x? 5 3. m?

1 | = —+4+=-In— 1
/Odzn( +z)ln 2 2+2n,u2 (C.189)
For 675 we get
82 = 43 [2 = Bo(m?,0,m2) + 4m2B)(m?, A2, m?)] (C.190)
7r

This expression can be shown to be equal to Eq. (4.83)) although this is not trivial. The
reason is that Bj) is IR divergent, hence the parameter A that controls the divergence.

C.10.3 QED Vertex

In this section we repeat the usual calculation for the QED vertex using the Passarino-
Veltman scheme. The Mathematica program should by now be easy to understand. We
just list it here,

(ko kxkkkkxkkkkxkxxx Program QEDVertex .m ks ks kkkkkkkxkkkkxkkkxkx)
(*
Version compatible with FeynCalc 9.2.0

Date: 01/06/2017
Author: Jorge C. Romao
email: jorge.romao@tecnico .ulisboa.pt

4One should notice that the PV functions Ay and Bg with one or two zero arguments are not indepen-

dent. Different versions of FeynCalc, or different options, can give the output in different forms. To make
the connections the following relations (see Eqs. (CI38)-(CI41l) are useful,
A 2

Bo(0,0,m?) = —1 + Bo(m?,0,m?), By(0,0,m?) = 075172 )7 (C.182)

Bo(0,m*,m?) = =2+ Bo(m?,0,m?), Bo(0,0,m?) =1+ Bo(0, m*m?) (C.183)
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*)

(* First input FeynCalc *)

(¥ Uncomment below if you want to call from this program. If open a new
mathematica notebook and load FeynCalc from there you should not load
it again

*)

(*

<< FeynCalc ¢

*)

(*# Tell FeynCalc to reduce the result to scalar functions x*)

SetOptions [PaVeReduce ,A0ToBO->True]
$LimitTo4 = True;

(x Useful Function *)

TakeDTo4 = Function[exp, expauxl = exp /. D -> 4 - eps;
expaux2 = Normal[Series[expauxl, {eps, 0, 1}1];
c0 = Coefficient [expaux2, eps, 0]; cl = Coefficient [expaux2, eps, 1];
cldiv = c1 /. PaVelO, {z1_3}, {z2_, 2z3_3}] -> 2/eps;

expaux3 = cO0 + eps cldiv // Simplify;
Simplify [expaux3 /. eps -> 0]]

(¥ Now write the numerator of the Feynman diagram. We define the
constant
C= alpha/(4 pi)
The kinematics is: q = pl -p2 and the intermal momenta is k.
*)
num:=Spinor [pl,m].GA[ro].(GS[p1l]-GS[k]+m).GA[mul.(GS[p2]-GS[k]+m).GA[ro].

Spinor [p2,m]

amp :=C num \

FeynAmpDenominator [PropagatorDenominator [k,1bd], \
PropagatorDenominator [k-pl,m], \
PropagatorDenominator [k-p2,m]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m~2,ScalarProduct [p2,p2]->m~2, \
ScalarProduct [pl,p2]->m~2-q2/2}

(x Define the divergent part of the relevant PV functions*)
div={PaVe [0,{a_},{b_,c_}]1->Div}
resl=(-I / Pi~2) Oneloop [k, amp]

res=resl /. onshell




358 APPENDIX C. USEFUL TECHNIQUES FOR RENORMALIZATION

auxV1i= res /.onshell

auxV2= PaVeReduce [auxV1]

auxV3= PaVeReduce [auxV2] /. div

divV=Simplify [Div*Coefficient [auxV3,Div]]

(* Check that the divergencies do not cancel *)

testdiv:=Simplify [divV]

ansl=res;

var=Select [Variables [ans1],(Head [#]===StandardMatrixElement )&]
Set @@ {var, {ME[1],ME[2],ME[3],ME[4]}}

(* Extract the different Matrix Elements

Mathematica writes the result in terms of 4 Standard Matrix

Elements. To have a simpler result we substitute these elements

by simpler expressions (ME[1],ME[2],ME[3],ME([4]).

PR=GA [6]
PL=GA[7]

{StandardMatrixElement [ul[pl, m1] . PR. ulp2, m2]],
StandardMatrixElement [u[pl, m1] . PL. ul[p2, m2]],
StandardMatrixElement [ul[pl, m1] . gal[mu]l . PR . ulp2, m2]],
StandardMatrixElement [u[pl, m1] . ga[mu]l] . PL . ulp2, m2]]}

*)

(* We substitute PL and PR by scalar and vector Matrix Elements

ME [5] = StandardMatrixElement [u[pl, m1] . wulp2, m2]1]1}
ME[6] = StandardMatrixElement [u[pl, m1] . GA[mul]. wul[p2, m2]1]1}
*)

(*# We use Gordon Identity *)

ans2=PaVeReduce [PaVeReduce [ans1]]/.
{ME[1]->ME[5]-ME [2] ,ME[3]->ME [6]1-ME [4]}//FCE//Simplify

CES5=Coefficient [ans2, ME[5]]
CE6=Coefficient [ans2, ME[6]]
CE51=Coefficient [CE5 ,FV[pl,mull
CE52=Coefficient [CE5 ,FV[p2,mull

ans3=CE51 (FV[pl,mul]+FV[p2,mu]) ME[5] + CE6 ME[6]

testl:=Simplify [CE51-CE52]
test2:=Simplify[ans2-ans3]
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ans4= ans3 /. {(FV[pl,mul]+FV[p2,mul]) ME[5] -> 2 m ME[6] -2m ME[7]}
ans5=TakeDTo4 [ans4]

CGamma :=Coefficient [ans5,ME[6]]
CSigmaAux :=Coefficient [ans5 ,ME[7]]

test3:=Simplify [ans5-CGamma ME[6] -CSigmaAux ME[7]]
F2:=CSigmaAux /. 1bd->0//Simplify

delZlaux= - CGamma /. 92->0 //Simplify

delZl:= delZlaux /. 1lbd->0//Simplify

F1:=CGamma + delZl /. 1bd->0 //Simplify

(k*kxkxkxxkkxxxxx* End of Program QEDVertex .m #kkkkskikkskkkkkkxkxkx*)

From this program we can obtain first the value of §Z;. We get

2 2 2 2 2 2 2 2 2
delZi= C (BO[O, m , m ] - 2 (BO[m , O, m ] + 2 m CO[O,m ,m ,m ,m , O]))

which can be written as
57, = % [1— Bo(0,0,m?) + 2By(0,m? m?) — 2Bo(m?,0,m?)

—4m2C’0(m2,m2,O,mz,)\2,m2)] (C.191)

where we have introduced a small mass for the photon in the function Co(m?,m?,0,m?, A2, m?)
because it is IR divergent when A — 0 (see Eq. (C.I57))). Using the results of Egs. (C.139),

(C140)), (C1401) and Eq. (CI57) we can show the important result
571 = 675 (C.192)

where 0Z; was defined in Eq. (C.190). After performing the renormalization the coefficient
Fy(k?) is finite and given by

2 2 2 2 2
2 C g2 C (8m - qg2) BO[O, m , m ] 2 Cq2 BO[m , 0, m ]
F1 B cocoooooo I e e e =
2 2 2
4 m - g2 4 m - g2 4 m - g2
2 2 2
C (8m - 3 q2) BO[g2, m , m ] 2 2 2 2 2
—————————————————————————————— -4Cm CO[0O, m , m , m , m , O] +
2
4 m - q2
2 2 2 2 2
2C(2m -g492) CO[m , m , g2, m , O, m ]
In[5]:= F1 /. q2->0
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Out [6]1= 0

or, expanding

2 2 2
q2 g2 BO[O, O, m ] 2 g2 BO[O, m , m ]

while the coefficient F»(g?) does not need renormalization and it is given by,

2 2 2 2 2 2 2
-4 Cm (2 +B0O[0O, m , m] -2 BO[m , O, m] + BO[g2, m , m ])

and for F»(0) we get

2 2 2 2
F2[0] = -2 C (1 + BO[O, m , m ] - BO[m , O, m 1)

Using the results of the Appendix (see Eqs. (C.138)-(C.141])) we can show that,
F»(0) = — (C.193)

a well known result, first obtained by Schwinger even before the renormalization program
was fully understood (Fy(q?) is finite).
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C.11 Modern techniques in a real problem: p — ey

In the previous sections we have redone most of the QED standard textbook examples
using the PV decomposition and automatic tools. Here we want to present a more complex
example, the calculation of the partial width u — ey in an arbitrary theory where the
charged leptons couple to scalars and fermions, charged or neutral. This has been done in
Ref.[23] for fermions and bosons of arbitrary charge Qr and Qp, but for simplicity T will
consider here separately the cases of neutral and charged scalars.

C.11.1 Neutral scalar charged fermion loop

We will consider a theory with the following interactions,

|- F-
sO. g0.
--= 1 (ALPL+ ARPR) --2 1 (BLP_+BgrPRr)

F- |-
where F~ is a fermion with mass mp and S° a neutral scalar with mass mg. In fact
By, r are not independent of Ay, g but it is easier for our programming to consider them
completely general. The Feynman rule for the coupling of the photon with the lepton is
—ie Q" where e is the positron charge (for an electron @y = —1). £; can be any of the

leptons but we will omit all indices in the program, the lepton being identified by its mass
and from the assumed kinematics

la(p2) = L1(p1) + (k) (C.194)

The diagrams contributing to the process are given in Fig. [C.§]

Dy
S
p2 /4 P1
D, D3
1) 2) 3)

Figure C.8:

where

D = ¢>—m?% ; Do=(pa+q)*—m% ; Ds=(q+p2—Fk)?—mi(C.195)
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Dy = D3 ; Dg=Dy ; Ds=(ps—k)?—mi=—2ps-k (C.196)

Dy = (pr+k)?—mi=2pi-k=—Ds (C.197)

The amplitudes are

iMy = DleTCZ)gU(pl) (ALPr + ARPR) (¢ + P2 — K +mp) " (4 + P2+ mr)

(BLPL + BrPr) u(p2) €u(k) (C.198)
iMy = DleD%Cing,U(pl) (ALPr + ARrPR) (4 + p2 — ¥+ mp) (BLPr + BrPr)

(pg — K2 + m2) Y'u(p2) u(k) (C.199)
My = 52l (ol + ko me) (ALPL + ArPr) (f + o+ )

(BLPr + BrPR) u(p2) eu(k) (C.200)

On-shell the amplitude will take the form (we have p; - k = py - k)

iM = 2py- (k) | Coui(py) Pru(pz) + Crii(pr) Pru(p)|
+Dru(p1)¢Pru(p2) + Dru(p1)¢Pru(p2) (C.201)
If we write the amplitude as

M = M, *(k) (C.202)

then gauge invariance implies

M,k =0 (C.203)

Imposing this condition on Eq. (C.201]) we get the relations

D; = —meCr—mCp, (C.204)
DR = —mlCR—mgCL (C205)

Assuming these relations the amplitude can be written as

iM =Cr 2p2 - e(k)U(p1) Pru(p2) — mit(p1)¢ (k) PLu(p2) — mat(p1)# (k) Pru(pz)]
+Cr 2p2 - e(k)u(p1) Pru(p2) — mau(p1)# (k) Pru(p2) — mitu(pr)¢(k) Pru(p2)|C.206)

and the decay width will be
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r= m (m3 = m2)* (1CL 2 + |Cal?) (C.207)
As the coefficient of py - €(k) only comes from the 3-point function (amplitude M;) this
justifies the usual procedure of just calculating that coefficient and forgetting about the
self-energies (amplitudes My and Mj3). However these amplitudes are crucial for the can-
cellation of divergences and for gauge invariance. Now we will show the power of the auto-
matic FeynCalc [22] program and calculate both the coefficients Cr, r and Dy, g, showing
the cancellation of the divergences and that the relations, Eqs. and ((C.205]) needed
for gauge invariance are satisfied. We start by writing the mathematica program:

(ko k kR kR ok kR kR ok kb kokkkkkx Program MUeE —IS I k% ko kk ok ok ok ok ok ok ok ok ok koK ko k koK k)
(*

This program calculates the COMPLETE (both the 3 point amplitude and
the two self energy type on each external line) amplitudes for

\mu -> e \gamma when the fermion line in the loop is charged and the
neutral line is a scalar. The \mu has momentum p2 and mass m2, the
electron (pl,ml) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are,
1) Electron-Scalar-Fermion:

Spinor [p1l,m1] (AL P_L + AR P_R) Spinor [pf,mf]
2) Fermion-Scalar-Muon:

Spinor [pf,mf] (BL P_L + BR P_R) Spinor [p2,m2]
*)

dm[mu_]:=DiracMatrix [mu,Dimension ->D]
dm [5] :=DiracMatrix [5]
ds[p_]l:=DiracSlash [p]

mt [mu_,nu_]:=MetricTensor [mu,nu]
fv[p_,mu_]:=FourVector [p,mul
epsilonfa_,b_,c_,d_]l:=LeviCivital[a,b,c,d]
id[n_]:=IdentityMatrix [n]
splp_,q_]:=ScalarProduct [p,q]
li[mu_J]:=LorentzIndex [mu]

L:=dm[7]

R:=dm [6]

(*
SetOptions [{BO,B1,B00,B11},BReduce ->True]
*)

gA:= AL DiracMatrix [7] + AR DiracMatrix [6]
gB:= BL DiracMatrix [7] + BR DiracMatrix [6]

numl :=Spinor [pl,m1] . gA . (ds[ql+ds[p2]-ds[k]+mf) . ds[Polarization [k]]\
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]
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num?2 :=Spinor[pl,m1] . gA . (ds[ql+ds[pll+mf) . gB . (ds[pll+m2) . \
ds [Polarization [k]] . Spinor[p2,m2]

num3 :=Spinor [pl,m1] . ds[Polarization [k]] . (ds[p2]+m1) . gA . \
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]

SetOptions [OneLoop ,Dimension ->D]

ampl :=numl \

FeynAmpDenominator [PropagatorDenominator [q+p2-k,mf], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

amp2 :=num2 \

FeynAmpDenominator [PropagatorDenominator [q+pl,mf], \
PropagatorDenominator [p2-k,m2], \
PropagatorDenominator [q,ms]]

amp3 :=num3 \

FeynAmpDenominator [PropagatorDenominator [pl+k,m1], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m1~2,ScalarProduct [p2,p2]->m2°2, \
ScalarProduct [k,k]->0,ScalarProduct [pl,k]->(m2°2-m1°2)/2,\
ScalarProduct [p2,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,Polarization [k]]->p2epk, \
ScalarProduct [pl,Polarization [k]]->p2epk}

(x Define the divergent part of the relevant PV functions*)
div={BO0[m1~2,mf"2,ms"~2]->Div,B0[m2"2,mf "2,ms"2]->Div, \
BO[O,mf"2,ms~2]->Div,BO[0,mf~2,mf~2]->Div,BO[0,ms~2,ms"~2]->Div}

resl:=(-I / Pi~2) Oneloopl[q,ampl]
res2:=(-I / Pi~2) Oneloopl[q,amp2]
res3:=(-I / Pi~2) Oneloopl[q,amp3]
res:=resl+res2+res3 /. onshell

auxT1:= resl /.onshell

auxT2:= PaVeReduce [auxT1]

auxT3:= auxT2 /. div

divT:=Simplify [Div*Coefficient [auxT3,Div]]

auxS1:= res2 + res3 /.onshell

auxS2:= PaVeReduce [auxS1]

auxS3:= auxS2 /. div

divS:=Simplify [Div*Coefficient [auxS3,Div]]

(* Check cancellation of divergences
testdiv should be zero because divT=-divS *)
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testdiv:=Simplify [divT + divS]
(* Extract the different Matrix Elements
Mathematica writes the result in terms of 8 Standard Matrix Elements.
To have a simpler result we substitute these elements by simpler
expressions (ME[1],...ME[8]). But they are not all independent. The
final result can just be written in terms of 4 Matrix Elements.
{StandardMatrixElement [p2epk ulpl,ml1] . gal6] . ulp2,m2]],
StandardMatrixElement [p2epk ulpl,m1] . gal7] . ulp2,m2]],
StandardMatrixElement [p2epk ulpl,m1] . gs[k] . gal6] . ulp2,m2]],
StandardMatrixElement [p2epk ulpl,m1] . gs[k] . gal7] . ulp2,m2]],
StandardMatrixElement [u[pl,m1] . gs[epl[k]] . gal6] . ulp2,m2]],
StandardMatrixElement [ulpl,m1] . gslepl[k]] . gal7] . ulp2,m2]],
StandardMatrixElement [ulpl,m1] . gs[k] . gsleplk]] . gal6] . ulp2,m2]],
StandardMatrixElement [u[pl,m1] . gs[k] . gslepl[k]l] . gal7]. ulp2,m2]11} =)
ansl=res;
var=Select [Variables [ans1], (Head [#]===StandardMatrixElement )&]
Set @@ {var, {ME[1],ME[2],ME[3],ME[4],ME[5],ME([6],ME[7],ME([8]}}
identities={ME[3]->-m1 ME[1] + m2 ME[2], ME[4]->-ml1 ME[2] + m2 ME[1],
ME[7]->-m1 ME[5] - m2 ME[6] + 2 ME[1],

ME[8]->-m1 ME[6] - m2 ME[5] + 2 ME[2]}

ans2 =ansl /. identities ;
ans=Simplify [ans2];

CR=Coefficient [ans ,ME[1]]/2;
CL=Coefficient [ans ,ME[2]]/2;
DR=Coefficient [ans ,ME[5]];
DL=Coefficient [ans,ME[6]];

(* Test to see if we did not forget any term x*)

testl:=Simplify[ans-2 CR*ME[1]1-2 CL*ME[2]-DR*ME[5]-DL*ME[6]]

(* Test that the divergences cancel term by term x*)

auxCL=PaVeReduce [CL] /. div ;
testdivCL :=Simplify[Coefficient [auxCL,Div]]

auxCR=PaVeReduce [CR] /. div ;
testdivCR :=Simplify[Coefficient [auxCR,Div]]

auxDL=PaVeReduce [DL] /. div ;
testdivDL :=Simplify[Coefficient [auxDL ,Div]]
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auxDR=PaVeReduce [DR] /. div ;
testdivDR :=Simplify [Coefficient [auxDR,Div]]

(¥ Test the gauge invariance relations *)
testGIl:=Simplify[PaVeReduce [(m2°2-m1~2)*CR - DR*ml + DL*m2]]

testGI2:=Simplify [PaVeReduce [(m2°2-m1~2)*CL + DR*m2 - DL*m1]]

(kxkokkokkokkkokkokkkkkkkkkx End Program mueg —NS .M ok kokkokokkokkok ok kokkokkokok ok ok ok ok ok ko )

We first do the tests. The output of mathematica is

(k% skokkokok kR kokokkkkkkkkk*x  Mathematica output ok ok ok K ok oK ok ok K oK oK ok ok K oK K KoK KK Rk Kk k)
In[3]:= << FeynCalc.m

FeynCalc4 .1.0.3b Type 7FeynCalc for help or visit
http://www.feyncalc.org

In[4]:= << mueg-ns.m
In[5]:= testl
Out [6]1= 0

In[6]:= testdiv
Out [6]= O

In[7]:= testdivCL
Out [7]= O

In[8]:= testdivCR
Out [8]= O

In[9]:= testdivDL
Out [9]= O
In[10]:= testdivDR
Out [10]= O
In[11]:= testGI1l
Out [11]= O
In[12]:= testGI2

Out [12]= 0
(*kkkkkkkkkkkkk*kk*x*x* End of Mathematica output ok o ok ok ok ok ok ok ok ok K K K K Kk Kk k)

Now we obtain the results for C7,
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(k*kkkkkkkkkkkkkkkkkkk*x Mathematica output IO T ™™
In[13]:= CL

2 2 2 2 2
Out [13]= (-4 AL BL mf CO[0, m2 , m1 , mf , mf , ms ] +

2 2 2 2 2
4 AL BR m2 PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AL BL mf PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AR BL m1 PaVel[1, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AL BR m2 PaVel[1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AL BR m2 PaVel[2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4

and for Cg

In[15]:= CR
2 2 2 2 2
Out [15]= (-4 AR BR mf CO[0, m2 , m1 , mf , mf , ms ] +

2 2 2 2 2
4 AR BL m2 PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AR BR mf PaVe[2, {0, m1 , m2 }, {mf , mf , ms }] -

2 2 2 2 2
4 AL BR ml1 PaVel1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AR BL m2 PaVel1l, 2, {0, m1 , m2 }, {mf , mf , ms }] +

2 2 2 2 2
4 AR BL m2 PaVel[2, 2, {0, m1 , m2 }, {mf , mf , ms }]) / 4
(rkokokokokokokkonkkkkkkkkkx End of Mathematica output sk sk skskskoskskok sk ok ok ok skookok ok ok ok ok ok )

The expressions for Dy, g are quite complicated. They are not normally calculated because
they can be related to Cf, g by gauge invariance. However the power of this automatic
program can be illustrated by asking for these functions. As they are very long we calculate
them by pieces. We just calculate Dy, because one can easily check that Dr = Dp(L <> R).

(kxkkxokkkkkkkkkkkkxx*x**x Mathematica output Kk ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K Kk k)

In[12]:= Coefficient [PaVeReduce [DL],AL BL]
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2 2 2 2 2 2
ml mf BO[m1 , mf , ms ] ml mf BO[m2 , mf , ms ]
Out [12]= —--——=—=—————————————————— e +
2 2 2 2
ml - m2 ml - m2
2 2 2 2 2

ml mf CO[m1 , m2 , 0, mf , ms , mf ]

In[13]:= Coefficient [PaVeReduce [DL],AL BR]

2 2 2 2
(mf - ms ) BO[O, mf , ms ]
Out [18]= ==mmmmmmmmmmmmmmmee -
2 ml m2
2 2 2 2 2 2
(m1 m2 - m2 mf + m2 ms ) BO[ml , mf , ms ]
____________________________________________ +
2 2
2 m1 (m1 - m2 )
2 2 2 2 2 2
(ml1 m2 - ml mf + ml ms ) BO[m2 , mf , ms ]
2 2
2 m2 (m1 - m2 )
In[14]:= Coefficient [PaVeReduce [DL],AR BL]
2 2 2 2 2
1 (-2 m1 mf + 2 ml ms ) BO[ml , mf , ms ]
Out [14]= = = === m oo e oo +
2 2 2
2 m1 (m1 - m2 )
2 2 2 2 2
(-2 m2 mf + 2 m2 ms ) BO[m2 , mf , ms ]
2 2
2 m2 (m1 - m2 )
2 2 2 2 2 2
+ mf CO[ml , m2 , 0, mf , ms , mf ]
In[15]:= Coefficient [PaVeReduce [DL],AR BR]
2 2 2 2 2 2
m2 mf BO[m1 , mf , ms ] m2 mf BO[m2 , mf , ms ]
Out [15]= —=====mmmmmmmm e e
2 2 2 2
ml - m2 ml - m2

+ m2 mf CO[ml1 , m2 , 0, mf , ms , mf ]
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(Hkkxkkkkkkkkxkkkxx* End of Mathematica output  kkkskkkkokskkokkokkokkkokxkk*)

From these expressions one can immediately verify that the divergences cancel in Dy g
and that they are not present in C, r. To finish this section we just rewrite the Cr r in
our usual notation. We get

Cp, = ‘156% {ALBLmF (—C'O(O,m%,m%,m%,m%,m%) — CQ(O,m%,m%,m%,m%,m%))
+Ap Brms (CQ(O,m%,m%,m%,m%,m%) + C12(0,m?, m2, m%, m%, m%)
+ng(0,m%,m%,m%,m%,m?q))
+ AprBrmy Clg(O,m%,mg,m%,m%,mg)] (C.208)
Cr = Cr(L+ R) (C.209)

These equations are in agreement with Egs. (32-34) and Egs. (38-39) of Ref. [23], although
some work has to be done in order to verify thatl. This has to do with the fact that the
PV decomposition functions are not independent (see the Appendix for further details on
this point). We can however use the power of FeynCalc to verify this. We list below a
simple program to accomplish that.

(kkkoxkokrokkkokkxkkkkkkx  Program lavoura —NS .M k¥ kkkkkokskokkkokkokkokokkokokx ok ok k)
(*

This program tests the results of my program mueg-ns.m against the
results obtained by L. Lavoura (hepph/0302221).

*)

(¥ First load FeynCalc.m and mueg-ns.m *)

<< FeynCalc.m
<< mueg-ns.m

(*
Now write Lavoura integrals in the notation of FeynCalc. Be careful
with the order of the entries.

*)

cl:=PaVe[1,{m2°2,0,m1"2},{ms"2,mf"2,mf ~2}]
c2:=PaVe[2,{m272,0,m1°2},{ms"2,mf"2,mf "2}]

dil:=PaVe[1,1,{m2°2,0,m1"2},{ms"2,mf "2, mf "2}]
d2:=PaVe[2,2,{m272,0,m1"2},{ms"2,nf 2, mf "2}]

f:=PaVe[1,2,{m2°2,0,m1°2},{ms"2,mf"2,mf ~2}]

® An important difference between our conventions and those of Ref.[23] is that p; and ps (and obviously
my and m2) are interchanged.
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(* Write Egs. (32)-(34) of hepph/0302221 in our notation *)

k1 :=PaVeReduce [m2*(cl1+d1+£f)]
k2 :=PaVeReduce [m1*(c2+d2+f)]
k3 :=PaVeReduce [mf*(cl1+c2)]

(*

Now test the results. For this we should use the equivalences:
\rho -> AL BR

\lambda -> AR BL

\xi -> AR BR

\nu -> AL BL

*)

testCLALBR :=Simplify [PaVeReduce [Coefficient [CL, AL BR]-k1]]
testCLARBL :=Simplify [PaVeReduce [Coefficient [CL, AR BL]-k2]]
testCLALBL :=Simplify [PaVeReduce [Coefficient [CL, AL BL]-k3]]

testCRALBR :=Simplify [PaVeReduce [Coefficient [CR, AL BR]-k2]]
testCRARBL :=Simplify [PaVeReduce [Coefficient [CR, AR BL]-k1]]
testCRARBR :=Simplify [PaVeReduce [Coefficient [CR, AR BR]-k3]]

(kkkkkkkkkkkkkkx*kx*xx End of Program lavoura-ns.m s 3K 5k %k ok 3k % 5k %k %K 5k %k K >k % >k %k K >k k Kk )

One can easily check that the output of the six tests is zero, showing the equivalence
between our results. And all this is done in a few seconds.

C.11.2 Charged scalar neutral fermion loop

We consider now the case of the scalar being charged and the scalar neutral. The general
case of both charged [23] can also be easily implemented, but for simplicity we do not
consider it here. The couplings are now

|- FO
S . St.
--T I (ALPL+ ARPR) --2 1(BLP_L+BrPR)
FO -
and the diagrams contributing to the process are given in Fig. [C.9, where all the denomi-

nators are as in Egs. (C.195)- (C.197)) except that

Di=¢-m} ; Dhy=(q—p)*—mk ; Dhy=(¢q—p—k?—-m§  (C.210)

Also the coupling of the photon to the charged scalar is, in our notation,

—ie Q¢ (—2q + p1 + p2)t (C.211)
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Figure C.9:

The procedure is very similar to the neutral scalar case and we just present here the
mathematica program and the final result. All the checks of finiteness and gauge invariance
can be done as before.

(kR kokkok ok kkkokkok ok kkkkkx* Program MUEE—CS .M Fk * ks kkok ko kokkok Kok ok kkkokxok % k)
(*

This program calculates the COMPLETE (both the 3 point amplitude and

the two self energy type on each external line) amplitudes for

\mu -> e \gamma when the fermion line in the loop is neutral and the
charged line is a scalar. The \mu has momentum p2 and mass m2, the
electron (pl,ml) and the photon momentum k. The momentum in the loop

is q.

The assumed vertices are,
1) Electron-Scalar-Fermion:

Spinor [pl1,m1] (AL P_L + AR P_R) Spinor [pf,mf]
2) Fermion-Scalar-Muon:

Spinor [pf,mf] (BL P_L + BR P_R) Spinor [p2,m2]
*)

dm[mu_J]:=DiracMatrix [mu,Dimension ->4]

dm [5] :=DiracMatrix [5]
ds[p_]l:=DiracSlash [p]

mt [mu_,nu_]:=MetricTensor [mu,nu]
fv[p_,mu_]:=FourVector [p,mul
epsilonfa_,b_,c_,d_]l:=LeviCivita[a,b,c,d]
id[n_]:=IdentityMatrix [n]
splp_,q_]:=ScalarProduct [p,q]
li[mu_]:=LorentzIndex [mul

L:=dm[7]
R:=dm [6]
(*

SetOptions [{BO,B1,B00,B11},BReduce ->True]
*)
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ghA:= AL DiracMatrix [7] + AR DiracMatrix [6]
gB:= BL DiracMatrix [7] + BR DiracMatrix [6]

numl := Spinor[pl,ml1] . gA . (ds[ql+mf) . gB . Spinor[p2,m2] \
PolarizationVector [k,mu] ( - 2 fv[q,mu] + fv[pl,mu] + fv[p2,mul] )

numll:=DiracSimplify [numl];

num2 :=Spinor [pl,m1] . gA . (ds[ql+ds[p1l]l+mf) . gB . (ds[p1]l+m2) . \
ds [Polarization [k]] . Spinor[p2,m2]

num3 :=Spinor [pl,ml] . ds[Polarization[k]] . (ds[p2]+m1l) . gA . \
(ds[ql+ds[p2]+mf) . gB . Spinor[p2,m2]

SetOptions [OnelLoop ,Dimension ->D]

ampl :=numl \

FeynAmpDenominator [PropagatorDenominator [q,mf] ,\
PropagatorDenominator [q-pl,ms],\
PropagatorDenominator [q-pl-k,ms]]

amp2 :=num?2 \

FeynAmpDenominator [PropagatorDenominator [q+pl,mf], \
PropagatorDenominator [p2-k,m2], \
PropagatorDenominator [q,ms]]

amp3 :=num3 \

FeynAmpDenominator [PropagatorDenominator [pl+k,m1], \
PropagatorDenominator [q+p2,mf], \
PropagatorDenominator [q,ms]]

(* Define the on-shell kinematics *)

onshell={ScalarProduct [pl,pl]->m1~2,ScalarProduct [p2,p2]->m2°2, \
ScalarProduct [k,k]->0,ScalarProduct [pl,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,k]->(m2°2-m1°2)/2, \
ScalarProduct [p2,Polarization [k]]->p2epk, \
ScalarProduct [pl,Polarization [k]]->p2epk}

(* Define the divergent part of the relevant PV functionsx*)

div={BO0[m1~2,mf"2,ms"~2]->Div,B0[m2"2,mf"2,ms"2]->Div, \
BO[O,mf"2,ms"~2]->Div,BO[0,mf"2,mf~2]->Div,BO0[0,ms"2,ms"2]->Div}

resl:=(-I / Pi~2) Oneloopl[q,ampl]
res2:=(-I / Pi~2) Oneloopl[q,amp2]
res3:=(-I / Pi~2) Oneloopl[q,amp3]
res:=resl+res2+res3 /. onshell

auxT1l:= resl /.onshell
auxT2:= PaVeReduce [auxT1]
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auxT3:= auxT2 /. div
divT :=Simplify [Div*Coefficient [auxT3,Div]]

auxS1l:= res2 + res3 /.onshell
auxS2:= PaVeReduce [auxS1]
auxS3:= auxS2 /. div
divS:=Simplify [Div*Coefficient [auxS3,Div]]
(* Check cancellation of divergences

testdiv should be zero because divT=-divS
*)
testdiv:=Simplify [divT + divS]
(* Extract the different Matrix Elements
Mathematica writes the result in terms of 6 Standard Matrix Elements.
To have a simpler result we substitute these elements by simpler
expressions (ME[1],...ME[6]). Not all are independent.
{StandardMatrixElement [p2epk ulpl, mi] . gal6] . ulp2, m2]],
StandardMatrixElement [p2epk ulpl, mi] . gal7] . ulp2, m2]],
StandardMatrixElement [p2epk ulpl, m1] . gs[k] . gal6] . ulp2, m2]],
StandardMatrixElement [p2epk ulpl, mi] . gs[k] . gal7] . ulp2, m2]],

StandardMatrixElement [u[pl, ml1] . gs[ep[k]l] . gal6] . ulp2, m2]],

StandardMatrixElement [ulpl, m1] . gsleplk]] . gal7] . ulp2, m2]]1}
*)

ansl=res;
var=Select [Variables [ans1], (Head [#]===StandardMatrixElement )&]

Set @@ {var, {ME[1],ME[2],ME[3],ME[4],ME[5],ME[6]}}
identities={ME[3]->-m1 ME[1] + m2 ME[2],ME[4]->-m1 ME[2] + m2 ME[1]}

ans2 =ansl /. identities ;

ans=Simplify [ans2];

CR=Coefficient [ans ,ME[1]]/2;
CL=Coefficient [ans ,ME[2]]/2;
DR=Coefficient [ans,ME[5]];
DL=Coefficient [ans ,ME[6]];

(¥ Test to see if we did not forget any term *)

testl:=Simplify [ans-2*CR*ME [1] -2*xCL*ME [2] -DR*ME [5] -DL*ME [6]]
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(¥ Test that the divergences cancel term by term *)

auxCL:=PaVeReduce [CL] /. div ;
testdivCL :=Simplify [Coefficient [auxCL ,Div]]

auxCR:=PaVeReduce [CR] /. div ;
testdivCR :=Simplify [Coefficient [auxCR,Div]]

auxDL :=PaVeReduce [DL] /. div ;
testdivDL :=Simplify [Coefficient [auxDL ,Div]]

auxDR:=PaVeReduce [DR] /. div ;
testdivDR :=Simplify [Coefficient [auxDR,Div]]

(x Test the gauge invariance relations %)
testGIl:=PaVeReduce [(m2°2-m1°2)*CR - DR*ml + DL*m2]

testGI2:=PaVeReduce [(m2"2-m1~2)*CL + DR*m2 - DL*mi]

(kxkokkokkokkkokxkkkkxkkxkkx End Program Mueg-—CS .M kkokkokskokokkokkok ok kokkokok ok k ok k)

Note that although these programs look large, in fact they are very simple. Most of it are
comments and tests. The output of this program gives,

(k% kkkkokkkkkkkkkkkkkkx  Mathematica output ok ok ok ok K ok ok ok ok ok ok o ok ok ok o ok ok kK ok ok )
In[3]:= CL

2 2 2 2 2
Out [3]= (-2 AR BL mi1 CO[0, m1 , m2 , ms , ms , mf ] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2
4 AR BL ml1 PaVe[l, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AL BL mf PaVe[l, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AL BR m2 PaVe[2, {m1 , 0, m2 }, {mf , ms , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2
2 AL BR m2 PaVe[2, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, 1, {m1 , m2 , 0}, {ms , mf , ms }] -

2 2 2 2 2
2 AR BL mi1 PaVe[l, 2, {m1 , m2 , 0}, {ms , mf , ms }] +

2 2 2 2 2
2 AL BR m2 PaVel[l, 2, {m1 , m2 , 0}, {ms , mf , ms }]) / 2
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(Hkkxkkkkkkkkxkkxxx*x End of Mathematica output  skkkskkkkkkkkokkkkkkkkk)

To finish this section we just rewrite the C7, g in our usual notation. We get

CL = 56—672:; [ALBLmF (—C’l(m%,mg,o,m%,m%,m%))
+ApBrma ( — Cy(m?,0,m3, m%, m%,m%) + Ca(m3, m2,0,m%, m%, m%)
—i—Clg(m%,m%,O,m%,m%,m%))
+ ArBrmy (—Co(O,m%,mg,m%,m%,m%) — C1(m3,0,m2, m%, m%, m%)
—ZCl(m%,m%, O,m%,m%,m%) — C’g(m%,mg, O,m%,m%,m%)
—Cu(mf, m3,0,mg, mp,mé) — Cra(mi, m3,0,mg, mp, mg))]
Cr = Cr(L+ R) (C.212)

It is left as an exercise to write a mathematica program that proves that these equations
are in agreement with Egs. (35-37) and Egs. (38-39) of Ref. [23].
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Appendix D

Feynman Rules for the Standard
Model

D.1 Introduction

To do actual calculations it is very important to have all the Feynman rules with consistent
conventions. In this Appendix we will give the complete Feynman rules for the Standard
Model in the general R, gauge.

D.2 The Standard Model

One of the most difficult problems in having a consistent set of of Feynman rules are the
conventions. We give here those that are important for building the SM. We will separate
them by gauge group.

D.2.1 Gauge Group SU(3).

Here the important conventions are for the field strengths and the covariant derivatives.
We have
G, = 0,G% — 0,G% + gf*™GLGS, a=1,...,8 (D.1)

where f%¢ are the group structure constants, satisfying
[Ta,Tb} — j fabere (D.2)

and T are the generators of the group. The covariant derivative of a (quark) field ¢ in
some representation 7% of the gauge group is given by

D,ug= (8“ —1ig GZT”) q (D.3)

In QCD the quarks are in the fundamental representation and 7% = \*/2 where A\* are
the Gell-Mann matrices. A gauge transformation is given by a matrix

U = T (D.4)
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and the fields transform as

q— e Tty 0qg = —iT%a%
ara ara — Z — a 1 a aoc C
GuT* - UGST U™ - pd ! 0G), =~ Ouo" + f e (D.5)

where the second column is for infinitesimal transformations. With these definitions one
can verify that the covariant derivative transforms like the field itself,

d(Dpq) = —iTa*(D,yq) (D.6)

ensuring the gauge invariance of the Lagrangian.

D.2.2 Gauge Group SU(2),

This is similar to the previous case. We have
We, = 0, W5 — 0,Wi + ge™WiWe, a=1,...,3 (D.7)

where, for the fundamental representation of SU(2);, we have T% = 0%/2 and €% is the
completely anti-symmetric tensor in 3 dimensions. The covariant derivative for any field
1, transforming non-trivially under this group is,

Dyor, = (8, —igWiT®) ¢, (D.8)

D.2.3 Gauge Group U(l)y

In this case the group is abelian and we have
By, = 9,B, — 9,B, (D.9)
with the covariant derivative given by
Dyp = (0y+1g'Y B,) g (D.10)

where Y is the hypercharge of the field. Notice the different sign convention between
Eq. (D.8) and Eq. (D.9). This is to have the usual definition[]

Q=T3+Y . (D.12)

It is useful to write the covariant derivative in terms of the mass eigenstates A, and
Z,,. These are defined by the relations,

{ W32 = Z,, cos O — Ay sin Oy { Zy = W3 cos 0w + By, sin Oy (D.13)

B, = Z,sin Oy + A, cos Oy Ay = —Wj’ sin Oy + B, cos Oy

1For this to be consistent one must also have, under hypercharge transformations, for a field of hyper-
charge Y,

; 1
L/;’ = (3+ZYO“Y1/)7 B; =B, — —,8uay . (D.ll)
g
This is important when finding the ghost interactions. It would have been possible to have a minus sign

in Eq. (O.10), with a definition 6w — Ow + 7. This would also mean reversing the sign in the exponent
of the hypercharge transformation in Eq. (D.I11)) maintaining the similarity with Eq. (D.5).
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Field | 4, lp | vy |up | dr | ur | dr ¢+ ¢0
1 1 1 1 1 1

Iy | =2 | 0 )2 5|20 )03 -3
1 1 1 1 2 1 1 1

Vo l=s|-1|-32|& |5 |3 | 3|2]|2
Q |-1|-1] 0|2 |32 |-43]1]0

Table D.1: Values of Tgf , @ and Y for the SM particles.

For a field v7,, with hypercharge Y, we get,

Dyibr, = {au — i% (Wl +TTwW,) - igfgwj + ig'YBu} Y, (D.14)
_ oY T ' 9 (T3 42
_{(% Z\/E(T W+t Wu)—i-zeQAu ZCOSHw(Q Q sin 9W>Zu] Uy,

where, as usual, 7t = (7] & 973)/2 and the charge operator is defined by

3+Y 0
Q= 0 B % Lyl (D.15)
and we have used the relations,
e = gsinfy = ¢ cos Oy, (D.16)
and the usual definition,
WhFiw?
Wi = MR (D.17)
V2
For a singlet of SU(2)r, ¥r we have,
Dybr = [0, +id'Y B,] g
=0, +ieQA, +i—L—Q sin®0wZ,| vr. (D.18)
cos Oy
We collect in Table the quantum number of the SM particles.
D.2.4 The Gauge Field Lagrangian
For completeness we write the gauge field Lagrangian. We have
1 a apy 1 a apy 1 72
ﬁgauge = _ZGMVG - ZWMVW - ZBMVB (Dlg)

where the field strengths are given in Eqgs. (D.I), and (D.9]).
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D.2.5 The Fermion Fields Lagrangian

Here we give the kinetic part and gauge interaction, leaving the Yukawa interaction for a
next section. We have

£Formion = Z iq/}ﬂuDuq + Z i%’V“Duqu + Z i%’V“Duqu (D20)
quarks YL, YR

where the covariant derivatives are obtained with the rules in Egs. (D.3]), (D.14) and
D.I8).
D.2.6 The Higgs Lagrangian

In the SM we use an Higgs doublet with the following assignments,

¢+
®= v+ H+ipy (D.21)
V2
The hypercharge of this doublet is 1/2 and therefore the covariant derivative reads
. R — —1— -9 5, .9
D,® = {au —i 5 (FTW W) —igmW + Z§BH:| P (D.22)
. g —xr— . . g 73 .
= [QL — Zﬁ (T+WJT W, ) +ieQA, — ZcosHW <5 — Q sin? 9W> Zu} )
The Higgs Lagrangian is then
2
Lhiges = (D, @)1 D, & + 12070 — A (@ch) (D.23)

If we expand this Lagrangian we find the following terms

P T N S 1 21173 1455 _
Lhiggs =+ g0V WWH + gg/ v°B,B" + Zgg’fu WiB" + 297 wiw

1 ) )
+ 3V oMoy (g’Bu + ng’) + §ng;8“<p+ — §ng:8“g0_ (D.24)

The first three terms give, after diagonalization, a massless field, the photon, and a massive
one, the Z, with the relations given in Eq. (D.I3]), while the fourth gives the mass to the
charged Wf boson. Using Eq. (DI3) we get,

1
Lifiggs = + §M%ZMZ“ + M%/WJW_“

+ My Z,0 oz + iMy (W, 0"o" — W, oM™ (D.25)

where 11 1
—gu = M D.26
cos Oy 2 7Y cos Oy W ( )

1
MW = 5911, Mz =

By looking at Eq. (D.25]) we realize that besides finding a realistic spectra for the gauge
bosons, we also got a problem. In fact the terms in the last line are quadratic in the fields
and complicate the definition of the propagators. We now see how one can use the needed
gauge fixing to solve also this problem.
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D.2.7 The Yukawa Lagrangian

Now we have to spell out the interaction between the fermions and the Higgs doublet that
after spontaneous symmetry breaking gives masses to the elementary fermions. We have,

Lyukawa = — Y L® lp — Yy Q® dr — Yy Q® up + h.c. (D.27)
where sum is implied over generations, L (Q) are the lepton (quark) doublets and,

v+ H —ipy
_(’0_

D.2.8 The Gauge Fixing

As it is well known, we have to gauge fix the gauge part of the Lagrangian to be able to
define the propagators. We will use a generalization of the class of Lorenz gauges, the
so-called R¢ gauges. With this choice the gauge fixing Lagrangian reads

1 1
o

1
2604 2 ¢

1
Lar = __FC2¥_ ¢

2 F_F, (D.29)

where
Fg =0"'GY, Fa=0'A,, Fz=0"Z,—EMgeyz
Fy ='W —iéMwe™, F_=0"W, +iMyg~ (D.30)

One can easily verify that with these definitions we cancel the quadratic terms in Eq. (D.25]).

D.2.9 The Ghost Lagrangian

The last piece in writing the SM Lagrangian is the ghost Lagrangian. As it is well known,
this is given by the Fadeev-Popov prescription,

9(6F7) 9(6F4)

4
O(0F J(0F
Lo = [ 2052) 1 OOF)

pot oat T 0t tez Oat tea oat <
8 A(6F%)
—a G b
—I—aEbZIw o5 w (D.31)

where we have denoted by w® the ghosts associated with the SU(3). transformations
defined by, '
U=e ™ a=1,...,8 (D.32)

and by c4, ca, cz the electroweak ghosts associated with the gauge transformations,

U=e T ¢=1,...,3, U=¢Y (D.33)
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For completeness we write here the gauge transformations of the gauge fixing terms needed
to find the Lagrangian in Eq. (D.31)). It is convenient to redefine the parameters as

+ _Oél:FCY2
V2

az = cos Oy + o sin Oy

o = — a’sin Oy + o cos Oy (D.34)
We then get

SF = — 0,8 + g [5G,

0Fy = — 00

0F7 =0,(02") — Mzopz

OFy =8, (6W,F) — iMy o™

OF_ =0, (W, ) +iMwdp~ (D.35)

Using the explicit form of the gauge transformations we can finally find the missing pieces,

07, = — Oyaz + igcos Oy (Wja‘ - Wu_oﬁ) (D.36)
5W; =— 0ot +ig [at (Zycosbw — Ay sinby,) — (az cos by, — aasinby) W:]
oW, =—0ua” —1g [of (Z,, cos Oy — Aysinb,) — (az cosby, — aasinby) WM_]

and
Oy = — 1g (oz_<,0+ + oz+<,0_) + Laz(v +H)
2 2 cos Oy
4 g , L .gcos20y I
bt =—iZ(v+ H+ipz)a™ —iZ prayz +iepay
2 2 cos Oy
s~ =i L0+ H—igpz)a +i 22 s iepma (D.37)
Y = D) 4 2 cos Oy ¥ az P oA .

D.2.10 The Complete SM Lagrangian

Finally the complete Lagrangian for the Standard Model is obtained putting together all
the pieces. We have,

ﬁSM = ﬁgauge + ﬁFermion + ﬁHiggs + ﬁYukawa + £GF + ﬁGhost (D38)

where the different terms were given in Eqgs. (D.19), (D.20), (D:23), (D.27), (D:29), (D.31).



D.3. THE FEYNMAN RULES FOR QCD 383

D.3 The Feynman Rules for QCD

We give separately the Feynman Rules for QCD and the electroweak part of the Standard
Model.

D.3.1 Propagators

1, \/\/\/\g/\/\/\ v, b i |~ — (1) ik (D.39)
k2 + e (k2)? '
w
G eeverererncncences b s L D4
P K2 e (D-40)

D.3.2 Triple Gauge Interactions

p,c
Ips gfl g™ (p1 — p2)* + g""(p2 — p3)"
P2 +9°(p3 — p1)”]
A
ps @ v,b p1+p2+p3=0
(D.41)
D.3.3 Quartic Gauge Interactions
ii) Vértice quartico dos bosoes de gauge
a,d p,c
p} ‘673 _ig2 |: feabfecd(gupguo - guagup)
p}q \pQ +feacfedb(g,ucrgpu - .g,uugpo)
(D.42)
K a v, b ‘|’feadfebc(g,uu9po - g,upgucr)

p1+p2+p3+ps=0
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D.3.4 Fermion Gauge Interactions
[ a

Tps
& N&

1 .
B,1 a, j

D.3.5 Ghost Interactions

ig("")paTij (D.43)

N

1, ¢

Tps
p
A

a b p1 +p2+p3=0

g Cabcplli

N

(D.44)

D.4 The Feynman Rules for the Electroweak Theory

D.4.1 Propagators

7 g ek
NNNNNNY Y (1 —¢) Y D.4
p e ( 5)(1<;2)2 (D.45)
W .
—t9uw
NNANNNN Y T D.46
: K2 — M2, + ic (D-46)
A .
—t9uw
NNANNNN Y T D.47
: KZ— M2 +ie (D-47)
-, i(p +my)
PT) D.48
p p? —mj +ie ( )
h ! (D.49)
B R P M tic |
_______ LI ! (D.50)
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_______ LA S (D.51)

D.4.2 Triple Gauge Interactions

q
NG L A —ie[gap(p — k) + 98u(k — Qo + Gualq — p)s) (D.52)

I
ta
N

1 ig cos Ow [gap(p — K)u + 98u(k — @)a + gua(q —p)g]  (D.53)

D.4.3 Quartic Gauge Interactions

\ \ - i62 [2gaﬁgul/ — Japdpy — gaugﬁ,u] (D54)
A, A,
Wik Wy
\ - 1'92 COS2 9W [2gaﬁgw/ — Jopdpy — gocl/gﬁu] (D55)
Z, Z,
+ _
W W;
\ \ ieg cos by [2gaﬁguu — Gapdpry — gaugﬁu] (D'56)
A, Z,
+ _
W W,
\ ig2 [2gaugﬁu — JaB9ur — gocl/gﬁ,u] (D57)
W W

“w v
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D.4.4 Charged Current Interaction

1/’u d
’ +
Wy

wd,u

D.4.5 Neutral Current Interaction

(D.58)

& Z, , o Uy 4,
"cos Oy ¥ (gv —9,4’75> —ieQ (D.59)
¥y vy

where 1 ]
g{; = §TJ§ - Qy sin? Oy, gf; = §TJ§’ .

D.4.6 Fermion-Higgs and Fermion-Goldstone Interactions

7vbd,u
(pq:
______ g [ my m
1— Prp——P
2 <mW R,L L,R)
'L/}u,d
D.4.7 Triple Higgs-Gauge and Goldstone-Gauge Interactions
o™,
\\\p+
\\\ A .
s —ie (py —po),
,/'/p_

SO ’

(D.60)

(D.61)

(D.62)

(D.63)

(D.64)
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o™,
\P+
\\\yVV\NVV\ZH
I,,'/p_
(P_ v
h \
\\\ \p
\\\ :l:
\)'V\N\NV\WM
Tk
LP:FII
SOZ \
\\\ \p
\\\ :l:
\)'V\N\NV\WM
2Tk
LP:FII
h \
\\\ \p
\\\)'VVV\NV\ZM
2Tk
vz
o
\\\ Au
7228
\\\ ZM
h .
\\ :l:
' Wu

1

— 1€MW Juv

—igmy sin? Oy v

g myy 9uv
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(D.65)

(D.66)

(D.67)

(D.68)

(D.69)

(D.70)

(D.71)
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v D.72
cos Oy Mz 9 ( )

N

D.4.8 Quartic Higgs-Gauge and Goldstone-Gauge Interactions

ho o« Wi
>114_f;
e Wi
vz, Wi
>;:{/£
Yz W,k
N Z,
\;\\{ 19272%“/ (D.75)
/4," \ 2 cos? Oy
— z,
Yz \\\ ZAL
>\: { %cosg2ewg“” (D.76)
e\
vz - Z,
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Yz

2 e? Juv

N | .

g cos 20y 2
cos Oy uuw

{
o 92 Guv

|
o~

2 cos Oy I

9 sin® Oy
PO
2 cos Oy M

- 599w
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(D.77)

(D.78)

(D.79)

(D.80)

(D.81)

(D.82)
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2R W

1
+ - €9 Guv

vz A,

L2
\
\
\
\
\\ h
2
[ SEp—— _ v, M
/,‘ 2 mw
II
/
/7
_ Vs
90 Vs
h \
\
\
\
\
\\ h
\). ______ 3. m}%
/ ——lg—
I' 2 mw
/
/
/
Vs
h ’
VAN
\
\
\
\
\
\\ h 9
-—---- oMy
’ ——g—
‘. 27 mw

(D.83)

(D.84)

(D.85)

(D.86)

(D.87)
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D.4.10 Quartic Higgs and Goldstone Interactions

1, y 2
A Ll (D.88)

@

NN, o h
\x/ — 392 Z_j (D.89)
/j’l \\\\ w

o~ ,', \\ h

LA .z
\x/ _ 292 m_jl (D.90)
/j’l \\\\ myy

- ¢z

N h
\x/ — §igzm—2% (D.91)
/ N \ 4 myy

N

Bz .+ h

1, , 2
Y i pmi (D.92)
m
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Yz s, Pz
\\ ,I
\\\ 1,/ 3
x _—
2N 4
4 Y
4 Y
4 Y
vz t ¢z

oooooooooooooooooo

oooooooooooooooooo

oooooooooooooooooo

D.4.12 Ghost Gauge Interactions

c*t,

Fiepy

k2 + e

k? — Em3, + e

k? — Em2, + ie

+ig cos Ow p,

F ig cos by pu

(D.93)

(D.94)

(D.95)

(D.96)

(D.97)

(D.98)

(D.99)
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— Wk

NNANNNNN

cz

cA”

(O

CA.

D.4.13 Ghost

Higgs and Ghost Goldstone Interactions

AP FOR THE ELECTROWEAK THEORY

F ig cosOw p,

7
—=g&my
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(D.100)

(D.101)

(D.102)

(D.103)

(D.104)
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cz.
g -«— h Zg
P - D.105
2 cos Oy §mz ( )
7
cz~
z.,
. - :F .
e Sg&my (D.106)
.'.-./
-
c* .
o s (D.107)
935 cos Ow W '
.'.-/
Cy 3
c* .
WL
[ e & myy (D.108)
-

cA”
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