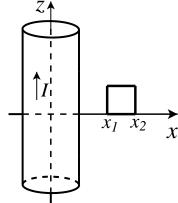

2º Teste de Electromagnetismo e Óptica
Cursos de Eng^a Química, Lic. em Química,
Eng^a Biológica e Eng^a do Ambiente
Professores: J. Romão, Vasco Guerra, Amílcar Praxedes
e Marta Fajardo

2/12/2005 - 10 horas

Ι

Considere um **condutor** esférico de raio r_1 carregado com uma carga total +Q. A envolver este condutor está uma coroa esférica dum material dieléctrico com constante dieléctrica ϵ . Esta coroa esférica está compreendida entre os raios r_1 e r_2 .


- 1. Calcule $\vec{D},\,\vec{E}$ e \vec{P} em todos os pontos do espaço.
- 2. Determine as cargas de polarização na superfície exterior $(r = r_2)$ do dieléctrico.

II

Considere um condutor cilíndrico **infinito** de raio r percorrido por uma corrente I **uniformemente** distribuída pela secção. A uma distância r da superfície do cilindro encontra-se uma espira quadrada de lado r, conforme indicado na figura. O plano da espira é o plano xOz indicado, e $x_1 = 2r$, $x_2 = 3r$.

- 1. Descreva as linhas de força do campo \vec{B} . Calcule \vec{B} num ponto genérico P(x,z) no **1º quadrante** do plano xOz (considere pontos dentro e fora do cilindro).
- 2. Calcule o fluxo através da espira.

