

 1^o Teste de Electromagnetismo e Óptica Cursos de $\rm Eng^a$ Física Tecnológica e Aeroespacial Professores: Jorge C. Romão e Amílcar Praxedes teste D

Considere um **condutor cilíndrico infinito** de raio r_1 . Envolvendo o condutor, entre os raios r_1 e r_2 , existe um dieléctrico linear, homógeneo e isótropo de permitividade ϵ , conforme indicado na figura. O condutor está carregado com densidade de carga uniforme $\lambda > 0$. Na figura encontra-se representada (para efeitos de visualização) uma secção de altura h deste **conjunto de altura infinita**.

- a) Determine o campo \vec{E} em todos os pontos do espaço entre $0 < r < \infty$, onde r é a distância ao eixo.
- b) Considere que o condutor está ao potencial zero. Determine o potencial electrostático em todos os pontos do espaço entre $0 < r < \infty$.
- c) Determine as densidades de carga livre σ_1 na superfície $(r = r_1)$ do condutor e a densidade de carga de polarização σ'_1 na superfícies interior $(r = r_1)$ do dieléctrico. Verifique a discontinuidade da componente normal de \vec{D} na superfície $r = r_1$.
- d) Faça um gráfico aproximado da variação de $|\vec{E}|$ e ϕ com r para $0 < r < \infty$.