
Lei de Coulomb

Problemas Resolvidos

I.1 (1° teste 2004/2005)

Considere uma espira de raio R carregada uniformente com uma carga total Q, assente no plano xy dum referencial (isto é z=0). No eixo dos zz, a uma distância R da origem (e centro da espira), encontra-se uma carga pontual de valor -Q. O ponto P encontra-se também sobre o eixo dos zz, a uma distância z da origem.

- a) Determine o campo \vec{E} no ponto P.
- b) Determine o potencial electrostático no ponto P.
- c) Calcule o potencial electrostático no limite em que $z \gg R$.
- d) Determine o momento dipolar da distribuição. **Nota:** Pode usar o resultado da alínea anterior, ou directamente a definição de momento dipolar duma distribuição,

$$\vec{p} = \sum_{i=1}^{n} q_i \, \vec{r_i}$$

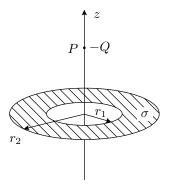
Se usar o resultado da alínea c) pode precisar dos resultados,

$$\frac{1}{1-\alpha} = 1 + \alpha + \mathcal{O}(\alpha^2) \quad e \quad \frac{1}{\sqrt{1+\alpha^2}} = 1 + \mathcal{O}(\alpha^2)$$

com $\alpha \ll 1$.

Resolução

Problemas com solução


I.2 (1° teste 2005/2006)

Considere um disco de raio exterior $r_2 = 2R$ com um orifício circular de raio $r_1 = R$. O disco encontra-se carregado uniformemente em superfície com uma carga total Q. Uma carga -Q é colocada no ponto P à distância 2R da origem (ver figura). A origem coincide com o centro do disco.

- a) Calcule o campo \vec{E} na origem.
- b) Calcule o potencial electrostático num ponto sobre o eixo do z, para z > 2R (sugestão: calcule directamente o potencial electrostático, *i.e.*, não calcule o potencial a partir de \vec{E}).

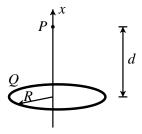
1

c) Calcule o potential sobre o eixo do z no limite $z \gg 2R$.

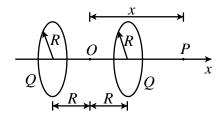
d) Determine o momento dipolar da distribuição. Se não resolveu a alínea anterior pode usar directamente a definição.

Formulário

$$\sqrt{1+\alpha} = 1 + \frac{1}{2}\alpha + \mathcal{O}(\alpha^2)$$


$$\frac{1}{1-\alpha} = 1 + \alpha + \alpha^2 + \mathcal{O}(\alpha^3)$$

Solução


Outros Problemas

I.3 1° teste 2004/2005

Considere uma **espira** circular de raio R carregada uniformemente com carga total Q, conforme indicado na figura junta.

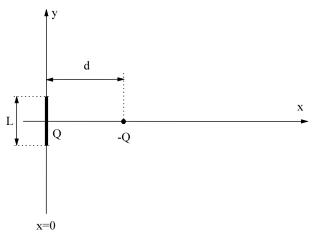
- a) Determine o potencial electrostático e o campo eléctrico num ponto genérico do eixo de simetria à distância d do plano da espira.
- b) Use o resultado anterior para calcular o campo \vec{E} e o potencial electrostático num ponto genérico do eixo dos xx com duas espiras carregadas com a mesma carga Q e com a geometria indicada na figura seguinte.

c) Para $x\gg R$ calcule os dois primeiros termos não nulos da expansão do potencial em potencias de $R/x\ll 1$. Determine o momento dipolar da distribuição. Se não conseguiu fazer a expansão, pode

2

determinar o momento dipolar a partir da definição

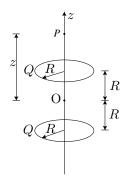
$$ec{p} = \sum_i q_i ec{r_i}$$


d) Considere agora uma carga pontual q situada a uma distância da origem $x \ll R$ e que só se pode mover sobre o eixo dos xx. Descreva **qualitativamente** o que vai acontecer à carga.

Formulário

$$\frac{1}{\left[(1\pm\epsilon)^2+\epsilon^2\right]^{1/2}}\simeq 1\mp\epsilon+\frac{1}{2}\epsilon^2+\mathcal{O}(\epsilon^3)$$

I.4 Exame 2003/2004

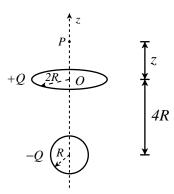

Considere uma barra de comprimento L, uniformemente electrizada com carga total Q, alinhada com o eixo dos yy e centrada na origem. Suponha ainda que em $x=d\gg L$ existe uma carga pontual -Q. Determine:

- a) O campo electrostático criado pela barra electrizada no semieixo positivo dos xx.
- b) A expressão aproximada do campo electrostático criado pela barra para $x \gg L$. Comente o resultado.
- c) O potencial electrostático <u>total</u> para x > d.
- d) O trabalho que é necessário realizar para transportar uma carga desde $x_1=2d$ até $x_2=\infty$.
- e) A expressão aproximada do potencial electrostático total para $x\gg d$. Comente o resultado.

I.5 Exame 2005/2006

Considere duas espiras circulares de raio R dispostas como indicado na figura. As espiras estão carregadas uniformemente com carga total Q. Os seus centros estão sobre o eixo do z em $z=\pm R$.

- a) Determine o potencial electrostático num ponto P situado no eixo dos z à distância z da origem.
- b) Determine o campo \vec{E} no mesmo ponto P.
- c) Considere agora que $z \gg R$. Determine $\phi(z)$ nessa aproximação. Interprete o resultado obtido.
- d) Considere agora que $z \ll R$. Encontre uma expressão aproximada para \vec{E} nestas condições.
- e) O que aconteceria a uma carga teste, que se pudesse só mover sobre o eixo dos z, quando colocada a uma distância $z \ll R$ da origem? Mesmo que não tenha respondido à alínea d) pode responder qualitativamente.


Nota: Para as alíneas c) e d) podem ser úteis os seguintes desenvolvimentos em série: Seja $\alpha > 0$. Então:

$$x \ll \alpha \implies \frac{x \pm \alpha}{\left[(x \pm \alpha)^2 + \alpha^2 \right]^{3/2}} \simeq \frac{1}{2\sqrt{2}\alpha^2} \left[\pm 1 - \frac{1}{2} \frac{x}{\alpha} \mp \frac{3}{8} \left(\frac{x}{\alpha} \right)^2 + \cdots \right]$$

$$\alpha \ll x \implies \frac{1}{\left[(x \pm \alpha)^2 + \alpha^2 \right]^{1/2}} \simeq \frac{1}{x} \left[1 \mp \frac{\alpha}{x} + \frac{1}{2} \left(\frac{\alpha}{x} \right)^2 + \cdots \right]$$

I.6

Considere uma **espira** de raio 2R carregada uniformemente com carga total +Q e com centro na origem conforme indicado na figura. Sobre o eixo dos z à distância 4R da origem encontra-se uma esfera **não condutora** de raio R, com uma carga total -Q, distribuída uniformemente.

- a) Determine o campo \vec{E} no ponto P(z) sobre o semieixo positivo dos z.
- b) Calcule o potencial no ponto P(z).
- c) Calcule o trabalho necessário para transportar uma carga pontual q do ponto O(z=0), até $z=+\infty$.
- d) Considere agora que $z\gg R$. Determine o potencial nesse limite e indique o momento dipolar da distribuição.