Ondas Electromagnéticas

Problemas Resolvidos

VI.1 3° teste 2005/2006

Uma onda plana monocromática propaga-se num meio não magnético ($\mu \simeq \mu_0$). Sabe-se a expressão do campo \vec{E} :

$$\begin{cases} E_x = E_0 \cos \left[\omega t + |\vec{k}| \left(\frac{1}{\sqrt{2}} x - \frac{1}{\sqrt{2}} y \right) \right] \\ E_y = E_0 \cos \left[\omega t + |\vec{k}| \left(\frac{1}{\sqrt{2}} x - \frac{1}{\sqrt{2}} y \right) \right] \\ E_z = \sqrt{2} E_0 \cos \left[\omega t + |\vec{k}| \left(\frac{1}{\sqrt{2}} x - \frac{1}{\sqrt{2}} y \right) - \frac{\pi}{2} \right] \end{cases}$$

onde $\omega=10^3~\mathrm{rad/s},\, |\vec{k}|=5\times 10^{-6}~\mathrm{m}^{-1}$

- a) Determine o índice de refração do meio onde a onda se propaga.
- b) Determine a direcção de propagação.
- c) Verifique que a expressão do campo \vec{E} descreve uma onda transversal.
- d) Determine a polarização da onda.
- e) Determine a amplitude E_0 sabendo que o valor médio do vector de Poynting é $\left\langle |\vec{S}| \right\rangle = 10^{-3}~W/m^2$. Resolução

VI.2 3° teste 2004/2005

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{E} é dado por

$$\begin{cases}
E_x = E_0 \cos \left[8 \times 10^5 t + 4 \times 10^{-3} y \right] \\
E_y = 0 & \text{(V/m)}, \\
E_z = -E_0 \sin \left[8 \times 10^5 t + 4 \times 10^{-3} y \right]
\end{cases}$$

onde t vem em segundos, y em metros e $E_0 = 10^{-3} V/m$. Determine:

- 1. a direcção e o sentido da propagação da onda;
- 2. o índice de refracção do meio;
- 3. a polarização da onda;
- 4. o campo \vec{H} da onda;
- 5. o valor médio do vector de Poynting.

Resolução

VI.3 3° teste 2004/2005

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{E} é dado por

$$\begin{cases} E_x = E_0 \cos \left[6 \times 10^5 t + \alpha x + \sqrt{3} \times 10^{-3} y + \sqrt{3} \times 10^{-3} z \right] \\ E_y = -2E_0 \cos \left[6 \times 10^5 t + \alpha x + \sqrt{3} \times 10^{-3} y + \sqrt{3} \times 10^{-3} z \right] \\ E_z = E_0 \cos \left[6 \times 10^5 t + \alpha x + \sqrt{3} \times 10^{-3} y + \sqrt{3} \times 10^{-3} z \right] \end{cases}$$
 (V/m),

onde tvem em segundos, $x,\,y$ e zem metros e $E_0=10^{-3}\,V/m.$ Determine:

- 1. a constante α de modo a que a expressão para \vec{E} corresponda de facto a uma onda plana electromagnética.
- 2. a direcção e o sentido da propagação da onda;

- 3. o índice de refracção do meio;
- 4. a polarização da onda;
- 5. o campo \vec{H} da onda;
- 6. o valor médio do vector de Poynting.

Resolução

VI.4 3° teste 2004/2005

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{E} é dado por

$$\left\{ \begin{array}{l} E_x = E_0 \cos \left[8 \times 10^5 t + \frac{4}{\sqrt{3}} \times 10^{-3} x + \frac{4}{\sqrt{3}} \times 10^{-3} y + \frac{4}{\sqrt{3}} \times 10^{-3} z \right] \\ E_y = \delta E_0 \cos \left[8 \times 10^5 t + \frac{4}{\sqrt{3}} \times 10^{-3} x + \frac{4}{\sqrt{3}} \times 10^{-3} y + \frac{4}{\sqrt{3}} \times 10^{-3} z \right] & (\text{V/m}) , \\ E_z = E_0 \cos \left[8 \times 10^5 t + \frac{4}{\sqrt{3}} \times 10^{-3} x + \frac{4}{\sqrt{3}} \times 10^{-3} y + \frac{4}{\sqrt{3}} \times 10^{-3} z \right] \end{array} \right.$$

onde t vem em segundos, x, y e z em metros e $E_0 = 10^{-3} V/m$. Determine:

- 1. a constante δ de modo a que a expressão para \vec{E} corresponda de facto a uma onda plana electromagnética.
- 2. a direcção e o sentido da propagação da onda;
- 3. o índice de refracção do meio;
- 4. a polarização da onda;
- 5. o campo \vec{H} da onda;
- 6. o valor médio do vector de Poynting.

Resolução

Problemas com solução

VI.5 3° teste 2005/2006

Uma onda plana monocromática propaga-se num meio não magnético ($\mu \simeq \mu_0$). Sabe-se a expressão do campo \vec{H} :

$$\begin{cases} H_x &= H_0 \cos \left[\omega t - |\vec{k}| \left(\frac{1}{\sqrt{3}} x - \frac{1}{\sqrt{3}} y + \frac{1}{\sqrt{3}} z \right) \right] \\ H_y &= 0 \\ H_z &= H_0 \cos \left[\omega t - |\vec{k}| \left(\frac{1}{\sqrt{3}} x - \frac{1}{\sqrt{3}} y + \frac{1}{\sqrt{3}} z \right) + \alpha \right] \end{cases}$$

onde $\omega = 2 \times 10^3 \text{ rad/s}, |\vec{k}| = 10^{-5} \text{ m}^{-1}, H_0 = 10^{-3} \text{ A/m}.$

- a) Determine o índice de refração do meio onde a onda se propaga.
- b) Determine a direcção de propagação.
- c) Determine o valor da fase constante α , para que a expressão do campo \vec{H} descreva de facto uma onda transversal.
- d) Determine a polarização da onda.
- e) Determine o campo \vec{E} .

Solução

Outros Problemas

VI.6 3° teste 2003/2004

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{H} é dado por

$$\begin{cases} H_x = H_0 \cos \left[6 \times 10^5 t + \sqrt{3} \times 10^{-3} x + \sqrt{3} \times 10^{-3} y + \alpha z \right] \\ H_y = H_0 \cos \left[6 \times 10^5 t + \sqrt{3} \times 10^{-3} x + \sqrt{3} \times 10^{-3} y + \alpha z \right] \\ H_z = -2H_0 \cos \left[6 \times 10^5 t + \sqrt{3} \times 10^{-3} x + \sqrt{3} \times 10^{-3} y + \alpha z \right] \end{cases}$$
(A/m),

onde t vem em segundos e x, y e z em metros. Determine:

- 1. a constante α de modo a que a expressão de \vec{H} corresponda de facto a uma onda plana electromagnética;
- 2. a direcção e o sentido da propagação da onda;
- 3. o campo \vec{E} da onda;
- 4. a polarização da onda;
- 5. o valor médio do vector de Poynting.

VI.7 3° teste 2003/2004

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{E} é dado por

$$\begin{cases} E_x = E_0 \sin \left[2 \times 10^6 t + 1 \times 10^{-2} y \right] \\ E_y = 0 & (V/m) , \\ E_z = E_0 \cos \left[2 \times 10^6 t + 1 \times 10^{-2} y \right] \end{cases}$$

onde t vem em segundos e y em metros. Determine:

- 1. a direcção e o sentido da propagação da onda;
- 2. o índice de refraçção do meio;
- 3. o campo \vec{H} da onda;
- 4. a polarização da onda;
- 5. o valor médio do vector de Poynting.

VI.8 3° teste 2003/2004

Uma onda plana electromagnética, com comprimento de onda $\lambda=100~nm$, propaga-se no sentido negativo do eixo dos y. Sabe-se que o valor médio da densidade de energia electromagnética é $10^{-10}~J/m^3$ e que a onda tem polarização linear. O meio material onde a onda se propaga é não magnético ($\mu\simeq\mu_0$) e tem constante dieléctrica $\epsilon=2~\epsilon_0$.

- 1. Qual o índice de refracção do meio?
- 2. Qual a frequência angular da onda?
- 3. Qual o vector de onda?
- 4. Qual a amplitude do campo \vec{E} ?
- 5. Escreva a expressão do campo \vec{E} , sabendo que a direção do campo \vec{H} é segundo o eixo do x.

VI.9 3° teste 2004/2005

Uma onda electromagnética plana propaga-se num meio dieléctrico ($\mu_r = 1$). O seu campo \vec{E} é dado por

$$\begin{cases} E_x = E_0 \cos \left[6 \times 10^4 t + \sqrt{3} \times 10^{-3} x + \alpha y - \sqrt{3} \times 10^{-4} z \right] \\ E_y = -2E_0 \cos \left[6 \times 10^4 t + \sqrt{3} \times 10^{-3} x + \alpha y - \sqrt{3} \times 10^{-4} z \right] \\ E_z = -E_0 \cos \left[6 \times 10^4 t + \sqrt{3} \times 10^{-3} x + \alpha y - \sqrt{3} \times 10^{-4} z \right] \end{cases},$$

onde t vem em segundos, x, y e z em metros e $E_0 = 10^{-3} \, \text{V/m}$. Determine:

- 1. a constante α de modo a que a expressão para \vec{E} corresponda de facto a uma onda plana electromagnética.
- 2. a direcção e o sentido da propagação da onda;
- 3. o índice de refracção do meio;
- 4. a polarização da onda;
- 5. o campo \vec{H} da onda;
- 6. o valor médio do vector de Poynting.

VI.10 3° teste 2004/2005

Uma onda plana monocromática propaga-se num meio não magnético ($\mu \simeq \mu_0$). Sabe-se a expressão do campo \vec{E} :

$$\begin{cases} E_x = E_0 \cos \left[\omega t - |\vec{k}| \left(\frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y \right) \right] \\ E_y = -E_0 \cos \left[\omega t - |\vec{k}| \left(\frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y \right) \right] \\ E_z = \alpha E_0 \sin \left[\omega t - |\vec{k}| \left(\frac{1}{\sqrt{2}} x + \frac{1}{\sqrt{2}} y \right) \right] \end{cases}$$

onde $\omega = 10^3 \text{ rad/s}, |\vec{k}| = 5 \times 10^{-6} \text{ m}^{-1}$

- a) Determine o índice de refração do meio onde a onda se propaga.
- b) Determine a direcção de propagação.
- c) Verifique que a expressão do campo \vec{E} descreve uma onda transversal.
- d) Determine α para que a onda descreva uma polarização circular esquerda.
- e) Determine a amplitude E_0 sabendo que o valor médio do vector de Poynting é $\langle |\vec{S}| \rangle = 10^{-3} \ W/m^2$. Se não determinou α apresente o resultado em função deste parâmetro.