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❐ Natural units

❐ Golden rule for decays

❐ Decays into two particles

❐ Golden rule for cross sections

❐ Scattering 1 + 2 → 3 + 4 in the CM

❐ Feynman Rules for a spinless model

❐ Lifetime for A

❐ Scattering A+A → B +B

❐ Higher order corrections
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❐ In particle Physics we use the natural units system where h̄ = c = 1
complemented with ǫ0 = µ0 = 1. Notice these are consistent c2 = 1/(ǫ0µ0).

❐ Useful expressions

1 = c = 2.999792× 108 ms−1 → 1 s = 2.999792× 108 m

1 = h̄c = 197.327 MeV.fermi → 1 MeV−1 = 197.327× 10−15 m

1 = h̄ = 1.054571× 10−34 Js → 1 J.s = 9.482529× 1033

❐ We can write everything in terms of energy

1 m = 5.067730× 1012 MeV−1

1 s = 1.520214× 1021 MeV−1

1 Kg =
1 J.s

1 m2 × 1 s−1
=

1 J.s× 1 s

1 m2
= 5.613088× 1029 MeV .

❐ Useful relations

1 s−1 = 6.578023× 10−22 MeV

1 pb = 2.568189× 10−15 MeV−2

1 GeV−2 = 3.893794× 108 pb
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❐ We could think that information is lost. However it is always possible to put
back the h̄ and c. Consider the cross section for e− + e+ → µ− + µ+ in QED.
If we neglect the masses we have

σ =
4πα2

s
GeV−2

where s is the square of the CM energy and α = 1/137.032 · · · , the fine
structure constant.

❐ To go back to the SI system we use the fact that the cross section has
dimensions of mass.

L2 =
(
ML2T−2

)−2
h̄βcγ

=M−2L−4T 4
(
ML2T−1

)β (
LT−1

)γ

=M−2+β L−4+2β+γ T 4−2β−γ ,

with solution β = 2, γ = 2. Therefore

σ =
4π h̄2c2α2

s
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Γ =
1

2m1

︸︷︷︸

A

S

︸︷︷︸

B

∫

|M|2

︸ ︷︷ ︸

C

(2π)4δ4(p1 −
n∑

i=2

pi)

n∏

j=2

d3pj
(2π)32p0j

︸ ︷︷ ︸

D

❐ A: Initial state

❐ B: Symmetry factor final state

❐ C: Invariant amplitude (Dynamics)

❐ D: Final State

❐ Dimensions of M:

[M] = (mass)4−n ≡ (M)4−n

❐ For Γ

[Γ] = M−1M8−2nM−4M2n−2 = M
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❐ For two body decays the calculations can be done easily if particles are not
polarized.

❐ We get

Γ =
1

2m1

S

∫

|M|2 (2π)4δ4(p1 − p2 − p3)
d3p2

(2π)32p02

d3p3
(2π)32p03

=
S

32π2m1

∫

|M|2 δ4(p1 − p2 − p3)
d3p2
p02

d3p3
p03

=
S

32π2m1

∫

|M|2 δ
(

m1 −
√

|~p2|2 +m2
2 −

√

|~p2|2 +m2
3

)
d3p2
p02p

0
3

where we have done the integration in ~p3, from which ~p2 + ~p3 = 0 with
p0i =

√

|~pi|2 +m2
i .

❐ To continue we use spherical coordinates in momentum space

d3p2 = dΩ2|~p2|2d|~p2|

With our assumptions M does not depend on the angles and the angular
integration gives 4π.
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❐ We get,

Γ =
S

8πm1

∫

d|~p2||~p2|2 |M|2 δ(m1 −
√

|~p2|2 +m2
2 −

√

|~p2|2 +m2
3)

p02p
0
3

❐ Using

δ(f(x)) =

n∑

i

δ(x− xi)

|f ′(x)|x=xi

into

δ(m1 −
√

|~p2|2 +m2
2 −

√

|~p2|2 +m2
3) =

δ(|~p2| − · · · )
|~p2|
p0

2

+ |~p2|
p0

3

❐ We finally get

Γ =
S

8πm2
1

|~p2| |M|2
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σ =
1

4
√

(p1 · p2)2 −m2
1m

2
2

︸ ︷︷ ︸

A

S

︸︷︷︸

B

∫

|M|2

︸ ︷︷ ︸

C

(2π)4δ4(p1 + p2 −
n∑

i=3

pi)
n∏

j=3

d3pj
(2π)32p0j

︸ ︷︷ ︸

D

❐ A: Initial state

❐ B: Symmetry factor for final state

❐ C: Invariant amplitude (Dynamics)

❐ D: Final state

❐ Dimensions of M:

[M] = (mass)4−n ≡ (M)4−n

❐ Dimensions of σ

[σ] = M−2M8−2nM−4M2n−4 = M−2
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❐ The simplest case is the process 1 + 2 → 3 + 4 in the CM frame.

❐ Even in this case is not possible to do all the integrations without knowing M
❐ It is convenient to use the Mandelstam variable s, defined by

s = (p1 + p2)
2

❐ Expanding

s = m2
1 +m2

2 + 2p1 · p2

we get

p1 · p2 =
1

2

(
s−m2

1 −m2
2

)

❐ Therefore the initial state factor reads

4
√

(p1 · p2)2 −m2
1m

2
2 = 4

√
s |~p1|
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❐ Show last step: Start with

|~p1|2 =E2
1 −m2

1 =

(
s+m2

1 −m2
2

2
√
s

)2

−m2
1

❐ we get

s|~p1|2 =
1

4

[(
s+m2

1 −m2
2

)2 − 4sm2
1

]

=

[
1

4

(
s−m2

1 −m2
2

)2 −m2
1m

2
2

]

=(p1 · p2)2 −m2
1m

2
2

❐ and therefore

4
√

(p1 · p2)2 −m2
1m

2
2 = 4

√
s |~p1|
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❐ We have then

σ =
S

64π2
√
s|~p1|

∫

|M|2 δ4(p1 + p2 − p3 − p4)
d3p3
p03

d3p4
p04

❐ Start with integration in ~p4,

σ =
S

64π2
√
s|~p1|

∫

|M|2 δ(
√
s−

√

|~p3|2 +m2
3 −

√

|~p3|2 +m2
4)
d3p3
p03p

0
4

❐ Introduce spherical coordinates in the momentum ~p3.

dσ

dΩ
=

S

64π2
√
s |~p1|

∫
d|~p3||~p3|2

p03p
0
4

|M|2 δ(
√
s−

√

|~p3|2 +m2
3 −

√

|~p3|2 +m2
4)

=
S

64π2
√
s |~p1|

∫

|M|2 d|~p3||~p3|2
p03p

0
4

δ(|~p3| − · · · )
|~p3|
p03

+
|~p3|
p03

=
S

64π2
√
s |~p1|

|~p3|
p03 + p04

|M|2 =
S

64π2s

|~p3|
|~p1|

|M|2

❐ To finish we have to know M
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❐ To proceed we have to specify the rules to compute M. These will be different
for each different theory.

❐ Let us start with the simplest case of neutral scalars (spin 0). Consider a
model with three of such particles: A,B e C. We assume that the masses are

mA > mB +mC

in such a way that the decay A into B + C is allowed.

❐ The model has only one interaction represented by the Feynman diagram

A

B

C

and the rule of multiplying by −i g

❐ The constant g has dimensions of mass in this model.
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❐ The scattering A+A → B +B in lowest order is given by diagrams of Fig. 1.
There are two diagrams because they are not distinguishable and must be
added.

A

A

B

B

C

A

A

B

B
C

Figure 1: Process A+A → B +B in lowest order

❐ The scattering A+B → A+B is shown in Fig. 2.

A

A

A

A

C
C

B

B

B

B

Figure 2: Process A+B → A+B in lowest order
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❐ This processes in lowest order are known as tree level processes.

❐ Higher order processes involve closed loops, like the corrections to the vertex
shown in Fig. 3.

A A A A
B B B B

CC C C

B

A

CC B

A

A
B

C

C

B

A

Figure 3: One loop corrections to the vertex

❐ In the spirit of perturbation theory these corrections, being of order g3, must
be smaller then the lowest order, of order g, and then can be neglected in first
approximation.
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❐ Draw all distinct ways of connecting the initial state to the final state in a
given order in the interaction

❐ For each vertex multiply by the factor

−i g

❐ For each internal line with momentum q multiply by the propagator

i

q2 −m2

❐ Apply energy-momentum conservation at each vertex

❐ For each loop choose one momentum k for one of the internal lines and
multiply by the factor

∫
d4q

(2π)4

❐ The result of the previous rules gives −iM, therefore to obtain M multiply
the final result by i
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❐ As particle A can decay we will calculate its lifetime

❐ The Feynman diagram coincides with the vertex

A

B

C

Figure 4: Decay A → B + C in lowest order

❐ Feynman rules give in this case

M = g

❐ We can now use the formula for two body decays to get

Γ =
g2|~p|
8πm2

A
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❐ For the lifetime we get

τ =
1

Γ
=

8πm2
A

g2|~p|

❐ Where the momentum in the rest frame of A is given by

|~p| =
√

E2
B −m2

B

=

√
(
m2

A +m2
B −m2

C

2mA

)2

−m2
B

=
1

2mA

√

m4
A +m4

B +m4
C − 2m2

Am
2
B − 2m2

Am
2
C − 2m2

Bm
2
C



Scattering A+ A → B +B

Summary

Natural Units

Decays

Scattering

Feynman Rules

Jorge C. Romão FP-2013 – 18

❐ Consider the kinematics of Fig. 5

A

A

B

B

C

A

A

B

B
C

p1p1

p2p2

p3p3

p4
p4

q1 q2

q2

Figure 5: Kinematics for process A+A → B +B

❐ Energy momentum conservation gives

q1 = p1 − p3, q2 = p1 − p4
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❐ Feynman rules give

M =
g2

(p1 − p3)2 −m2
C

+
g2

(p1 − p4)2 −m2
C

=
g2

t−m2
C

+
g2

u−m2
C

where we used the Mandelstam variables

❐ For these reason these diagrams are called t and u channel, respectively

❐ Introducing in the formula for the differential cross section in the CM we get

dσ

dΩ
=

1

2

g4

64π2s

|~p3|
|~p1|

[
1

t−m2
C

+
1

u−m2
C

]2

❐ To proceed we write t and u as

t =(p1 − p3)
2 = m2

A +m2
B − 2E1E3(1− β3β1 cos θ)

u =(p1 − p4)
2 = m2

A +m2
B − 2E1E4(1 + β4β1 cos θ)

where βi as the velocities in the CM and θ is the scattering angle between
particles 1 and 3. Note the factor S = 1/2 for identical particles.



Higher order processes

Summary

Natural Units

Decays

Scattering

Feynman Rules

Jorge C. Romão FP-2013 – 20

❐ The examples we saw are in lowest order. When we go to next order we begin
to run into problems

❐ We are not going to show how these can be solved but let us show in a simple
case what type of problems we have.

❐ Consider the corrections to the propagator of particle A, also called the
self-energy. The Feynman diagram is shown in Fig. 6.

A AB

C pp

q

p+q

Figure 6: Self-energy of particle A

❐ Applying the Feynman rules we get

M = i g2
∫

d4q

(2π)4
1

[q2 −m2
B][(p+ q)2 −m2

C ]
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❐ The integrations are done from −∞ to +∞. We immediately see that we run
into problems as the integral diverges logarithmically

∫

q3dq
1

q4
=

∫
dq

q
= ∞

❐ This problem took more then 30 years to be fully understood through a
procedure known as renormalization.

❐ The study of this procedure is out of the scope of this course, but it can be
said that it is now fully understood and we can make sense of those divergent
integrals and compare the results with the experiment with great success.
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