Física de Partículas Aula 4
 Quantum Field Theory and Feynman Diagrams

Jorge C. Romão
Instituto Superior Técnico, Departamento de Física \& CFTP
A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Topics for this Class

- Feynman diagrams and time ordering
- The photon
- Quantum Electrodynamics (QED)

ㅁ Feynman Rules for QED

- Examples
- Electron-muon elastic scattering
- Electron-positron elastic scattering
- Compton effect
\square Calculation of $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
\square Hadron production in $e^{-}+e^{+}$collisions
- Hadronization
- The elementary process $e^{-}+e^{+} \rightarrow q+\bar{q}$
- The ratio R

We follow Chapters 5 and 6 of Mark Thomson book.

Feynman diagrams and time ordering

$\square \quad$ Consider the process $a+b \rightarrow c+d$

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $\underline{e^{-} e^{+} \rightarrow q \bar{q}}$

\square Using second order perturbation theory the first diagram is

$$
T_{f i}^{a b}=\frac{\langle f| V|j\rangle\langle j| V|i\rangle}{E_{i}-E_{j}}=\frac{\langle d| V|X+b\rangle\langle c+X| V|a\rangle}{E_{a}+E_{b}-\left(E_{c}+E_{X}+E_{b}\right)}
$$

$\square \quad$ In non-relativistic QM one uses the transition amplitude $T_{f i}$ while in relativistic QM one uses the Lorentz Invariant (LI) amplitude $\mathcal{M}_{f i}$. The relation is

$$
T_{f i}=\mathcal{M}_{f i} \prod_{k}\left(2 E_{k}\right)^{-1 / 2}
$$

ㅁ Therefore

$$
V_{j i}=\langle c+X| V|a\rangle=\frac{\mathcal{M}_{a \rightarrow c+X}}{\left(2 E_{a} 2 E_{c} 2 E_{X}\right)^{1 / 2}}
$$

Feynman diagrams and time ordering

- Take the LI amplitudes in the simplest case, a constant

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $e^{-e^{+}} \rightarrow q \bar{q}$

$$
\mathcal{M}_{a \rightarrow c+X}=g_{a}, \quad \mathcal{M}_{X+b \rightarrow d}=g_{b}
$$

ㅁ Then

$$
\begin{aligned}
\mathcal{M}_{f i}^{a b} & =\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2} T_{f i}^{a b}=\frac{\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2}}{2 E_{X}\left(2 E_{a} 2 E_{b} 2 E_{c} 2 E_{d}\right)^{1 / 2}} \frac{g_{a} g_{b}}{E_{a}-E_{c}-E_{X}} \\
& =\frac{1}{2 E_{X}} \frac{g_{a} g_{b}}{E_{a}-E_{c}-E_{X}}
\end{aligned}
$$

\square For the second diagram we get

$$
\mathcal{M}_{f i}^{b a}=\frac{1}{2 E_{X}} \frac{g_{a} g_{b}}{E_{b}-E_{d}-E_{X}}
$$

- The total LI amplitude is

$$
\begin{aligned}
\mathcal{M}_{f i} & =\frac{g_{a} g_{b}}{2 E_{X}}\left[\frac{1}{E_{a}-E_{c}-E_{X}}+\frac{1}{E_{b}-E_{d}-E_{X}}\right] \\
& =\frac{g_{a} g_{b}}{2 E_{X}}\left[\frac{1}{E_{a}-E_{c}-E_{X}}-\frac{1}{E_{a}-E_{c}+E_{X}}\right] \\
& =\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-E_{X}^{2}}
\end{aligned}
$$

$$
\begin{gathered}
E_{a}+E_{b}=E_{c}+E_{d} \\
\vdots \\
E_{b}-E_{d}=-\left(E_{a}-E_{c}\right)
\end{gathered}
$$

Feynman diagrams and time ordering

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$

ㅁ But we can relate E_{X} with the momenta. We have

$$
E_{X}^{2}=\left|\vec{p}_{X}\right|^{2}+m_{X}^{2}=\left|\vec{p}_{a}-\vec{p}_{c}\right|^{2}+m_{X}^{2}
$$

\square And therefore we get

$$
\mathcal{M}_{f i}=\frac{g_{a} g_{b}}{\left(E_{a}-E_{c}\right)^{2}-\left|\vec{p}_{a}-\vec{p}_{c}\right|^{2}-m_{X}^{2}}=\frac{g_{a} g_{b}}{q^{2}-m_{X}^{2}}
$$

where $q=p_{a}-p_{c}$ is the momentum in the Feynman propagator
■ Feynman diagrams represents the two time orderings, therefore the relative position of the vertices with respect to time does not matter

$=$

The photon: The formalism of the electromagnetism

ㅁ The (non-homogeneous) Maxwell equations are

$$
\partial_{\mu} F^{\mu \nu}=J^{\nu}, \quad \text { with } \quad F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}
$$

$\square \quad$ In free space, and using the Lorentz condition $\left(\partial_{\mu} A^{\mu}=0\right)$ we have the wave equation

$$
\square A^{\mu}=0
$$

that has plane waves as solutions

$$
A^{\mu}(x)=N e^{-i p \cdot x} \epsilon^{\mu}(p)
$$

where N is a normalization and $\epsilon^{\mu}(p)$ is the polarization vector that characterizes the spin of the photon

ㅁ Lorentz condition implies

$$
\epsilon_{\mu} p^{\mu}=0 .
$$

The photon: The formalism of the electromagnetism

ㄱ We know from Classical Electrodynamics that the photon has two polarizations, but we are describing it with a 4 -vector A^{μ} with 4 degrees of freedom.

- The Lorentz condition fixes already one of the degrees of freedom and to fully fix them we can choose the Coulomb gauge, where

$$
A^{0}=0, \quad \vec{\nabla} \cdot \vec{A}=0 \quad \Rightarrow \quad \epsilon^{0}=0, \quad \vec{\epsilon} \cdot \vec{p}=0
$$

meaning that the two polarizations are perpendicular to the direction of motion. Taking this as the z axis we have

$$
\epsilon(p, 1)=(0,1,0,0), \quad \epsilon(p, 2)=(0,0,1,0)
$$

ㅁ These vectors obey

$$
\begin{gathered}
\epsilon_{\mu} p^{\mu}=0, \quad \epsilon_{\mu}(p, 1) \epsilon^{\mu}(p, 2)=0, \quad \epsilon_{\mu}(p, \lambda) \epsilon^{\mu}(p, \lambda)=-1 \\
\sum_{\mathrm{Pol}} \epsilon_{\mu}^{*} \epsilon_{\mu}=-g_{\mu \nu}
\end{gathered}
$$

Quantum Electrodynamics (QED)

\square Quantum Electrodynamics (QED) is the theory of the interaction of electrons
Summary
Feynman Diagrams
The Photon

$$
j^{\mu}=\bar{\psi} \gamma^{\mu} \psi, \quad \partial_{\mu} j^{\mu}=0
$$

If we multiply by the electron charge, $q_{e}=-e$, where e is the proton charge, we get the electromagnetic current

$$
J^{\mu}=-e j^{\mu}=-e \bar{\psi} \gamma^{\mu} \psi
$$

\square This is the current that appears in Maxwell equations. How does this current interact with the photon? From classical Electrodynamics we know that the Lagrangian for a non-relativistic particle with charge q in interaction with the electromagnetic field is

$$
L=\frac{1}{2} m v^{2}-q \phi+q \vec{A} \cdot \vec{v}
$$

Quantum Electrodynamics (QED)

〕 In Quantum Field Theory we define a Lagrangian density

Summary
Feynman Diagrams
The Photon
QED
Feynman Rules
Examples
A real calculation
$\underline{e^{-} e^{+} \rightarrow q \bar{q}}$

$$
L \equiv \int d^{3} x \mathcal{L}
$$

\square This gives for the interaction

$$
\mathcal{L}_{\mathrm{int}}=-J^{\mu} A_{\mu}=e \bar{\psi} \gamma^{\mu} \psi A_{\mu}=-e Q_{e} \bar{\psi} \gamma^{\mu} \psi A_{\mu}
$$

where $Q_{e}=-1$.
ㅁ In the language of Feynman diagrams we describe the interaction by the vertex

ㅁ We see that the Feynman rule for the vertex corresponds to take out the fields from the interaction Lagrangian and in the end multiply the result by i

Feynman Rules for QED

Summary
Feynman Diagrams
The Photon
QED
Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$

We are going now to list the complete set of Feynman rules for QED. They follow very closely what we have seen in the $A B C$ model with the necessary modifications for spinors and antiparticles

1. For a given process draw all the distinct diagrams that connect the initial state with the final state
2. For each electron entering the diagram a factor $u(p, s)$. If the electron is leaving the diagram a factor $\bar{u}(p, s)$
3. For each positron leaving the diagram a factor $v(p, s)$. If it enters the diagram a factor of $\bar{v}(p, s)$.
4. For each photon in the initial sate a polarization vector $\varepsilon_{\mu}(k)$ and for the final state $\varepsilon_{\mu}^{*}(k)$.
5. For each internal electron line, the propagator

$$
S_{F \alpha \beta}(p)=i \frac{(p p+m)_{\alpha \beta}}{p^{2}-m^{2}+i \varepsilon}
$$

Feynman Rules for QED

6. For each internal photon line the propagator (in Feynman's gauge)

$$
\mu \sim \sim_{k}^{\sim} \sim \sim_{\nu} \quad D_{F \mu \nu}(k)=-i \frac{g_{\mu \nu}}{k^{2}+i \varepsilon}
$$

7. For each vertex

Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$

where $e=|e|$, is the positron charge. For the electron then $Q_{e}=-1$
8. For each internal momenta not fixed by energy-momentum conservation (loops) a factor

$$
\int \frac{d^{4} q}{(2 \pi)^{4}}
$$

Feynman Rules for QED

9. For each fermion loop a sign (-1).

Summary
Feynman Diagrams
The Photon
QED
Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$
10. A factor -1 between diagrams that differ by an odd number of permutations (Fermi statistics)
11. The result of the application of the previous rules gives $-i \mathcal{M}$, therefore to get \mathcal{M} we have to multiply the final result by i.

Comments

1. Rules 9) and 10) are difficult to explain with second quantization and Wick's theorem
2. To correctly write the fermionic lines. notice that in the end they have to give a complex number, that is a 1×1 matrix in Dirac space. To get this we should follow the rule that we start always at the head of the arrow.
3. The denominators of the propagators have the same form as in the $A B C$ model. As we have seen they can be understood from summing over the different time orderings for the vertices connected by the propagator. The numerators are different for electrons (spin 1/2) and photons (spin 1). They correspond to the sum over spins or polarizations.

Simple processes in QED

\square If we only consider two particles in the final state the number of processes in lowest order is very small

Process	Comment
$\mu^{-}+e^{-} \rightarrow \mu^{-}+e^{-}$	in QED
$e^{-}+e^{+} \rightarrow e^{-}+e^{+}$	Bhabha scattering
$\gamma+e^{-} \rightarrow \gamma+e^{-}$	Compton effect
$e^{-}+\operatorname{Nucleus(Z)\rightarrow e^{-}+\operatorname {Nucleus(Z)}+\gamma }$	Bremsstrahlung
$e^{-}+e^{+} \rightarrow \gamma+\gamma$	Pair annihilation
$e^{-}+e^{-} \rightarrow e^{-}+e^{-}$	Möller scattering
$\gamma+\gamma \rightarrow e^{-}+e^{+}$	Pair creation
$\gamma+\operatorname{Nucleus(Z)\rightarrow \operatorname {Nucleus}(\mathbf {Z})+e^{-}+e^{+}}$	Pair creation

Table 1: Simple processes in QED
\square We will show the diagrams for the first three and will learn how to calculate using a simpler, but important, case: $e^{-}+e^{+} \rightarrow \mu^{-} \mu^{+}$

ㅁ $\quad \mu^{-}+e^{-} \rightarrow \mu^{-}+e^{-}$

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation
$e^{-} e^{+} \rightarrow q \bar{q}$

■ $\gamma+e^{-} \rightarrow \gamma+e^{-}$(Compton effect)

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
ㅁ The amplitude for this process is

$$
\begin{aligned}
\mathcal{M} & =i \bar{v}\left(p_{2}\right)\left(i e \gamma^{\mu}\right) u\left(p_{1}\right) \frac{-i g_{\mu \nu}}{\left(p_{1}+p_{2}\right)^{2}} \bar{u}\left(p_{3}\right)\left(i e \gamma^{\nu}\right) v\left(p_{4}\right) \\
& =-\frac{e^{2}}{s} \bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right) \bar{u}\left(p_{3}\right) \gamma_{\mu} v\left(p_{4}\right)
\end{aligned}
$$

ㅁ We sum over the the final state spins and take the average over the initial state (non-polarized beams)
\square For the initial state (in the CM)

\square For the final state (in the CM)

a Here
$R \equiv \uparrow$ positive helicity, $\quad L \equiv \downarrow$ negative helicity

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
ㅁ Therefore we want to calculate
Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}_{f i}\right|^{2}\right\rangle= & \frac{1}{4}\left[|\mathcal{M}(\uparrow \uparrow ; \uparrow \uparrow)|^{2}+|\mathcal{M}(\uparrow \uparrow ; \uparrow \downarrow)|^{2}+\cdots\right. \\
& +|\mathcal{M}(\uparrow \downarrow ; \uparrow \uparrow)|^{2}+|\mathcal{M}(\uparrow \downarrow ; \uparrow \downarrow)|^{2}+\cdots \\
& +|\mathcal{M}(\downarrow \uparrow ; \uparrow \uparrow)|^{2}+|\mathcal{M}(\downarrow \uparrow ; \uparrow \downarrow)|^{2}+\cdots \\
& \left.+|\mathcal{M}(\downarrow \downarrow ; \uparrow \uparrow)|^{2}+|\mathcal{M}(\downarrow \downarrow ; \uparrow \downarrow)|^{2}+\cdots\right]
\end{aligned}
$$

\square We take all masses to zero. Then the four momenta are:

$$
\begin{array}{ll}
p_{1}=E(1,0,0,1), & p_{2}=E(1,0,0,-1) \\
p_{3}=E(1, \sin \theta, 0, \cos \theta), & p_{4}=E(1,-\sin \theta, 0,-\cos \theta)
\end{array}
$$

$\square \quad$ The helicity spinors are $(|\vec{p}|=E$, with $E=\sqrt{s} / 2)$:

$$
u_{\uparrow}=\sqrt{E}\left[\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) e^{i \phi} \\
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) e^{i \phi}
\end{array}\right] u_{\downarrow}=\sqrt{E}\left[\begin{array}{c}
-\sin \left(\frac{\theta}{2}\right) \\
\cos \left(\frac{\theta}{2}\right) e^{i \phi} \\
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right) e^{i \phi}
\end{array}\right] v_{\uparrow}=\sqrt{E}\left[\begin{array}{c}
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right) e^{i \phi} \\
-\sin \left(\frac{\theta}{2}\right) \\
\cos \left(\frac{\theta}{2}\right) e^{i \phi}
\end{array}\right] v_{\downarrow}=\sqrt{E}\left[\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) e^{i \phi} \\
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) e^{i \phi}
\end{array}\right]
$$

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
ㅁ Making the substitutions

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation

$$
\begin{array}{ll}
p_{1}: \theta \rightarrow 0, \phi \rightarrow 0, & p_{2}: \theta \rightarrow \pi, \phi \rightarrow \pi \\
p_{3}: \theta \rightarrow \theta, \phi \rightarrow 0, & p_{4}: \theta \rightarrow \pi-\theta, \phi \rightarrow \pi
\end{array}
$$

\square We get for the initial sate

$$
u_{\uparrow}\left(p_{1}\right)=\sqrt{E}\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right], u_{\downarrow}\left(p_{1}\right)=\sqrt{E}\left[\begin{array}{r}
0 \\
1 \\
0 \\
-1
\end{array}\right], v_{\uparrow}\left(p_{2}\right)=\sqrt{E}\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right], v_{\downarrow}\left(p_{2}\right)=\sqrt{E}\left[\begin{array}{r}
0 \\
-1 \\
0 \\
-1
\end{array}\right]
$$

- and for the final state

$$
u_{\uparrow}\left(p_{3}\right)=\sqrt{E}\left[\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) \\
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right)
\end{array}\right] u_{\downarrow}\left(p_{3}\right)=\sqrt{E}\left[\begin{array}{r}
-\sin \left(\frac{\theta}{2}\right) \\
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right)
\end{array}\right] v_{\uparrow}\left(p_{4}\right)=\sqrt{E}\left[\begin{array}{r}
\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right) \\
-\sin \left(\frac{\theta}{2}\right)
\end{array}\right] v_{\downarrow}\left(p_{4}\right)=\sqrt{E}\left[\begin{array}{r}
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right) \\
\sin \left(\frac{\theta}{2}\right) \\
-\cos \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
ㅁ We write the LI amplitude as

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation
$e^{-e^{+}} \rightarrow q \bar{q}$

$$
\mathcal{M}\left(h_{1}, h_{2}, h_{3}, h_{4}\right)=-\frac{e^{2}}{s} J_{u_{1} v_{2}}\left(h_{1}, h_{2}\right)^{\mu} J_{u_{3} v_{4}}\left(h_{3}, h_{4}\right)_{\mu}
$$

where $h_{i}=\uparrow, \downarrow$, and the currents,

$$
J_{u_{1} v_{2}}\left(h_{1}, h_{2}\right)^{\mu}=\bar{v}\left(p_{2}, h_{2}\right) \gamma^{\mu} u\left(p_{1}, h_{1}\right), J_{u_{3} v_{4}}\left(h_{3}, h_{4}\right)^{\mu}=\bar{u}\left(p_{3}, h_{3}\right) \gamma^{\mu} v\left(p_{4}, h_{4}\right)
$$

ㅁ We want to calculate the components of these 4 -vectors. It has to be done component by component. For instance

$$
J_{u_{1} v_{2}}(\uparrow, \uparrow)^{0}=(\sqrt{E})^{2} v^{\dagger}\left(p_{2}, \uparrow\right) \gamma^{0} \gamma^{0} u\left(p_{1}, \uparrow\right)=E[1,0,-1,0]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=0
$$

$$
J_{u_{1} v_{2}}(\uparrow, \downarrow)^{2}=(\sqrt{E})^{2} v^{\dagger}\left(p_{2}, \downarrow\right) \gamma^{0} \gamma^{2} u\left(p_{1}, \uparrow\right)
$$

$$
=E[0,-1,0,-1]\left[\begin{array}{cccc}
0 & 0 & 0 & -i \\
0 & 0 & i & 0 \\
0 & -i & 0 & 0 \\
i & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]=E[0,-1,0,-1]\left[\begin{array}{c}
0 \\
i \\
0 \\
i
\end{array}\right]=-2 i E
$$

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$

- Although this is straightforward, it is a bit boring. But we can program the procedure in Mathematica and get the final results that are quite simple.

■ We get that the only non-zero currents are

Summary

Feynman Diagrams
The Photon QED

Feynman Rules

Examples

A real calculation $\underline{e^{-} e^{+} \rightarrow q \bar{q}}$

$$
J_{u_{1} v_{2}}(\uparrow, \downarrow)=\sqrt{s}(0,-1,-i, 0)
$$

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$
ㄱ Therefore we get

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$

$$
\begin{aligned}
\mathcal{M}(\uparrow \downarrow ; \uparrow \downarrow) & =-\frac{e^{2}}{s}[\sqrt{s}(0,-1,-i, 0)] \cdot[\sqrt{s}(0,-\cos \theta, i, \sin \theta)] \\
& =\frac{e^{2}}{s} s(1+\cos \theta) \equiv 4 \pi \alpha(1+\cos \theta)
\end{aligned}
$$

- Similarly

$$
\begin{aligned}
& |\mathcal{M}(\uparrow \downarrow ; \uparrow \downarrow)|^{2}=|\mathcal{M}(\downarrow \uparrow ; \downarrow \uparrow)|^{2}=(4 \pi \alpha)^{2}(1+\cos \theta)^{2} \\
& |\mathcal{M}(\uparrow \downarrow ; \downarrow \uparrow)|^{2}=|\mathcal{M}(\downarrow \uparrow ; \uparrow \downarrow)|^{2}=(4 \pi \alpha)^{2}(1-\cos \theta)^{2}
\end{aligned}
$$

- And

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}_{f i}\right|^{2}\right\rangle & =\frac{1}{4}(4 \pi \alpha)^{2}\left[2(1+\cos \theta)^{2}+2(1-\cos \theta)^{2}\right] \\
& =(4 \pi \alpha)^{2}\left(1+\cos ^{2} \theta\right)
\end{aligned}
$$

■ For the cross section

$$
\begin{aligned}
& \left.\frac{d \sigma}{d \Omega}=\left.\frac{1}{64 \pi^{2} s}\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{\alpha^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \\
& \sigma=\frac{4 \pi \alpha^{2}}{3 s}
\end{aligned}
$$

Calculating the process $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$

- From JADE experiment (Bartel et al. (1985)
a Solid curve is QED prediction. Dotted curve includes electroweak corrections

$e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$: Understanding the result (1)

- The only non-zero amplitudes are those where the spins add up to ± 1

Spin 1

$\square \quad$ For spin 1 along the θ direction we have

$$
\begin{aligned}
&\left.|1,+1\rangle_{\theta}=\frac{1}{2}(1-\cos \theta)|1,-1\rangle_{z} \frac{1}{\sqrt{2}} \sin \theta\right)|1,0\rangle_{z} \frac{1}{2}(1+\cos \theta)|1,1\rangle_{z} \\
& \mathcal{M}(\uparrow \downarrow ; \uparrow \downarrow) \propto{ }_{\theta}\langle 1,+1 \mid 1,+1\rangle_{z}=\frac{1}{2}(1+\cos \theta) \\
& \mathcal{M}(\downarrow \uparrow ; \uparrow \downarrow) \propto{ }_{\theta}\left(1,+1|1,-1\rangle_{z}=\frac{1}{2}(1-\cos \theta)\right.
\end{aligned}
$$

\square We see that (for zero masses) the non-zero interactions do not flip the spin

$\square \quad$ This is due to a property known as chirality. Define the projectors

$$
\begin{aligned}
& P_{R}=\frac{1}{2}\left(1+\gamma_{5}\right)=\frac{1}{2}\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \quad P_{L}=\frac{1}{2}\left(1-\gamma_{5}\right)=\frac{1}{2}\left[\begin{array}{rr}
1 & -1 \\
-1 & 1
\end{array}\right] \\
& P_{L}+P_{R}=1, P_{L}^{2}=P_{L}, P_{R}^{2}=P_{R}, P_{L} P_{R}=P_{R} P_{L}=0
\end{aligned}
$$

] Then, for the massless case
$P_{R} u_{\uparrow}=u_{\uparrow}, P_{L} u_{\uparrow}=0, P_{R} u_{\downarrow}=0, P_{L} u_{\downarrow}=0$
$P_{R} v_{\uparrow}=0, P_{L} v_{\uparrow}=v_{\uparrow}, P_{R} v_{\downarrow}=v_{\downarrow}, P_{L} v_{\downarrow}=0$

> I use L, R for chirality and \uparrow, \downarrow for helicity

- For zero masses Helicity \equiv Chirality

$e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$: Understanding the result (3)

ㅁ Define

$$
\psi=\left(P_{L}+P_{R}\right) \psi=\psi_{L}+\psi_{R}, \quad \psi_{L} \equiv P_{L} \psi, \quad \psi_{R} \equiv P_{R} \psi
$$

$$
\begin{aligned}
\bar{\psi} & =\bar{\psi}_{L}+\bar{\psi}_{R}=\left(P_{L} \psi\right)^{\dagger} \gamma^{0}+\left(P_{R} \psi\right)^{\dagger} \gamma^{0}=\left(P_{L}^{2} \psi\right)^{\dagger} \gamma^{0}+\left(P_{R}^{2} \psi\right)^{\dagger} \gamma^{0} \\
& =\left(P_{L} \psi\right)^{\dagger} P_{L}^{\dagger} \gamma^{0}+\left(P_{R} \psi\right)^{\dagger} P_{R}^{\dagger} \gamma^{0}=\left(P_{L} \psi\right)^{\dagger} P_{L} \gamma^{0}+\left(P_{R} \psi\right)^{\dagger} P_{R} \gamma^{0} \\
& =\left(\psi_{L}\right)^{\dagger} \gamma^{0} P_{R}+\left(\psi_{R}\right)^{\dagger} \gamma^{0} P_{L}^{\dagger}=\bar{\psi}_{L} P_{R}+\bar{\psi}_{R} P_{L}
\end{aligned}
$$

ㅁ Therefore

$$
\begin{aligned}
\bar{\psi} \gamma^{\mu} \psi & =\left(\bar{\psi}_{L} P_{R}+\bar{\psi}_{R} P_{L}\right) \gamma^{\mu}\left(\psi_{L}+\psi_{R}\right) \\
& =\bar{\psi}_{L} \gamma^{\mu} \psi_{L}+\bar{\psi}_{R} \gamma^{\mu} \psi_{R}
\end{aligned}
$$

and

$$
m \bar{\psi} \psi=m\left(\bar{\psi}_{L} \psi_{R}+\bar{\psi}_{R} \psi_{L}\right)
$$

• TÉCNICO LISBOA

How to calculate other processes: Bhabha scattering (1)
ㅁ For $e^{-}+e^{+} \rightarrow e^{-}+e^{+}$(Bhabha scattering) we have two diagrams

■ Using what we have learned, for $m_{e}=0$, we have
$e^{-} e^{+} \rightarrow q \bar{q}$

t-channel currents

ㅁ We have in a obvious notation for $p_{1}+p_{2} \rightarrow p_{3}+p_{4}$ processes

$$
\begin{aligned}
& J_{u_{1} u_{3}}(\uparrow, \uparrow)=\sqrt{s}\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}, i \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right) \\
& J_{u_{1} u_{3}}(\downarrow, \downarrow)=\sqrt{s}\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2},-i \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right) \\
& J_{v_{1} v_{3}}(\uparrow, \uparrow)=\sqrt{s}\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2}, i \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right) \\
& J_{v_{1} v_{3}}(\downarrow, \downarrow)=\sqrt{s}\left(\cos \frac{\theta}{2}, \sin \frac{\theta}{2},-i \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right) \\
& J_{u_{2} u_{4}}(\uparrow, \uparrow)=\sqrt{s}\left(\cos \frac{\theta}{2},-\sin \frac{\theta}{2}, i \sin \frac{\theta}{2},-\cos \frac{\theta}{2}\right) \\
& J_{u_{2} u_{4}}(\downarrow, \downarrow)=\sqrt{s}\left(\cos \frac{\theta}{2},-\sin \frac{\theta}{2},-i \sin \frac{\theta}{2},-\cos \frac{\theta}{2}\right) \\
& J_{v_{2} v_{4}}(\uparrow, \uparrow)=\sqrt{s}\left(\cos \frac{\theta}{2},-\sin \frac{\theta}{2}, i \sin \frac{\theta}{2},-\cos \frac{\theta}{2}\right) \\
& J_{v_{2} v_{4}}(\downarrow, \downarrow)=\sqrt{s}\left(\cos \frac{\theta}{2},-\sin \frac{\theta}{2},-i \sin \frac{\theta}{2},-\cos \frac{\theta}{2}\right)
\end{aligned}
$$

Mathematica
Notebook

ㅁ The general amplitude is

Summary
Feynman Diagrams
The Photon QED
Feynman Rules

Examples

A real calculation $\underline{e^{-} e^{+} \rightarrow q \bar{q}}$

$$
\mathcal{M}\left(h_{1}, h_{2} ; h_{3}, h_{4}\right)=-\frac{e^{2}}{s} J_{u_{1} v_{2}}\left(h_{1}, h_{2}\right) \cdot J_{u_{3} v_{4}}\left(h_{3}, h_{4}\right)+\frac{e^{2}}{t} J_{u_{1} u 3}\left(h_{1}, h_{3}\right) \cdot J_{v_{2} v_{4}}\left(h_{2}, h_{4}\right)
$$

■ Summing the six non-zero helicity amplitudes we get finally

$$
\begin{aligned}
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle & =2 e^{4}\left[\frac{t^{2}+(s+t)^{2}}{s^{2}}+\frac{s^{2}+(s+t)^{2}}{t^{2}}+2 \frac{(s+t)^{2}}{s t}\right] \\
& =2 e^{4}\left[\frac{1+\cos ^{4}(\theta / 2)}{\sin ^{4}(\theta / 2)}-\frac{2 \cos ^{4}(\theta / 2)}{\sin ^{2}(\theta / 2)}+\frac{1+\cos ^{2} \theta}{2}\right]
\end{aligned}
$$

where

$$
t=-\frac{s}{2}(1+\cos \theta)=-s \cos ^{2} \frac{\theta}{2}, \quad u=-\frac{s}{2}(1-\cos \theta)=-s \sin ^{2} \frac{\theta}{2}
$$

u-channel Amplitudes

\square To be able to calculate all the processes with electrons and positrons we also need the u-channel amplitudes.

$$
\begin{aligned}
& J_{u_{1} u_{4}}(\uparrow, \uparrow)=\sqrt{s}\left(\sin \frac{\theta}{2},-\cos \frac{\theta}{2},-i \cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right) \\
& J_{u_{1} u_{4}}(\downarrow, \downarrow)=\sqrt{s}\left(-\sin \frac{\theta}{2}, \cos \frac{\theta}{2},-i \cos \frac{\theta}{2},-\sin \frac{\theta}{2}\right) \\
& J_{u_{2} u_{3}}(\uparrow, \uparrow)=\sqrt{s}\left(-\sin \frac{\theta}{2},-\cos \frac{\theta}{2}, i \cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right) \\
& J_{u_{2} u_{3}}(\downarrow, \downarrow)=\sqrt{s}\left(\sin \frac{\theta}{2}, \cos \frac{\theta}{2}, i \cos \frac{\theta}{2},-\sin \frac{\theta}{2}\right) \\
& J_{v_{1} v_{4}}(\uparrow, \uparrow)=\sqrt{s}\left(-\sin \frac{\theta}{2}, \cos \frac{\theta}{2}, i \cos \frac{\theta}{2},-\sin \frac{\theta}{2}\right) \\
& J_{v_{1} v_{4}}(\downarrow, \downarrow)=\sqrt{s}\left(\sin \frac{\theta}{2},-\cos \frac{\theta}{2}, i \cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right) \\
& J_{v_{2} v_{3}}(\uparrow, \uparrow)=\sqrt{s}\left(\sin \frac{\theta}{2}, \cos \frac{\theta}{2},-i \cos \frac{\theta}{2},-\sin \frac{\theta}{2}\right) \\
& J_{v_{2} v_{3}}(\downarrow, \downarrow)=\sqrt{s}\left(-\sin \frac{\theta}{2},-\cos \frac{\theta}{2},-i \cos \frac{\theta}{2}, \sin \frac{\theta}{2}\right)
\end{aligned}
$$

Hadron production in $e^{-}+e^{+}$scattering

- In the scattering $e^{-}+e^{+}$we can produce a variety of final states $e^{-}+e^{+}$

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation
$e^{-} e^{+} \rightarrow q \bar{q}$

- $e^{-} e^{+} \rightarrow q \bar{q}$
- The ratio R (Bhabha), $\mu^{-}+\mu^{+}, \gamma+\gamma$ and in general any fermion pair $f \bar{f}$.
\square Therefore we can also have the pair production of quark-antiquark pairs, $e^{-}+e^{+} \rightarrow q+\bar{q}$. If the energies are much below M_{Z} we can, as we will see later, neglect the other interaction and consider only QED, where we have the diagram similar to $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$

- In fact things are more complicated than with muons as the quarks are not free (confinement). When they are at distances of the order of the dimensions of the hadrons ($1 \mathrm{fm}=10^{-15} \mathrm{~m}$) the strong interaction produces new $q \bar{q}$ pairs and gluons that finally will recombine to produce hadrons that will be detected. We call this process hadronization

Hadronization

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$ - Hadronization

- $e^{-} e^{+} \rightarrow q \bar{q}$
- The ratio R

ㄱ We show in the figure what we just described as hadronization

\square When these events are observed at the detectors they keep the memory of how they were produced and appear as two jets of particles in opposite directions (back-to-back) and pointing to the original quarks from where they originate

Hadronization

ㅁ We show real events with two and three jets

Summary
Feynman Diagrams
The Photon QED

Feynman Rules
Examples
A real calculation $e^{-} e^{+} \rightarrow q \bar{q}$

- The ratio R

Fig. 8.2 A typical two-jet event. (Source:) Dorfan, SLAC.)

Fig. 8.3 A three-jet event. (Source: j. Dorfan, SLAC.)
\square The events with three jets are interpreted as one of the jets coming from the hadronization of a gluon, a higher order process

\square The observation of such events are the experimental evidence for the existence of gluons, the carriers of the strong interaction in the Quantum Chromodynamics.

Elementary process $e^{-}+e^{+} \rightarrow q+\bar{q}$

- Besides all these complications the elementary process at the base of all these considerations is quite simple and can be obtained easily from our previous calculations

$$
e^{-}+e^{+} \rightarrow q+\bar{q}
$$

- The amplitude is then

$$
\mathcal{M}=-\frac{Q_{q} e^{2}}{s}\left[\bar{v}\left(p_{2}\right) \gamma^{\mu} u\left(p_{1}\right)\right]\left[\bar{u}\left(p_{3}\right) \gamma^{\mu} v\left(p_{4}\right)\right]
$$

where Q_{q} is the charge of quark in units of e, that is, $Q_{u}=2 / 3, Q_{d}=-1 / 3$.
$\square \quad$ Using the results of our calculation for $e^{-}+e^{+} \rightarrow \mu^{-}+\mu^{+}$we get (neglecting the masses)

$$
\left.\left.\langle | \mathcal{M}\right|^{2}\right\rangle=e^{4} Q_{q}^{2}\left(1+\cos ^{2} \theta\right)
$$

ㅁ Therefore

$$
\left.\frac{d \sigma}{d \Omega}=\left.\frac{1}{64 \pi^{2} s}\langle | \mathcal{M}\right|^{2}\right\rangle=\frac{\alpha^{2} Q_{q}^{2}}{4 s}\left(1+\cos ^{2} \theta\right) \Rightarrow \sigma=\frac{4 \pi \alpha^{2} Q_{q}^{2}}{3 s}
$$

The ratio R

- If we start from very low energy and start to increase the energy, we will go through the thresholds for the production of different species of leptons and quarks
\square This can be described in a convenient from defining the Ratio R,

$$
R(\sqrt{s})=3 \sum_{i} Q_{i}^{2}
$$

where the sum is over all the quarks such that $\sqrt{s}>2 m_{q}$. The factor 3 (color factor) appears because each quark has three color possibilities (QCD).
\square If we are at an energy such that we can only produce the u, d, s quarks we have

$$
R=3\left[\left(\frac{2}{3}\right)^{2}+\left(\frac{-1}{3}\right)^{2}+\left(\frac{-1}{3}\right)^{2}\right]=2
$$

ㅁ Above the threshold for the production of the c quarks we have

$$
R=2+3\left(\frac{2}{3}\right)^{2}=\frac{10}{3}=3.33
$$

$$
R=\frac{10}{3}+3\left(\frac{-1}{3}\right)^{2}=\frac{11}{3}=3.67
$$

- If we had energy for the production of the top quark we would have $R=5$. We have therefore a staircase effect, as the energy grows, R also grows in steps.
fit TÉcNICO LISBOA The ratio R
\square How does this compare with experiment? We see in the figure

the plot of R based in experimental data. We see that the staircase behaviour is present, including the color factor of 3

The ratio R

- The resonances shown are not explained by the above argument
\square When the reaction has exactly enough energy to produce bound states quark-antiquark then these resonances appear like in the figure: $\rho, \omega, \phi, \psi, \cdots$.
- But if we exclude these resonant behaviour the general plot confirms the existence of color triplets the basis for the construction of Quantum Chromodynamics, the theory of strong interactions. We will come back to this after we discuss gauge theories in one of the following chapters.

