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TECNICO . .
W LISBOA | Topics for this Class

i Feynman diagrams and time ordering

Feynman Diagrams

The photon

The Photon

Quantum Electrodynamics (QED)
Feynman Rules for QED

QED

Feynman Rules

Examples

O O o O 4

Examples

A real calculation

e_e+ — qq

¢ Electron-muon elastic scattering

€ Electron-positron elastic scattering

¢ Compton effect

Calculation of e +et — pu= +put

Hadron production in e~ + e collisions

¢ Hadronization

¢ The elementary process e~ + et = q+7q
¢ Theratio R

We follow Chapters 5 and 6 of Mark Thomson book.
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TECNICO . . .
W LIsBOA | Feynman diagrams and time ordering

3 Consider the process a +b — c+ d

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Spaca

Examples

A real calculation

e"et & aq Tima Time

3 Using second order perturbation theory the first diagram is

pav _ V1) GV (dVIX +b) {c+ X[|V]a)
' E’L_Ej Ea+Eb_(Ec+EX+Eb>

A In non-relativistic QM one uses the transition amplitude T'r; while in relativistic
QM one uses the Lorentz Invariant (LI) amplitude M ;. The relation is

Ty = Myi | [(2Ex) 712

A Therefore g

Vii=(c+ X|V]a) = Marerx

(2E,2E.2Ex)"?
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TECNICO . . .
W LIsBOA | Feynman diagrams and time ordering

A Take the LI amplitudes in the simplest case, a constant

Summary

Ma—>c—|—X = Ga, MX—|—b—>d = 3b

Feynman Diagrams

The Photon ] Then

QED 9F,2F,2F.2E,)"? .

Feynman Rules M?l; — (2Ea2Eb2E02Ed)1/2 Tazb — ( b d) 1/2 g gb
Examples 2EX (2Ea2Eb2E02Ed) ECL o EC T EX
A real calculation — 1 gagb

e”et — qg 2Ex FE, — E.— Ex

3 For the second diagram we get

1 9agb
2Ex By — E; — Ex

b
Mfci:

A The total LI amplitude is

9adb 1 1
M s = s _ 2
' 9By |Fa—E.—Ex | E,—Fy—FEx Eot By = £e+ By

:gagb 1 - 1 ] ‘
2F x _Ea—EC—EX Ea—EC—I—Ex_ \Eb_Ed:_(Ea_Ec)
Jadb
2
(F, — E.)" — E?(

J
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TECNICO . . .
W LIsBOA | Feynman diagrams and time ordering

S e A But we can relate E'x with the momenta. We have
Feynman Diagrams
2 — |2 2 — — |2 2
The Photon EX — |pX| +mX — |pa_pcl —l_mX
QED
Feynman Rules 3 And therefore we get
Examples
A real calculation M L gagb . gagb
e et — qq f’L o 2 2

2 — — T
(Ea - EC) - |pa _pc|2 — m%{ q= —Mx
where ¢ = p, — p. is the momentum in the Feynman propagator

3 Feynman diagrams represents the two time orderings, therefore the relative
position of the vertices with respect to time does not matter

ity
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TECNICO
W LISBOA

The photon: The formalism of the electromagnetism

Summary

Feynman Diagrams

The Photon
QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

O FH = Jv,

OA" =0

A The (non-homogeneous) Maxwell equations are

with F, = 9,4, — 9,4,

that has plane waves as solutions

AF(x) = Ne "P'* e (p)

po_
e pl =0

where N is a normalization and €(p) is the polarization vector that
characterizes the spin of the photon

Lorentz condition implies

In free space, and using the Lorentz condition (9, A" = 0) we have the wave
equation

Jorge C. Romao
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TECNICO
LISBOA

The photon: The formalism of the electromagnetism

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

3 We know from Classical Electrodynamics that the photon has two

polarizations, but we are describing it with a 4-vector A* with 4 degrees of
freedom.

3 The Lorentz condition fixes already one of the degrees of freedom and to fully
fix them we can choose the Coulomb gauge, where

— — 0

A’=0, V- A=0 = &=0, &€5=0

meaning that the two polarizations are perpendicular to the direction of
motion. Taking this as the z axis we have

e(p,1) = (0,1,0,0), €(p,2)=1(0,0,1,0)

3 These vectors obey

exp =0, €u(p,1)e"(p,2) =0, eulp, N (p,A) =—1
D Enn = G
Pol

Jorge C. Romao
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W 15804 | Quantum Electrodynamics (QED)

A  Quantum Electrodynamics (QED) is the theory of the interaction of electrons
(and positrons) with photons. Later we will discuss the Lagrangian of QED as
the basic example of the construction of a gauge theory. Here we just discuss
the form of the interaction

Summary

Feynman Diagrams

The Photon

QED
revnman Rules 3 We saw that from Dirac equation we can derive a conserved probability current
Examples .
A real calculation glven by
e_e+ — qq . — .
- 3=y, Ot =
If we multiply by the electron charge, g. = —e, where e is the proton charge,

we get the electromagnetic current

I = —ejt =~y
@ This is the current that appears in Maxwell equations. How does this current
interact with the photon? From classical Electrodynamics we know that the

Lagrangian for a non-relativistic particle with charge ¢ in interaction with the
electromagnetic field is

1 S
inm?ﬂ—qqﬁ—l—qA-U
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TECNICO
LISBOA

Quantum Electrodynamics (QED)

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

W

In Quantum Field Theory we define a Lagrangian density

L = /d3x£
This gives for the interaction

Ling = _J'LLA/L — 6@7“%4# — —€Qe@W“¢Au
where (), = —1.

In the language of Feynman diagrams we describe the interaction by the vertex

We see that the Feynman rule for the vertex corresponds to take out the fields
from the interaction Lagrangian and in the end multiply the result by ¢

Jorge C. Romao
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TECNICO
LISBOA

Feynman Rules for QED

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

We are going now to list the complete set of Feynman rules for QED. They follow
very closely what we have seen in the ABC' model with the necessary
modifications for spinors and antiparticles

1.

For a given process draw all the distinct diagrams that connect the initial state
with the final state

For each electron entering the diagram a factor u(p, s). If the electron is
leaving the diagram a factor u(p, s)

For each positron leaving the diagram a factor v(p, s). If it enters the diagram
a factor of v(p, s).

For each photon in the initial sate a polarization vector €, (k) and for the final
state €7, (k).

For each internal electron line, the propagator

Jorge C. Romao
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W TLFSFEla\IolgO Feynman Rules for QED

6. For each internal photon line the propagator (in Feynman's gauge)

Summary

Feynman Diagrams _ . g,uu
ANNNNN v Dpy (k) = —t——

The Photon ILL k H ( ) kZ —|_ 1€

QED

7. For each vertex

Feynman Rules

Examples

A real calculation

e_e+ — qq

where e = |e|, is the positron charge. For the electron then Q. = —1

8. For each internal momenta not fixed by energy-momentum conservation
(loops) a factor

[
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W TLFSFEIa\Iolgo Feynman Rules for QED

9. For each fermion loop a sign (—1).

Summary

10. A factor —1 between diagrams that differ by an odd number of permutations
(Fermi statistics)

Feynman Diagrams

The Photon

= 11. The result of the application of the previous rules gives —i M, therefore to get
einman s M we have to multiply the final result by i.

Examples

A real calculation

e"et - q7 Comments

1. Rules 9) and 10) are difficult to explain with second quantization and Wick's
theorem

2. To correctly write the fermionic lines. notice that in the end they have to give
a complex number, that is a 1 X 1 matrix in Dirac space. To get this we
should follow the rule that we start always at the head of the arrow.

3. The denominators of the propagators have the same form as in the ABC
model. As we have seen they can be understood from summing over the
different time orderings for the vertices connected by the propagator. The
numerators are different for electrons (spin 1/2) and photons (spin 1). They
correspond to the sum over spins or polarizations.

Jorge C. Romao FP-2013 — 12



TECNICO| .. .
W LISBOA | Simple processes in QED

3 If we only consider two particles in the final state the number of processes in

i:;::yoaagrams lowest order is very small

e Fhaer

L Process Comment

S ks

u-+e = u +e” in QED

/:_elJr:;; e~ +et e +et Bhabha scattering
Yy+e —vy+e Compton effect
e~ + Nucleus(Z) — e~ 4+ Nucleus(Z) +v Bremsstrahlung
e~ +et = v+ Pair annihilation
e +e —e +e” Moller scattering
y+y—e +et Pair creation

v+ Nucleus(Z) — Nucleus(Z) +e~ + et Pair creation

Table 1: Simple processes in QED

3  We will show the diagrams for the first three and will learn how to calculate
using a simpler, but important, case: e~ +et — p T

Jorge C. Romao FP-2013 — 13



TECNICO
W LISBOA

Diagrams for three processes

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

O w +e —u +e D1

.
>

€

22N

P2

A e +et — e +et (Bhabha scattering)

A v4+e~ — v+ e~ (Compton effect)

gk e K

y
Y
y

. P3

=
, M

P4

b1 | . P3
e e
et et
P2 P4
g,k e K

PP

Jorge C. Romao

FP-2013 - 14



TECNICO :
W LISBOA | Calculating the process e~ +e™ — = + ut

3 The amplitude for this process is

Summary )
Feynman Diagrams e . I —1 g/u/ — . v
M =i9(pa)ier* ulpr) 2 (ps) ier” o (pa)
QED 62
Feynman Rules g ?@<p2)fy'uu<p1) ﬂ(p3>fyluv(p4)
Examples
: . P
3 We sum over the the final state spins and take the 3\\ 0
- average over the initial state (non-polarized beams) —
b1 P2
A For the initial state (in the CM) 7y
e P e A N O APRPES cn . R P oS N S, 0 LR B, Pl B
RL RAR LL LA

A For the final state (in the CM)

:}/Iﬂ VI-L ;;/-M ;/IJJ'
, v ” L
F*'/m B "/ﬁn ll‘/ LL e /LF-‘
3 Here

R =7 positive helicity, L =] negative helicity

Jorge C. Romao FP-2013 — 15



TECNICO :
W LISBOA | Calculating the process e~ +e™ — = + ut

A Therefore we want to calculate

Summary

S (M7l =3 [IMOTADE + Mt AP + -
HMELDP + IMOAL TP+
ot HMUE P + MU TP + -
MU+ MU+ -]

e_e+ — qq

7 We take all masses to zero. Then the four momenta are:

p1 = E(1,0,0,1), po = E(1,0,0,—1)
p3 = E(1,sin 0,0, cos ), ps = E(1,—sinf,0, — cosb)

A The helicity spinors are (|p] = E, with £ = /s/2):

s ] [—m® ] [ w®) ] [es®)

sin (£) ¢i¢ cos (8) i —cos (%) e? sin (&) ¢4
UT:\/E 1 (2)9 uL:\/E .(2)9 UT:\/E e 2Q 'U¢:\/E QQ
cos (4 in () an (9 cos (3

_Sin (g) 67;(]5_ | —cos (g) e“b_ COS (g) el? sin (g) el®
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TECNICO :
W LISBOA | Calculating the process e~ +e™ — = + ut

3 Making the substitutions

Summary
Feynman Diagrams P - 6 — O, ¢ — O, P2 - 6 — T, ¢ — T
;':DP““" p3 0 —0,¢—0, pa:0—>m—0,0 >

Feynman Rules

3 We get for the initial sate

Examples

A real calculation

e et qq _1_ B O_ B 1_ B O_
0 1 0 —1

ur(pr)=VE | L uy(p)=VE 0 curp2)=VE | ||, up)=VE |

0, = 0 -1

A and for the final state

Q
O
n

Q
o
0))
N N /N o/

|

Q n
—

=

N
o
=
o
n

ur(ps)=vVE uy(ps)=VE vr(pa) =VE v (ps) =VE

|
n Q n
[y i ®
5 2 B

— COS

N
o
-

|
Q
o
n

S—" N N N
N
— e .
-

AN TN N N

NDND D ND

AN TN N N

N— e e N

DN D ND

N— N N N
Q

. o .
N

AN TN N N

ND N[D ND ND
D ND D ND
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TECNICO
LISBOA

Calculating the process ¢~ +e™ — = + pu"

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

A We write the LI amplitude as

M(h17 h27 h37 h4) — _?

62

Julvg (hla hQ)MJugwl <h37 h4),u

where h; =7, ], and the currents,

Julvg (hla hZ)'u — @<p27 h2)7uu<p17 h1)7 JU3U4 (h37 h/4)'u — ﬂ<p37 h3)’7'uv(p47 h4)

7 We want to calculate the components of these 4-vectors. It has to be done

component by component. For instance -

1
Juyos (1,1 =(VE)?vT (p2, )7 u(p1, 1) = E[1,0,—1,0] (1) =0
0

—F1[0,-1,0, —1]

’YQU(plaT>

0 0 0 —il| [1] 0

0 0 4 0110 i .
o i 0 olli =FE10,-1,0, —1] 0 ——%FE
i 0 0 0] |0 K

Jorge C. Romao
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TECNICO
LISBOA

Calculating the process ¢~ +e™ — = + pu"

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

3 Although this is straightforward, it is a bit boring. But we can program the
procedure in Mathematica and get the final results that are quite simple.

7 We get that the only non-zero currents are

\ Y4\ V4

P3

7'\

P4
P3

Y X

P4

JU1U2 (T? \l/> —

’U,1U2 (\lf T)

J’U,3U4 (T? \l/) —

J’U,3U4 <\L7 T) —

Vs (0,—1,—1,0)

Vs (0,-1,4,0)

Vs (0, —cos@,1,sin 0)

Vs (0, —cos 0, —i,sin 0)

Jorge C. Romao
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TECNICO :
W LISBOA | Calculating the process e~ +e™ — = + ut

A3 Therefore we get

Summary 2
Feynman Diagrams M(T\L? T\L) _— — e— [\/E(O, _1, _7:, 0>i| y [\/E(O, — COS 9, 7:, Sin 9>i|
The Photon S
2
L - :e—s(l—l—COSO) = 4ma (1 + cos )
Feynman Rules S
Examples 3 Similarly
cetou MELTDP = MU NP = (4ma)’ (1 + cos )’

ML NP = MU D1 = (dma)® (1 = cos6)’
A And

(IM5:]?) :i (4ma)” [2(1 + cos6)® +2(1 — cos 0)?]
— (47)* (1 + cos® 0)

3 For the cross section

do o’

s 647r25 (M%) = 5 (14 cos™0)
B Ao

o= 3s

Jorge C. Romao FP-2013 — 20



TECNICO :
w LISBOA | Calculating the process e~ +e™ — = + ut

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

et /x
IM(LR— AL

do
dcosd

.lll..._.-' e : L o ’
o i :
ki h E *r ;

MR LRE| @

HMIRL — LA .~ +|M{AL— AL)? 4k :
PEERPYPIL S T LI W TR VN W I LI ||.-\- o T ul- s L g s & 1 4 5 PO [ T R T
-1 0.5 0 0.5 1 -1 0.5 0 0.5 1

cos@ cose

From JADE experiment (Bartel et al. (1985)

Solid curve is QED prediction. Dotted curve includes electroweak corrections
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W TB0A| e~ +et — pu~ + pt: Understanding the result (1)

@ The only non-zero amplitudes are those where the spins add up to +1

Summary

Feynman Diagrams

The Photon pe H 1.1}
1+ cos6
QED o —=b A' . 1.,
Feynman Rules /
e A K )
Examples Photon RlL— AL =1 cos B +1
A real calculation J{
e_e+ — qq
|1|1:|'.ﬁ|
1 —cosé

Spin 1 -

| Spin1 "i“
E-? ¢ 1, ~1);
J.|.+

F
LR = AL 1 cos +1

3 For spin 1 along the 6 direction we have

11,+1), = %(1 —cosf)|1,—1)_ % sinf) |1,0) %(1 +cosf)|1,1),
37 And 1

ML) oc (1 +1[14+1), = 5 (1 + cosb)

MU o6 (L AH1L -1), = £ (1~ cosd)
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TECNICO
W LISBOA

e~ + et — u~ + pt: Understanding the result (2)

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

3 For zero masses | Helicity = Chirality

A  We see that (for zero masses) the non-zero interactions do not flip the spin

D S G

3 This is due to a property known as chirality. Define the projectors

1 11 1 1 1 1 —1
PR—§(1+’VS>—§[1 1] PL—§(1_75)—§[_1 1]

P+ Pr=1, P} = P, PA=Pgr, PLPr = PrP;, =0

A Then, for the massless case

Pruy =uy, Pruy =0, Pruy =0, Pru, =0 | use L,R for chirality

Jorge C. Romao
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TECNICO
W LISBOA

o

+e" — pu~ 4+ ' Understanding the result (3)

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

W

Define

V= (Pr+ Pr)Y=%r+vYr, ¢r=Pr, ¢r=Pry
Then
U=y, + Op = (Pre) 10 + (Pr)) 70 = (PFy) 40 + (PEy) "+
= (Ppy)" PlA° + (Pry)' Pl = (Pry)T Py + (Pre)' Pry°
=) " Pr + (Yr) 7P} = ¢ Pr + ¥ pPL

Therefore

Yy = (Y, Pr + YpPr) v (Yo + ¢¥r) The QED interaction

— — preserves Chirality
=YY + Yy R ..
In the massless limit

and ‘l(

mypp =m (YR + Y rir) _ Preserves Helicity

Jorge C. Romao
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TECNICO :
W LISB0A | How to calculate other processes: Bhabha scattering (1)

7 Fore™ +et — e~ +e' (Bhabha scattering) we have two diagrams

Summary 6_ o= pl ‘ ‘ p3
Feynman Diagrams pl p3 6_ > > -
The Photon L
QED 6+ €_|_
Feynman Rules D2 6_|_ e_|_ jo Dy < < D2
Examples
A real calculation 3 Using what we have learned, for m. = 0, we have
e et — qq
\ / - S —>
X ¥
Mt 41 1) = D
a\ /ol
ML 1:1,4) = P
\ / R ol <
Mt = e =TT
M) = T

Jorge C. Romao FP-2013 — 25



TECNICO
W LISBOA | t-channel currents
3 We have in a obvious notation for p; 4+ ps — p3 + p4 processes
Summary
eynman Diagrams 6 . H o 6 6
:hye Photon g Ju1u3 (T? T) :\/g (COS 5, S11 5, 1 SIn 5, COS 5)
QED ) , , ,
: . Mathematica
Feynman Rules _ v v v v
— Jurus(3:4) =V/s (COS 7SIl 5, —isin o, cos 2) [ Motebort ]
A real calculation H H H H
e’ = g7 Jvlvs(T7T) :\/g (COS§,SiH§,iSin §,COS 5)
0 0 0 0
Joi0s (4, 1) =V/s (cos 37 sin 57 —1sin 5008 5)
0 0 0 6
Jusus (1, 1) =V/'s (COS 50 sin 3 7 SIn 5 COS 5)
0 0 0 0
Jugus (3, 1) =V/s (cos ot sin 3 —1sin 57 CoS 5)
0 0 0 6
JU2U4 (Ta T) :\/g (COS 5, — sin 5, 7 sin 5, — COS 5)
0 0 0 4,
Jvav, (i? i) :\/g (COS 90 sin 5% —1 8In 5 COS 5)

Jorge C. Romao FP-2013 — 26



TECNICO :
W LISB0A | How to calculate other processes: Bhabha scattering (2)
3 The general amplitude is
Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

62

M<h17 h27 h37 h4) — _;Julvg (hh h2)'JU3U4 (h37 h4>

W

2
e
‘|‘7Ju1u3(h17 h3>"]7)2v4 <h27 h4>

Summing the six non-zero helicity amplitudes we get finally

42 2 2 2 2
A real calculation 2 4 t —l_ (S —l_ t) S —l_ (S —l_ t) (S —|_ t)
- _ =2 2
e e — qq <|M| > € I 52 t2 —l_ St
0,4 1 +cos?(0/2)  2cos?(0/2) 1+(30829]
—Ze —
| sin?(6/2) sin”(0/2) 2
where
6 6
t=—§(1+COSQ>=—SCOS2—, ’LLZ—E(I—COSQ>=—SSiH2—
2 2 2
Jorge C. Romao FP-2013 — 27



TECNICO :
W LISBOA | u-channel Amplitudes

@ To be able to calculate all the processes with electrons and positrons we also

Summary need the u-channel amplitudes.

Feynman Diagrams . 6 0 N 6 . 6
S Juiud(T,T) =V/'s (Sm 5~ €0 5, —icos o, sin o
QED

Feynman Rules Ju1u4 (\l/, \l,) :\/g

Examples

.0 6 . 6 .0
— sin —, cOS —, —1 COS —, — SN —
2 2 2 2

A real calculation

et o iz (1,1) =V/5

—sin —, — cos —, 4 coS —, sin —
2 2 2 2

0 v v 9)

0 0 0 6)

Jugm), (ia i') :f

V)

sin —, cos —, 4 COS —, — SIn —
2 2 2 2

2 2 2 2

0 0 0 0
Tors (b)) =3 )

sin —, — cos —, 2 coS —, Sin —
2 2 2 2

0 0 v/ 0
ngvg (TaT) :\/g )

sin —, coS —, —% COS —, — SIn —
2 2 2 2

0 0 0 0)

(
(
(
oy (1:1) =5 (—sin . cos . icos . —sin )
(
(
(

JU2U3 (i: i) :\/g

—sin —, — cos —, —1 COS —, sin —
2 2 2 2
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TECNICO
LISBOA

Hadron production in ¢~ + ¢* scattering

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e et qq
ec et qq
® The ratio R

m

In the scattering e~ + et we can produce a variety of final states e~ + et
(Bhabha), u= + u™, v+~ and in general any fermion pair ff.

Therefore we can also have the pair production of quark-antiquark pairs,

e~ +et — g+ q. If the energies are much below Mz we can, as we will see
later, neglect the other interaction and consider only QED, where we have the
diagram similarto e +e™ — u= +

e
P1 ! P3

P2/ ¢ g D1
In fact things are more complicated than with muons as the quarks are not free
(confinement). When they are at distances of the order of the dimensions of
the hadrons (1 fm = 1071° m) the strong interaction produces new ¢g pairs
and gluons that finally will recombine to produce hadrons that will be

detected. We call this process hadronization

Jorge C. Romao
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TECNICO
LISBOA

Hadronization

Summary

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e et qq
ec et qq
® The ratio R

3 We show in the figure what we just described as hadronization

\

< > Jet 1

T

> Jet 2

/

3 When these events are observed at the detectors they keep the memory of how
they were produced and appear as two jets of particles in opposite directions
(back-to-back) and pointing to the original quarks from where they originate

Jorge C. Romao
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TECNICO . .
WLISBOA Hadronization

A We show real events with two and three jets

Summary

Feynman Diagrams

The Photon

QED E E g i
Feynman Rules .

Examples

A real calculation

— + —
e e’ — qq - ;
— Fig. B.Z A typical hwo-jet event. [Sowurce: ), Fig. 8.3 A three-jet event. {Source: |. Dorfan,
e Hadronization Dharifan, SLAC) SLAC)

ec et qq
® The ratio R

3 The events with three jets are interpreted as one of the jets coming from the
hadronization of a gluon, a higher order process

3 The observation of such events are the experimental evidence for the existence
of gluons, the carriers of the strong interaction in the Quantum
Chromodynamics.
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Elementary process ¢ +e¢™ — ¢+ ¢

3 Besides all these complications the elementary process at the base of all these
Summary considerations is quite simple and can be obtained easily from our previous
Feynman Diagrams CaICUIat|OnS
The Photon
QED e +et =5 q+7
Feynman Rules
Examlp'esl - A The amplitude is then
real calculation
e_e+ — qq Q 62
e Hadronization — —
M = == [0(p)y"u(p1)] [@(ps)7*v(pa)]
® The ratio R
where ), is the charge of quark in units of e, that is, Q, =2/3, Q4 = —1/3.
7 Using the results of our calculation for e™ +e™ — pu~ + ut we get (neglecting
the masses)
(IM|*) = e*Q (1 + cos® )
A Therefore
dO‘ 1 042622 471'042@2
— = 5 <|M\2>= 1(1+cos’0) =0 =——1
d{)  64m*s 4s 3s
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3 If we start from very low energy and start to increase the energy, we will go
Summary through the thresholds for the production of different species of leptons and

Feynman Diagrams

The Photon

QED

Feynman Rules

Examples

A real calculation

e_e+ — qq

e Hadronization
ec et qq

quarks

A This can be described in a convenient from defining the Ratio R,

o(e” + e — hadrons)
ole”+et = p~ +put)
3 If we use the approximate expression given before, we should obtain

R(Vs)=3) @

R =

where the sum is over all the quarks such that \/s > 2m,. The factor 3 (color
factor) appears because each quark has three color possibilities (QCD).

3 If we are at an energy such that we can only produce the u, d, s quarks we have

R=3

A+ (@)
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Summary 3 Above the threshold for the production of the ¢ quarks we have
Feynman Diagrams

The Photon 2 2 10

QED R:Q—I—S(—) = — =3.33

Feynman Rules 3 3

Examples

A  Above the threshold for the b

A real calculation

e_e+ — qq

2
® Hadronization 10 —1 11
e R=—4+3(=2) == =367
3 3 3

3 If we had energy for the production of the top quark we would have R = 5. We
have therefore a staircase effect, as the energy grows, R also grows in steps.
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3 How does this compare with experiment? We see in the figure

Summary

Feynman Diagrams P

—
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The Photon

QED

TR I T RPTH PTEN

Feynman Rules

i
|
: |

| : T T E:

| wusd+s . Jﬁ'*: . hl " o i 3

0 : = = 5

I[EIF ﬁF—-LJ Lt u+d+s+c L usd+s+c+b .

..- 'F w """"""" {no color) _._
- ! S ]
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Examples

A real calculation

g o= by W & A W B W D

e_e+ — qq

@ Hadronization
ec et qq

=

B o= KN W & B oy @ W

the plot of R based in experimental data. We see that the staircase behaviour
is present, including the color factor of 3
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Summary

A The resonances shown are not explained by the above argument

Feynman Diagrams

The Photon @ When the reaction has exactly enough energy to produce bound states
QED quark-antiquark then these resonances appear like in the figure: p,w, @, 9, - -.

Feynman Rules

3 But if we exclude these resonant behaviour the general plot confirms the

Examples

A real caleulation existence of color triplets the basis for the construction of Quantum

e~et > qg Chromodynamics, the theory of strong interactions. We will come back to this
| adrereaten after we discuss gauge theories in one of the following chapters.
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