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TECNICO . .. .
W LISB0A | Basic principles of Quantum Mechanics

We list the basic principles of QM:

Summary

0 For a given state of the system there is state function |®) that contains all the
Schrodinger Eq. . . .
possible information about the system

Hydrogen Atom
Clebsch-Gordon 0 In many cases we deal with the representation of |®) in terms of the

Fermi GR coordinates and time, the so-called wave function ¥(q;, s;,1).
Rutherford

O |®(g;,si,t)|* > 0 has an interpretation in terms of the probability density
for finding the particle in a given state with coordinates ¢;, internal
quantum numbers s; at time ¢

Bibliography

0 The physical observables are represented by hermitian operators

0 0
i — —th— |, E h—
pi — —1 94, — 1 5

0 The state |®,,) is an eigenstate of the operator  if
QD) = wy, |Pn)

where |®,,) is the eigenstate that corresponds to the eigenvalue w,,. If Q2 is
hermitian then the w,, are real.
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Basic principles of Quantum Mechanics ...
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Rutherford

Bibliography

For a complete set of operators that commute among themselves,
{21,905, ...}, there exist a complete set of simultaneous eigenfunctions ¥,,.
An arbitrary state (or wave function) can be expanded in this basis as

\I!:Zan\I!

The result of a measurement of the observable €2 is any of its eigenvalues w,,
with probability |a,|?. The average value of an observable is

< Q >y = Z/dQ1 %7327 )Q\Ij %7327 Z‘a/n‘an

The time evolutlon of the system is given by

o
zha = HU | (The Hamiltonian H is a linear and hermitian operator)

The linearity implies the superposition principle and the hermiticity leads to the
conservation of probability,

%;/dql--- hZ/dql [(HU)*¥ — U*(HU)] =0
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0 Schrodinger equation in 3 dimensions

Summary

Principles of MQ 9

_ rodinger Eq. . 8\11 _)7 t h — -

enraPontiaI ZhL — [_—v2 —l_ V(r>] \Ij(/r7 t)? /d3r|\IJ|2 — 1
e Spher. Harmonics 8t 2m

Hydrogen Atom

e [ Spherlcal symmetry

Fermi GR 5 5
Rutherford vQ — a _I_ g 8 o L
s ey Or2 r Or h27“2

where L = 7 X p is the angular momentum operator.

0 The eigenfunctions of the operator L? are the spherical harmonics
L*Yim (0, ¢) =h" 1(1 + 1) Yim (0, ¢)

The spherical harmonics are simultaneous eigenfunctions of the operators L,
and L?, as these commute.
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Schrodinger equation for the Central Potential

Summary

Principles of MQ

Schrodinger Eq.
® Central Potential

® Spher. Harmonics

Hydrogen Atom

Clebsch-Gordon

Fermi GR

Rutherford

Bibliography

0 For the case of spherical symmetry V(i) = V (r), the Schrodinger equation can
be separated in the three variables r, 6 and ¢,

p(r,0,0) = R(r) Yim(0, )

where the radial function satisfies

R <d2R+2d_R) N [V<7“)+ h? 1(z+1)]R:ER

om \ dr2 ' r dr 2m 72

0 It is sometimes convenient to write R(r) = u(r)/r. The the function u(r)
satisfies
h? d?u R 1(1+1)
————— + |V
2m dr? i [ (r) + 2m  r?

]u:Eu

that is a one dimensional equation for a potential that includes the centrifugal
barrier.
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Summary The spherical harmonics are the product of the solutions for the equations for 6
Principles of MQ
and ¢
Schrodinger Eq.
e Central Potential d d@ 2
. . m;
—(sinf—) +4(¢ +1)sin® — ——6 =0 .
Hydrogen Atom d@ ( de ) ( ) S111 9
Clebsch-Gordon
Fermi GR ]_ d2@ 9
Rutherford 56&02 — _me 9
Bibliography

conveniently normalized,

Yim, (0, @) = NngPEm‘Z(@)eimW

2641 (0—m]Y?
4 (f—l—m@! 7

Nemz — (_1)

where P,"** () are the associated Legendre polynomials and the normalization is
conventional
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Schrodinger equation for the hydrogen atom

Summary

Principles of MQ

Schrodinger Eq.

Hydrogen Atom

® Results

e Meaning
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e Angular
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® Theorems

Clebsch-Gordon
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Bibliography

In our simplified study we consider the proton fixed with the electron orbiting
around

The potential energy of the electron in the field of the proton is

1 e?
Viir)=— —
(r) Admeg T

where r is the distance between the proton and electron.

As we are dealing with a potential with spherical symmetry (central potential)
the solutions are of the general form,

¢n,l,m(ra 0, Cb) — Rnl(r) Ylm(97 ¢)

where the radial equation is

00+ 1)R? 2mE

R+~ R=0.
h

T_QE(T %) — — |V (r) +

2mr2

The spherical harmonics are the eigenfunctions of L? and L. 6 e ¢
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[

The only solutions that satisfy the proper boundary conditions in ¢ are those
for which m; is an integer,

my = 0,41, 42, ...
The only solutions finite everywhere (for all the ¢’s) are those where,
(=0,1,2..., £>|my

When we solve the radial equation for R(r) the only solutions finite everywhere
(0 < r < 00) are those for which

o 1 e? 2m2 1 .
"9 4meg K2 n? ’

The restrictions for my, and ¢ can be written as,

! <n

n=1,23,..

me=0,+1,42 .40 e (=0,1,2,..n—1.
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Rutherford

Bibliography

0 The most important fact about these results is that the energy of the atom is

quantized. This originates from physical requirements on the wave function.

The second fact is that the expression for the energy is exactly the one found
in the Bohr atom. The energy depends on the integer n, the principal
quantum number.

As for each value of n there are several values of ¢ and my, it is possible for
the electron to have different characteristics and have the same energy
(degenerate states).

n—1 +/ n—1
Degree of degenerescency = Z Z 1= Z(% +1)=n?.
(=0 my=—" (=0

The physical observable that distinguishes among these states is the angular
momentum. One can show that the square of the angular momentum, L?,
L*=L.+L,+L., [L°L.]=0,

[L* H|=0, [L.,H]=0

and L,, commute simultaneously with the Hamiltonian

Therefore the eigenfunctions 1),,¢,,,, should be simultaneous eigenfunctions of
H,L? and L,.
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To solve the contradictions in the observed spectra for hydrogen atom in a
magnetic field, the so-called Zeeman effect, G. Uhlenbeck and S. Goudsmit
proposed that the electron had an intrinsic angular momentum called spin, S.

This word in QM just means this property, the electron is not really spinning.

More precisely, in Quantum Mechanics, S is an hermitian operator that obeys
the angular momentum algebra,

S,,8,] =ihS,, [Sy,S.] =ihSs, [S.,S,] = ihS,

The eigenvalues are

N

52 =§.8=s(s+1)h? com s =
S, mgh

N

; ms = =

That is, it takes half-integers values.
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Principles of MQ

Schrodinger Eq.

Hydrogen Atom

® Results
e Meaning

e Angular
Momentum

® Theorems

Clebsch-Gordon
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Bibliography

0 Associated to the spin S there exists a magnetic moment [is given by,

0 Sometimes we write in an equivalent form

fis = —|—|g S 5 g=2
2m
where g is the so-called gyro-magnetic ratio. The value g = 2 for the electron

was determined experimentally to explain the spectra of the atoms.

0 At the level of the Schrodinger equation the spin is an additional quantum
number and the factor g experimentally determined. The spin only appears
naturally in the context of the relativistic equation of Dirac, that predicts the
value g = 2 for the electron.

0 The state of the electron is then speC|f|ed by the quantum numbers n, {,my e
ms (has s = 1/2 always). Note that [L,S] =0 as L and S act on different

spaces. This explains why it is possible to have simultaneous eigenfunctions of
L and S.

Jorge C. Romao

FP-2015 — 12



TECNICO
LISBOA

Addition of Angular Momentum

Summary

Principles of MQ

Schrodinger Eq.
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We saw that the state of the electron can be described by two angular
momenta, L (orbital angular momentum) and S (spin).

In many applications it is important to define the so-called total angular
momentum,

J=L+8.

J is an angular momentum has it obeys the usual algebra
Sz, Jy] =ik,  |Jy,J.]| =ihdy  [Js, Ju] = ihd,,

What are the possible values for J? It is outside this introduction to explain all
the details.

The results are however simple and are important in the applications. We will
present them in the form of theorems without demonstration.
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Theorem 1

Let J be an operator with the angular momentum algebra. Then the
eigenvalues of J2 = J - J and J, are

J2 =i+ 1Dr% J.=m;h

where j is an integer or half-integer and m,; takes the (2 j + 1) values
mj=—3,—J+1.,0-17.

Particular cases for this theorem are the cases where J = L where 1 =/L=

integer and J = S where j = s = = = half-integer.

2
Theorem 2

Let J = J;, + Jo be the angular momenta corresponding to the sum of two
angular momenta with values j; e j5. Then the value j that corresponds to J
can take the values

71— 72| <7< j1+7J2 .
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Summary

Principles of MQ

Schrodinger Eq.

Hydrogen Atom

® Results
e Meaning
® The Spin

e Angular
Momentum

Clebsch-Gordon

Fermi GR

Rutherford

Bibliography

0 Theorem 3

Let J = fl + fg Then the number of possible values for m,; obeys the relation

J1+72

Y Ri+)=02a+1) 245m+1).

|71 —J2|

0 Example: Table for the possible values of j and m; for an electron (s = 1/2)
with orbital angular momentum ¢ = 0,1 and 2.

3

J j

1 11

2 272

1 11

2 212

3 3 113

2 2" 2 2'2
3 3 113

2 2" 2 2'2
] 5 3 _11 35
2 2" 2 22 2'2
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W TLFSCEIa\IolgO The Clebsch-Gordon coefficients

iu_mn_qalry o 0 A state |J, M) where J = J, + Jy can be expressed in terms of the eigenstates
rinciples o = N
S of J; and J3, denoted by |j1,m1) and [j2, m2), respectively.

Hydrogen Atom

Clebsch-Gordon

0 This relation is normally written in the form,

e CG Table

e Example

Fermi GR mi1=j1 Mm2=Jj2

Rutherford |J M E E \]1,m1> X \]2,m2> <]1]2,m1m2\J M>
Bibliography ml—_jl mQ——jQ

where m1 + mg = M and (j1j2, mima|J M) are the Clebsh-Gordon
coefficients.

0 Their value can be obtained from the rules of the angular momentum operator,
but normally we use tables to read the coefficients.

0 Normally to obtain the coefficients one has to take the square root, with the
convention that the minus sign is outside the square root. We will give one
example.
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Use of the Table of Clebsch-Gordon Coefficients
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Fermi GR

Rutherford
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43. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,

ANDdFUNCTIONS
e _ I
Note: A square-root spn is to be understood over every coefficient, e.q., for =8/15 read —q..-"'-E,-"IE Motation: MM
1/2x1/2] 1 \/ M g
#4111 0 Y9 =/ = cosd 5/¢
IrUE 121 11 g 0 1 -E-H-. ‘l F{E f_El-'rf_ L T I 4 m4 CﬂEﬁClE‘I‘IIS
142 122 02 [+2 v172] T2 +3/2
-1/2 +1/2[1/2-142 Vo= oy f g sinde® 2172|175 4/5| 5:2 3z
-142-142 1 +1+172 | A5 -15+1/2 <172
o 73 4 1 +1=-142| 25 /5] 52 372
“ —) —— — . —
12172 [ 32 Yﬂ' _I/Jh: (2 ¢ 2) 0+1/2| 35 -2/5)-1/2-1/2
# +32] 32 142 i5 O=T£2 %5 25 :1-’3 32
IESrE +1/2 +1/2 }r:l L sinfcond i ? 1+1/2| &5 -3/5]|-3/2 -3/2
1 -1/2| 1/3 273] 372 1/2 E’” 3/2%1/2 g =— -1 -V/21 45 /5| S/
04172} 243 -1/3)-1/2 - 172 1 fiE _ utilke 2 _2 =1/2] 1/5 —4r5)-5/2
i }-"'3 Y P e Ejﬂﬂgc.ﬂ'l-'ﬁ' +372 <1420 11 +1 +1 _F 12 i
o-1/2| 273 173 32] "2 = 3\ a; __ 2|
141721 w3 =zal-3r2 +352 -172 1004 354 2 1
EII 3 1172 1 s $172 4172 [3r4 174 1) i
3] 3 2 I_' el 3/2=1 F;’E T Av2-12hie el 2o
|'2'|‘1 1 '.;‘_' 1'2 |-|EI.-"E+| -! 1_3'_;2 +3J.|E -'||"'E'||'-E 1:".2—1{'.2-5 —I
A ¢ L TR 3 2 1 2303 O 245 asgl 52 BLE 152 -1FZ =172 379 144) £
P +TREE <143 1 +1 172 41 375 S2Ele 152 172 4102 -7 4142 143742
v =111 173 345 V3211710 265 /2 as2-172]
T =1 2 = +1 0|85 1/e-3/101 3 2 1 +142 0 35 A5 =13 542 32 142
—4+4 2 | fonjes-w2 140) 0 0 O ~1/2+41 310815  18]-1/2 -1/2 122
UG 1 R S -1[1/5 142 3/10 121|310 BAS 1/6]
21 l.'.l;l.-’E 142 2 1 o O 0355 0 —-2/5 3 P 1 -1/2 O 35 1415 -1/3] 52 372
O+1 12042 © o o -1+ 1S =02 200 -1 -1 -1 352 +1 110 =245 12372 -3/2
+1-11148 12 1/3 0 =T 245012 1.0 -1/2-1] 35 2f5] 52
o olz3 o-13 2 1 1 0815 =1/6=3/10] 3 2 3/2 0 &/5 ~3/5)-5/2
-1 +1 116 -12 131 -1 -1 ~F &1 W15 =043 35 -2 ¥ l 3T =1 1
0-11142 121 2 -1 -'-|2-"3 173) 3
¥ = (=)™ -1 _0f/2-142)-2 . 2 0[1/3-2/3-3 { ey mg | f e JM)
=101 s =" 2-1] 1 i sy
di‘uz \/if+1}?‘*’ imé | = (=1 1T o5y mam | jad1 JM)
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W {15804 | Use of the Table of Clebsch-Gordon Coefficients: Case 1 x 1/2

Summary

Principles of MQ 1 X 1/2 — 3/2 —I— 1/2

Schrodinger Eq.

Hydrogen Atom

Clebsch-Gordon

ST J =3/2
Fermi GR é )
utherion 3/2,3/2) J =1/2
Bibliography ( \
13/2,1/2) 11/2,1/2) Orthogonal
13/2,—1/2) 11/2,—1/2)  Orthogonal
N J
\|3/27 _3/2>)
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W 115804 | Use of the Table of Clebsch-Gordon Coefficients: Case 1 x 1/2

Summery 0 Wehave (2x1+1)x2=(2x3/24+1)+(2x1/2+4+ 1) =6 states.
Principles of MQ
Schrodinger Eq. [] We get
Hydrogen Atom
Clebsch-Gordon
3/2,3/2) =[1,1)|1/2,1/2)
Fermi GR ( )
Cthertord 13/2,1/2) =+/1/311,1)[1/2,—-1/2) ++/2/3|1,0) [1/2,1/2)
Bibliography
g 11/2,1/2) =+/2/3|1,1) [1/2,—1/2) — /1/3|1,0) [1/2,1/2)
13/2,-1/2) =+/2/3|1,0) |1/2, —1/2) + v/1/3 |1, 1) [1/2,1/2))
1/2,—1/2) =+/1/3(1,0)|1/2,—1/2) — \/2/3 |1, —1)|1/2,1/2)
3/27 _3/2> — |17 _1> |1/27 _1/2>
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0 In Particle Physics we are normally interested in decay rates and scattering

S cross sections. In NRQM we calculate the transition rates using the Fermi's
Principles of MQ golden rule. We will sketch below its derivation.

Schrodinger Eq.

Hydrogen Atom 0 Let |¢r) be normalized solutions of the SE for the unperturbed Hamiltonian
Clebsch-Gordon HO '

Rutherford HO ‘¢k> — Ek ‘¢k> 9 <¢j|¢k> — Jk

Bibliography

0  Now consider the time dependent perturbation H'(Z,t) that can induce
transitions. The SE becomes

o,
i ) = [Ho + H'][¢)
0 |¢) can be expressed in the complete set of unperturbed states

V(&) = Y exlt) [pr) e 7B
k
Substltutlng we have,

de _z i
th[ " 10w) €7 HE — F Bl gu) e” ] = leo o) + e on)) AP
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Sl 0 This gives a differential equation for the coefficients ¢y

Principles of MQ

Schradinger Eq. ; )

3G I00) ¢ HEH = 5 e ) e E

Clebsch-Gordon k

Fermi GR

Rutherford 0 Consider that at t = 0 the initial state is |[i) = |¢;) and that ¢, (0) = ;5. If the
Sy perturbation is constant for t > 0 and is small enough that ¢;(t) ~ 1 and

cki(t) = 0, we obtain to first approximation,
dey, — L Byt / — LBt
th pr) e B IR = H |¢) e 7P

0 The differential equation for the coefficient of the transition from an initial
state |7) to a final state |f) = |¢¢), is obtained using the orthogonality of the
states |¢x). We multiply on the left by (¢¢] to get,

d ' i
L= (i) e P
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Summary
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0 We define the transition matrix element (dimensions of energy)

Ty = (F1Hi) = [ da6i(@)H's,(@
1%
At time t =T the amplitude for transitions to state |f) is,

T | - T |
Cf(T)Z_%/O dtTfie%(Ef_Ei)t:_%Tfi/o dtet (Er—Ei)t

where the last step holds for time-independent perturbing Hamiltonian H’.

The probability for the transition to the state |f) is,

/2 pT/2 . . )
Py —Cf( Jer(T) |Tf7, 2/ / dtdt’ en (Er—E:)tor (By—Ei)t
e J_r2J_T/2
1 sin?x
_ 2 2
_|sz| T PR
_ (Efy—E)T
where ¢ = 57
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0 In the figure we show the plot of sin® x/22, with z = (E; — E;)T/(2h)

Summary
Principles of MQ sinz(x)/ x2

1.0
Schrodinger Eq.
Hydrogen Atom 0.8
Clebsch-Gordon I

0.91
Fermi GR

0.4
Rutherford
Bibliography 0bL

L — AJ [ lAA sl I X
- 40 -20 20 40

0 It is peaked at £y = Ej;, that is, energy is conserved within the limits of the
energy-time uncertainty relation

AFEAt ~ h

0 This means that we can take one of the integrals as a delta function

T/2

lim dt'er (Br =Bt — 2rhé(Ey — E;)
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0 Therefore the transition rate (probability per unit time) will be

Pf 1 T/2 .
dlp = lim —= |T % lim —/ dteﬁ(Ef_Ei)t(S(Ef — E;)
T—oo T T—oo | T —T/2

0 If there are dn accessible final states in the range £y — £y + dE+ then the
total transition rate is

1 T2
/ dtex Fr=Et§(E, — ;)

T¢;]*—= lim dFE
/ f dE T— 00 —T/2 f
L
T )(Er— FE;) li — dt| dE
/|f| g — Ei) lim T/—T/Q f
/|sz| —5 (Ey — Ei)dEf
d n
:?|sz‘|2 ﬁ [ Density of States: p(F;) = d‘%f 5 ]
E;

0 Fermi Golden Rule: [I'y; = 2%|Tfi\2p(Ez')
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Classical derivation:
Kepler Problem

o - aw%u.lc de d-d;usia
!) - }\&ﬂi [\NuLt'ﬁ-fr ;) L{wx\,ml.g
o - ﬁQM'A%iq. C. lel-‘»ﬂq. ipmeal

Mech pica efldmnica (\uobl Kijlen )

€ =
-
L =

oYe
ede

Q1Q2 0
b= 47T€02E0 ot 2

tnu&. dedes QMQQAI':EGS
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Sl 0 The number of particles in the area between b and b+ db is
Principles of MQ
Schrodinger Eq. dN — 27-‘- bdb nbeam
Hydrogen Atom
E'ebs_d;'s”d“ where npeam is the number of particles/unit area/unit time in the beam.
Rutherford D Therefore
Bibliography

d_N—Qﬂbn = 27 @1G cotgn

b beam Areg2E, 2 e

0 Now
dN  dN db
d9  db db

_dN @Q1Q2 1 1
- db 47T€02E0 2 Sin2 g

(2 ) et

ny
47’(’60 2E0 Sin3 g cam
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Rutherford Scattering: Classical derivation
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0 In terms of the solid angle 2,

: df .0 0
dS) = 27 sin 6d0, i 47 sin 5 Co8 5
0 We get
dN dN db
dQ  df dQ
(L @@\ 1
47T€0 QE() 4 Sin4 g beam

(1 @@ ° 1 .
47T€0 4E() Sin4g beam

0 Finally the differential cross section is

1
4

Rutherford cross section

do Z—?{ :< 1 Q1Q2>2
si

d—ﬂ - Nbeam 47‘(’60 4Eo g

n
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Rutherford Scattering: Non-Relativistic QM
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0 To derive the Rutherford cross section in non-relativistic QM we start by an
intermediate result for the Fermi Golden Rule,

9
dF::%ﬁTﬁPdAgauy-Eg

0 The cross section for scattering by a potential is obtained dividing by the
incident flux j7;, and number of particles in the target, NV,

dl’ dl’ 1 27
do= — =—=_""|T,I?dN;6(E; — E;
JilNe 7 ]z‘h|f| FO(E;s )

where the last step is just for one particle in the target N; = 1.

0 We are going to use plane waves for the incident and outgoing particles. As it
is well known this brings a normalization problem. The solution is to normalize
in a box of volume V. Then we write

1

$i(T) =

0 We are going to show that the factors of V' cancel out in the cross section and
in the end we can take the limit V' — oo
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S— 0 We start by evaluating dN¢. The normalization of one particle in a box of
Principles of MQ volume V = L3, implies that the wave function should satisfy periodic
Schradinger Eq. boundary conditions, that is

Hydrogen Atom

Clebsch-Gordon ¢(aj —|— L, y’ Z) — ¢(aj7 y’ Z), etc

Fermi GR

Kiiicifod 0 This in turn implies that, for example,

Bibliography

e%pwx — e%pw (x‘i‘L)

leading to the quantization of the momenta

2mh
(pxapyapz> — (NxaNya Nz)T

where N, N,,, N, are integers.

0 Each state in momentum space occupies a volume

9 3
A3p = Ap, Ap, Ap, = (%h) —

(27h)3
Vv
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[]

Then the number of states with magnitude of momentum in the interval p and
p + dp, is obtained dividing the element of volume d®p in momentum space by
the volume occupied by one state

d>p v d>p :Vde2dp

N = — =
d A3p (27h)3 (27h)3

where in the last expression we used spherical coordinates in momentum space.

The next step is the incident flux. With the normalization we use, the density
of the initial particles is n; = 1/V/, and therefore the flux is

. V; 1 V
i — Vi = 7 = =
/ Voo g v

where v; is the velocity of the initial particle.

Finally, assuming scattering by a time independent potential H' = U (%)

1 =1
Ty = /V > 105 (Z)U(Z) i () = - / PrU(X)er?™ = Vﬁi@

where T¢;(q) is the Fourier transform of the potential, and ¢ = p; — pr
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0 Putting everything together we get

Summary

Principles of MQ

» 27V 1 dQp dp ¢
Schrddinger Eq. &y ' 2 f B .
Hydrogen Atom da o h U'i V2 |7}z(®| V (27-(-7':1/)3 5(Ef EZ)
Clebsch-Gordon
EuER 0 As promised the volume V' disappears and we can drop it from now on, and

Rutherford

take V' — o0 in the integrals. The differential cross section is obtained by
integrating in the final momentum using the delta function. From p? = 2mE
we obtain pdp = mdE and,

Bibliography

do 1
A~ 4r20,h3 /p?fdpf‘S(Ef — ElT5(@)
1
:m/pfdef d(Ey _Ez>|Tf1(®|2

1

:mpfmmi@P

do P?v
d) 472 v;vy ht

|7sz(67)|2 Valid for any potential in NRQM
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We are now in position to evaluate the Rutherford cross section in NRQM.
The potential energy is

Q1Q2

Admeg | X

U(Z) =

where () is the electric charge of the particle in the beam and ()5 that of the
fixed target.

The evaluation of the Fourier transform of the Coulomb potential is left as
exercise. We get

QlQQ/ , enTT  (Q1Q, ATh?
7ild) 41eq v |7 den |2

We get then for the QM Rutherford differential cross section

do P Q1Q2\° (47h?)? _ (@@ ? 4m?
dQ  Am2vvp Y\ dmeg 4d1eg g4

Ul

where we have used p; = py = mv; = muy
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0 To compare with the classical result, we write this in terms of the transfered

[

9
2

(d_a) :( 1 Q1Q2)2 1 :<Q1Q2)24m2
df Ruth 47‘(‘60 4E0 Sin4g 47’(‘60 |ﬂ4
We obtain therefore the important result that the Rutherford cross section has

exactly the same expression in non-relativistic QM as in classical physics.
Notice that the h disappears.

momentum § = p; — Py with |]> = 8mEj sin”
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