Teoria de Campo - Problem Series 1

Curso de Engenharia Física Tecnológica - 2015/2016
 Due on the 8/4/2016
 Version of $15 / 02 / 2016$

1.1 Suppose that for a particle at rest the polarization vector is

$$
s^{\mu}=(0, \vec{\eta}) \quad \text { com } \quad \vec{\eta} \cdot \vec{\eta}=1
$$

a) Show that in the reference frame where the particle moves with velocity $\vec{\beta}$ the polarization vector is given by

$$
s^{\mu}=\left(\gamma \vec{\eta} \cdot \vec{\beta}, \vec{\eta}+\frac{\gamma^{2} \vec{\beta}(\vec{\eta} \cdot \vec{\beta})}{\gamma+1}\right)
$$

b) Show that it satisfies $s^{2}=-1$ and $s \cdot p=0$ with $p=m(\gamma, \gamma \vec{\beta})$.
c) Show that the longitudinal polarization vector, that is, $\vec{s}_{L} \| \vec{\beta}$, is given by,

$$
\begin{equation*}
s_{L}^{\mu}=(\gamma \beta, \gamma \vec{\beta} / \beta) \tag{1}
\end{equation*}
$$

d) Show that

$$
s^{\mu}=\frac{1}{2 m} \bar{u}(p, \lambda) \gamma^{\mu} \gamma_{5} u(p, \lambda)
$$

where $u(p, \lambda)$ is a spinor with mass m and polarization λ, is a good polarization vector, that is, $s^{2}=-1$ and $s \cdot p=0$.
Hint: For the difficult part $\left(s^{2}=-1\right)$ consider the helicity basis, that is, take the helicity spinor $u(p, h)$ with helicity h moving in an arbitrary direction as we have seen in class.
1.2 For the scattering $1+2 \rightarrow 3+4$ we can define in center of mass frame (CM),

$$
P_{\mathrm{CM}}=(\sqrt{s}, \overrightarrow{0})=p_{1}+p_{2}=p_{3}+p_{4}
$$

where \sqrt{s} is the total energy in the CM. Show that,

$$
\begin{aligned}
p_{1 \mathrm{CM}}^{0}=\frac{s+m_{1}^{2}-m_{2}^{2}}{2 \sqrt{s}}, & p_{2 \mathrm{CM}}^{0}=\frac{s+m_{2}^{2}-m_{1}^{2}}{2 \sqrt{s}} \\
p_{3 \mathrm{CM}}^{0}=\frac{s+m_{3}^{2}-m_{4}^{2}}{2 \sqrt{s}}, & p_{4 \mathrm{CM}}^{0}=\frac{s+m_{4}^{2}-m_{3}^{2}}{2 \sqrt{s}} \\
\left|\vec{p}_{1}\right|_{\mathrm{CM}}=\frac{\lambda\left(\sqrt{s}, m_{1}, m_{2}\right)}{2 \sqrt{s}}, & \left|\vec{p}_{3}\right|_{\mathrm{CM}}=\frac{\lambda\left(\sqrt{s}, m_{3}, m_{4}\right)}{2 \sqrt{s}}
\end{aligned}
$$

where

$$
\lambda(x, y, z)=\sqrt{\left(x^{2}-y^{2}-z^{2}\right)^{2}-4 y^{2} z^{2}}
$$

Note: This a very important problem as we will be using these results quite often.
1.3 Consider the scattering $1+2 \rightarrow 3+4$ in center of mass frame (CM). Do not neglect the mass but consider $m_{1}=m_{2}, m_{3}=m_{4}$. Consider the quantity

$$
P(h, s)=\frac{1+h \gamma_{5} \phi}{2}
$$

where $h= \pm, s=(\gamma \beta, \gamma \vec{\beta} / \beta)$ for a particle with velocity $\vec{\beta}$ (see Eq. (1))
a) Show that it satisfies the requirements to be a projector, that is,

$$
P(+, s)+P(-, s)=1, P(+, s) P(-, s)=0, P(\pm, s) P(\pm, s)=P(\pm, s)
$$

b) Use the helicity spinors for particle $1(\theta=0, \phi=0)$ and particle $3(\theta, \phi=0)$, to show explicitly that the quantity

$$
P\left(h_{i}, s_{i}\right)=\frac{1+h_{i} \gamma_{5} \phi_{i}}{2}
$$

where $s_{i}=\left(\gamma_{i} \beta_{i}, \gamma_{i} \vec{\beta}_{i} / \beta_{i}\right)$ and $i=1,3$ for particle 1 and 3 , respectively, is a projector for the helicity of those particles, that is,

$$
\begin{aligned}
& P\left(+, s_{1}\right) u_{\uparrow}\left(p_{1}\right)=u_{\uparrow}\left(p_{1}\right), P\left(-, s_{1}\right) u_{\uparrow}\left(p_{1}\right)=0 \\
& P\left(+, s_{1}\right) u_{\downarrow}\left(p_{1}\right)=0, P\left(-, s_{1}\right) u_{\downarrow}\left(p_{1}\right)=u_{\downarrow}\left(p_{1}\right)
\end{aligned}
$$

and similarly for particle 3 .
1.4 Fill in the entries of the multiplication table for the γ matrices as indicated in Table 1. This is a very useful table in actual calculations. To establish the Table we should note that any product of matrices γ can be written in terms of the 16 independent matrices we discussed in class. Also note that our conventions imply:

$$
\begin{aligned}
& \varepsilon^{0123}=+1, \\
& \gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=-i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}, \\
& \varepsilon_{\alpha \beta \gamma \delta_{1}} \varepsilon^{\alpha \beta \gamma \delta_{2}}=-6 g_{\delta_{1}}^{\delta_{2}} .
\end{aligned}
$$

$$
\varepsilon_{\alpha \beta_{1} \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta_{2} \gamma_{2} \delta_{2}}=-\sum_{P}(-1)^{P} g_{\beta_{1}}^{P\left[\beta_{2}\right.} g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\left.\delta_{2}\right]}
$$

$$
\varepsilon_{\alpha \beta \gamma_{1} \delta_{1}} \varepsilon^{\alpha \beta \gamma_{2} \delta_{2}}=-2\left(g_{\gamma_{1}}^{\gamma_{2}} g_{\delta_{1}}^{\delta_{2}}-g_{\gamma_{1}}^{\delta_{2}} g_{\delta_{1} \gamma_{2}}^{\gamma_{2}}\right.
$$

	1	γ_{5}	γ^{μ}	$\gamma_{5} \gamma^{\mu}$	$\sigma^{\mu \nu}$
1	1				
γ_{5}					
γ^{α}					
$\gamma_{5} \gamma^{\alpha}$					
$\sigma^{\alpha \beta}$					

Table 1: Multiplication table for γ matrices.
1.5 Starting from the definition

$$
S_{f i}=\lim _{t \rightarrow \varepsilon_{f} \infty} \int d^{3} x \psi_{f}^{\dagger}(x) \Psi_{i}(x)
$$

obtain the central result of Chapter 2, Eq. (2.50),

$$
\begin{equation*}
S_{f i}=\delta_{f i}-i e Q_{e} \varepsilon_{f} \int d^{4} y \bar{\psi}_{f}(y) \not A^{A}(y) \Psi_{i}(y) . \tag{2}
\end{equation*}
$$

where $e>0$ e $Q_{e}=-1$. This proof has some subtleties, therefore we go step by step.
a) First show that (Eq. (2.40))

$$
S_{F}\left(x^{\prime}-x\right)=\theta\left(t^{\prime}-t\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)-\theta\left(t-t^{\prime}\right) \int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}\left(x^{\prime}\right) \bar{\psi}_{p}^{r}(x)
$$

where

$$
\psi_{p}^{r}(x)=\frac{1}{\sqrt{2 E}} w^{r}(\vec{p}) e^{-i \varepsilon_{r} p \cdot x}
$$

b) Now derive Eqs. (2.47) and (2.48),

$$
\begin{aligned}
\lim _{t \rightarrow+\infty} \Psi(x)-\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=1}^{2} \psi_{p}^{r}(x)\left[-i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) A(y) \Psi(y)\right] \\
\lim _{t \rightarrow-\infty} \Psi(x)-\psi(x) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r=3}^{4} \psi_{p}^{r}(x)\left[+i e Q_{e} \int d^{4} y \bar{\psi}_{p}^{r}(y) \mathcal{A}(y) \Psi(y)\right]
\end{aligned}
$$

c) Finally use these results to show Eq. (2).

