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1.1 Suppose that for a particle at rest the polarization vector is

sµ = (0, ~η) com ~η · ~η = 1

a) Show that in the reference frame where the particle moves with velocity ~β the
polarization vector is given by

sµ =

(

γ~η · ~β, ~η + γ2~β (~η · ~β)
γ + 1

)

b) Show that it satisfies s2 = −1 and s · p = 0 with p = m(γ, γ~β).

c) Show that the longitudinal polarization vector, that is, ~sL ‖ ~β, is given by,

sµL =
(

γβ, γ~β/β
)

(1)

d) Show that

sµ =
1

2m
u(p, λ)γµγ5u(p, λ)

where u(p, λ) is a spinor with mass m and polarization λ, is a good polarization
vector, that is, s2 = −1 and s · p = 0.

Hint: For the difficult part (s2 = −1) consider the helicity basis, that is, take the
helicity spinor u(p, h) with helicity h moving in an arbitrary direction as we have
seen in class.

1.2 For the scattering 1 + 2 → 3 + 4 we can define in center of mass frame (CM),

PCM = (
√
s,~0) = p1 + p2 = p3 + p4

where
√
s is the total energy in the CM. Show that,

p01CM =
s+m2

1 −m2
2

2
√
s

, p02CM =
s +m2

2 −m2
1

2
√
s

p03CM =
s+m2

3 −m2
4

2
√
s

, p04CM =
s +m2

4 −m2
3

2
√
s

|~p1|CM =
λ(
√
s,m1, m2)

2
√
s

, |~p3|CM =
λ(
√
s,m3, m4)

2
√
s

where
λ(x, y, z) =

√

(x2 − y2 − z2)2 − 4y2z2

Note: This a very important problem as we will be using these results quite often.
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1.3 Consider the scattering 1 + 2 → 3 + 4 in center of mass frame (CM). Do not neglect
the mass but consider m1 = m2, m3 = m4. Consider the quantity

P (h, s) =
1 + hγ5s/

2

where h = ±, s = (γβ, γ~β/β) for a particle with velocity ~β (see Eq. (1))

a) Show that it satisfies the requirements to be a projector, that is,

P (+, s) + P (−, s) = 1, P (+, s)P (−, s) = 0, P (±, s)P (±, s) = P (±, s)

b) Use the helicity spinors for particle 1 (θ = 0, φ = 0) and particle 3 (θ, φ = 0), to
show explicitly that the quantity

P (hi, si) =
1 + hiγ5s/i

2

where si = (γiβi, γi~βi/βi) and i = 1, 3 for particle 1 and 3, respectively, is a projector
for the helicity of those particles, that is,

P (+, s1)u↑(p1) = u↑(p1), P (−, s1)u↑(p1) = 0

P (+, s1)u↓(p1) = 0, P (−, s1)u↓(p1) = u↓(p1)

and similarly for particle 3.

1.4 Fill in the entries of the multiplication table for the γ matrices as indicated in Table
1. This is a very useful table in actual calculations. To establish the Table we should note
that any product of matrices γ can be written in terms of the 16 independent matrices
we discussed in class. Also note that our conventions imply:

ε0123 = +1 , εαβ1γ1δ1ε
αβ2γ2δ2 = −

∑

P

(−1)P g
P [β2

β1
gγ2γ1g

δ2]
δ1

γ5 = iγ0γ1γ2γ3 = −iγ0γ1γ2γ3 , εαβγ1δ1ε
αβγ2δ2 = −2

(

gγ2γ1g
δ2
δ1
− gδ2γ1g

γ2
δ1

)

εαβγδ1ε
αβγδ2 = −6gδ2δ1 .

1 γ5 γµ γ5γ
µ σµν

1 1

γ5

γα

γ5γ
α

σαβ

Table 1: Multiplication table for γ matrices.
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1.5 Starting from the definition

Sfi = lim
t→εf∞

∫

d3x ψ†
f (x)Ψi(x)

obtain the central result of Chapter 2, Eq. (2.50),

Sfi = δfi − ieQeεf

∫

d4y ψf(y)A/(y)Ψi(y) . (2)

where e > 0 e Qe = −1. This proof has some subtleties, therefore we go step by step.

a) First show that (Eq. (2.40))

SF (x
′ − x) = θ(t′ − t)

∫

d3p

(2π)3

2
∑

r=1

ψr
p(x

′)ψ
r

p(x)− θ(t− t′)

∫

d3p

(2π)3

4
∑

r=3

ψr
p(x

′)ψ
r

p(x)

where

ψr
p(x) =

1√
2E

wr(~p) e−iεrp·x

b) Now derive Eqs. (2.47) and (2.48),

lim
t→+∞

Ψ(x)− ψ(x) =

∫

d3p

(2π)3

2
∑

r=1

ψr
p(x)

[

−ieQe

∫

d4y ψ
r

p(y)A/(y)Ψ(y)

]

lim
t→−∞

Ψ(x)− ψ(x) =

∫

d3p

(2π)3

4
∑

r=3

ψr
p(x)

[

+ieQe

∫

d4y ψ
r

p(y)A/(y)Ψ(y)

]

c) Finally use these results to show Eq. (2).
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