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PART II

QUANTIZATION AND RENORMALIZATION OF GAUGE THEORIES

I1.Path integral quantization

1§ e i) Tonwse

One feels as Cavalieri must have fele calculating the
volume of a pyrantid before the invention of the calculus.

R.P. Feynman

In this section we develop the quantization procedure based on the notjon of path integration,
The first hint of this procedure appeared in a paper by Dirac in 1933; the method was perfected
by Feynman in 1948, We shall first consider a quantum mechanical system with one degree of
freedom, and generalize to quantum field theory in the next section.

Let Ig, £),, be-the Heisenberg picture state vector describing a state which at time ¢ is an eigen-
state of the coordinate @, with eigenvalue ¢:

Q,q Dy =qlq, Py

; .. QH(,) — ei.H[QSe-i.H!’ (l l.l)

he, i) where Qg is the time-independent position operator in the Schroedinger picture, and # in the ex-
ponent is thie Hamiltanian. The state

~

lgy =e g, 1y,

is an eigenstate of Qs with eigenvalue ¢:
Qs lg) =qlq)

and

lq, ), =e*# gy, (11.2)

The transformation matrix element

Hq' 19, 1= 4q', ['lg, Py ={q'lexp{~iH(r — D)} ig (11.3)

plays a fundamental role in quantum mechanics. We are going

to express F(g', t'; g, 1) as a path
integral. We shall subdivide the time intervel into i + 1 equal s

egments, and define

L=lety, F=(+e+t. (11.4)

We make use of the complcteness of the state vectors lg;. t) to write

g, t,q.0)= fd([l(h)qug(tz)f...fd(]"(l'n)(([', Clgy 8, Xq, tha, 1, . Aqy lg, ). (11.5)

Here and in the following, we
that in the Heisenberg

shall drop the subscript-H and understand the state lg, 1) to mean
picture. For sufficiently large n, the time interval fy — f, , can be made as

.
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small as one likes, and we may write
(q',elg, O =(g'le~ief|q) = 8(q — ¢*) —ie{q'I1Hlg) + O(e?) (11.6)
where the first equality follows from (11.3).
The Hamiltonian H = H(P, Q) is a function of the operators P and Q. Consider the casc when
His of the form
H=1P+ V(Q). (11.7)
In this case
ion, , dp : ., dp L, ,
ed  (QHE D@ =f$ expliplg’ — @)} (3p* + V(g)] =f'2?"'xp{np(q — @) Hi(p, ;{4+g)(11.8)
f
where H(p, q) is the classical Hamiltonian. We can write eq. (11.6) correct up to first order in €. as
en- dp
qn tlg,_ 1 4 ::fiw expli{p(q, — q,_ ) — ¢ Hip, _;(q,‘ +q,_ N ) (11.9)
Substituting (11.9) into (11.5), we obtain for the amplitude to find ¢’ at time ¢' from a state which
. was an eigenstate of the coordinate with eigenvalue g at an earlier time ¢,
1) .
. n n+ 1 dpl nti : .
ex- F(q, t;q )= uli_r.nm [T dg, ['1 -E exp [i > [pj(qf- q’._l) - H(p’., 2(q1_.+qj D) (tl.---tl. DI11.10)
iz 1 i=1 i=1

withgo=gandg,,, =¢q".
We shall streamline our notation a little bit. We write (11.10) as

dqd i £
Flg. t3q.0= f[ ;ﬁ?] exp [;—lf (pd — H(p, q))dr} (11.11)

which is a suggestive shorthand notation for the operation implied by the right-hand side of eq.
{11.10). In eq. (11.11)

L dqdp] _ rry de(r)dp(r)
f[2ﬂf1] fﬂ i (11.12)

1.3) We have restored briefly i = 1 to indicate that the functional integration is over all phase space
' volume f(Ag Ap/h) for all times between ¢ and ¢

th When the Hamiltonian has the form of eq. (11.7), the p-integration on the right-hand-side of
€q. {11.10) can be performed explicitly by making use of the formula
1.4 e
/ :);exp{i(pc} ~1p2W=[2nie] V2 exp( ied?). (11.13)

1.5) The result is

s
2 a5
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Flg'. ', q. 1) = lim fﬁ [—?;{:]—l exp {i E)’ {g(‘i‘k)z V(QL+ q;’n)]]_
i=1 b=

" o= i=1 € 2
dg A
= f[.[_?ﬂf].“_z]_exp [lf L{g, q)df] (11.14)
= [3

where L is the Lagrangian,

L=34*- V(@ (11.15)
and g, =¢®)and ¢,,, =q'(,, ).

The quantity

S= {L(g. ¢)at (11.16)

1s the action which gencrates the temporal development of the quantum mechanical system de-
scribed by the Lagrangian (11.15).

We derived eq. (11.14) from the usual formalism of quantum mechanics. Alternatively, one
can start from eq. (11.14) and derive the Schroedinger equation. All this and many other related
matters were discussed in Feynman’s original paper. In a few simple cases, the functional integra-
tions in eq. (11.14) can be carried out explicitly.

When the Hamiltonia is not in the form of eq. (11.7), we must be careful about specifying
the ordering of the operators P and Q. We shall assume that there is a way of ordering the opera-
tors in the quantum mechanical Hamiltonian H(P, Q) so that the transformation matrix ~
F(q', t'; q. t) is correctly given by eq. (11.10) for this Hamiltonian, with the understanding that
whenever there is an ambiguity, the integrals over p; are to be performed before the g-integrations
When the Hamiltonian is not of the form of eq. (11.7), we must use eq. (11.10) to find the “‘ef-
fective action”, S, ¢4, i.¢., the quantity which, after the pivintegrations are performed, replaces the
action in eq. (11.14). In general, §,;, is not given by (11.16).

As an illustration of this prescription, we apply it to the non-linear Lagrangian

L=14g) (11.17)

where f(g) is a non-singular function of ¢. Eq. (11.17) describes a particular class of systems with
velocity-dependent potentials. The momentum p canonically conjugate to g is

P =0L/3g = qflg)
and the Hamiltonian is
Hp. ¢Y=pg — L=3p*AP]".
Now. from eq. (11.10), the transformation matrix element is

hn

N " "y, , _ q4itq; .\
Fg' 5.0 = [ 11 44, T] 5 8ai-0)8(q, - )exp[l Z)[P,-(fl.- @iy Ep?[f(" 2'—)] ]
il ira < isy

(11.18)
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The p-integrations can be performed as before, and we obtain

» ] ' - dqi ’
Fq'. t;q0= .-]1 (2ric] v 21=4)8(a,~q")

172
L Pl R : qitq; i gt
<o S50 ) A
i=2 € = i=2 2
The last factor can be written as
1/2

]‘T [f(q_f;f__l_)] = exXp [%- !E lnf(q'.-'-zqi ])]

"

o

1 q;*rq; .
=expl— 2o elogf( e ) ~ exp} 8(0) [ df In flg)
2e
where we have used the limits

1
,Ee—> fat, < 8, = 8¢, — 1)),

Finally, therefore, we can write eq. (11.16) as

-

n dq'
F 'r '; 3 = ]. 3 - - !
ML nT’J,-U. (2ie) a0~ 03@, =4
L& G—qi\ (974, i gty
xew[i 3 e [f(*2) (155 - L (1 ))]

dg )
- f[[2wie']"ﬂ’_{] exp(iSere)
where

Sere = Jat1LGg. D)-i/25(0) In fig)} = [dr L 14(q, @).

This result was first obtained by Lee and Yang.
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{11.19)

(11.20)

(11.21)

{11.22

(11.23)

Il So¢ is used to calculate transformation function F(q', t'; q, t) or the scattering matrix for a
particle with this Lagrangian L, an infinite term will appear to cancel the explicit term we have
symbolically written 8(0). To do the calculation, one may go back to the explicit form in (11.22

before the limit n - o is taken, do the g, integrations, then take the limit 1 » oo,

The advantage, or even the rationale, of lollowing the prescription which led to eq. (I11.23) is

that the result written in the form

FoTsqn = f[ L4 =L expista. )

V2mie
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is manifestly invariant under point transformations of the coordinate. In general, writing the trans-
Jormation function as a path-integral enables us to express quantum-mechanical quantities in
terms of the classical Lagrangian, so that we can study the effects on quantum-mechanical quanti-
ties of various syimmetries present in the classical Lagrangian.

We develop a few properties of path integrals which will be useful in a generalization of the
method to quantum field theory.

First of all, the generalization of eq. (11.11) to systems with more than one degree of freedom
is straightforward. If there are N degrees of freedom, eq. (11.11) becomes

¥ rdq,dp, I
G Qo Gy UG g2y o )= f [ [— '21775_] exp {Tl_f [ 2o Pudn — Hp, q,-)] df} (11.2
n=1 r n= |

with q,(1) =q,, ¢,(") = q,,.

For the rest of this scction we restrict ourselves to N = 1; we shall use eq. (11.24) in the develop-
ment of ficld theory.

Next, instead of the simple transformation function (¢’, #'lg, 1), let us consider the matrix ele-
ment of the co-ordinate operator Q evaluated at time 7, . between (g’, 'l and lg, 1. We restrict ty
to lie in the interval

P>t >t
Now let us write (¢". t'1Q(t0)1q. 1) as in eq. (11.5), selecting ¢, to be one of the I, say 17, Thus

(q". '1QUt)lq, B =fﬂ dglq’, t'lg,. XG0 )G, b))
i

Giger Tige 1 g Lg% 110006 g5, _y, tig—1?-4qu filg, B,

Ineq. (11.24), we have placed the operator Q(¢,) next to one of its eigenstates, so
@ige 13, 1Q(0) G, 10 1, ) Decomes q, $q; . 4, 1q; . t;,—12- The argument leading to eq. (11.10)
can now proceed; nothing is changed except that an extra factor of q;, will appear under the inte-
gral on the right-hand side. Instead of eq. (11.11) we now obtain

dgd
(g, '1Qte)lg. r>=f[—§ 2

w

- r‘
Jq(to)exp [lf pg — Hp, ¢))dr} . (11.25)

Next, suppose we want to express
(q". £10()Q(t)1q, 1)

as a path integral. We proceed as above, choosing ¢, and ¢, to be two of the times which bound
the small intervals into which the interval t' — ¢ is broken. If 7, > 1,, we can write

@ QU0 1 = [1dqlq’. £'1a,, t,Xq,, 1,1q, 4ty o

g, 1, IQ(l‘l)lqil =0 0, s (qiz, t, IQ(rz)lql.z_l, Ly Aq, Hilg, 6. (11.26)
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After going through a series ol steps analogous to those which led to eq. (11.25), we obtain

1qd ‘!
. 110G)QENg, t}=f[‘q____ff}q(t,)q(tz)cxplif [pg — H(p, ¢)ldr} . (11.27)

27 /

Fq.(11.27) holds only if £, > ¢,. If £, > #,, we could not have derived eqs. (11.26) and (11.27)
1he way we did. In fact, it is easy to see that if £, > ¢,, the right-hand side of eq. (11.27) is equal
10

(@' £'1Q(22)Q(t g, 1.
Therefore the path integral in eq. (11.27) is the matrix element of the time-ordered product

TIQ(e )O(e2)].

The result generalizes immediately to the product of any number of Q’s

dpdg

' ITIQUNQE)... Qe g, 1) = | [ o

.
] q(t)qity)...q(ty )exp [lf ipg — H}d'r] .{11.28)

Next we want to demonstrate a crucial theorem. Let L be a Lagrangian which does not depend
explicitly on time, and let ¢,(g) = (¢!n} be the wave function of the energy eigenstate |n). In
varticular, let ¢o{y) be the ground state. If the system is in the ground state at a time T in the dis-
uant past, we want to calculate the amplitude for it to be in that state at a time 7 in the distant
future, when an arbitrary external source term J(#)¢(¢) is added to L between T and 7.

To do this, consider

.

dpd r
@, T'0, T>’=f[ ’;—;] exp {lf [pg — H(p. q) + Jqldr (11.29)

T

where J is an arbitrary function of 7, except that we restrict it to be non-vanishing only between
tand ', where T' > ¢' > t > T. We can write eq. (11.29) as

(@, T1Q. TV = [dq' [dq @, T'\¢', £Xq', £'1g, 1Y'<q, 110, T. (11.30)

Now (g, r1Q, T) and (@', T'lg’, ') are given by formulae like (11.29) without the J(r)g(7) term.
Let us insert a complete set of energy eigenstates in (g, 11Q, T):

{q. 11Q, Ty =«(glexp{—iH( — T} Q= 2 d),,(q)qb:f(Q)exp{—iE"(t - N}. ' (11.31)

The T-dependence in (11.31) is known explicitly because we have required J(r) = 0 between T
and ¢. Therefore, we can continue T along the positive imaginary axis. In that limit, all the terms
with n > 0 drop out, as T — iee, and

lim exp(—iE,T)q, tQ, TY = ¢olq, NP3 (D),

T jeo

dolg, 1) = dolglexp(—ifyD). (11.32)

S ks
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We can do the same analysis for (Q'T" l¢"t">. Theretore, provided Q and Q' approach some con-
stants in the limit, we have

) Q. TQ, TY _
lim ——eee T e = 4y [dg’ o LEXY Elg, Y el 1) (11.33
o SR ISEAT - Toles@iu(0)” ] 0S4 98 X g, gty )

T~ =

which is the theorem we set out to prove, The right-hand side of (11.33) is just the ground state
to ground state amplitude of interest, since ¢’ and —f can be taken as large as one pleases. Let us
denote it, symbolically, as W([J]. Then eq. (11.33) tells us how to calculate W[J].

Why is W[J] of interest? In (11.33), (¢, # lg, 1Y is given by a form like eq. (11.29), with r and
t' replacing T and 7. The effect of varying IV with respect to J(#,) is to bring down a factor ip(2,)
in front of the exponential. Let us do this s times, and then st J = Q,

. 5" IS . s e, dpdg N
I AR —————— == = n 6:‘ , o{q, — — :
J-"-T:) 6.]([])6‘](2‘2)...5J(In) ! ququ ¢ (ff 4 )¢ (q t)f[ 27 ]exp { l'tf [pq f{(p q)] ar

X q(t)q(t,)...q(t,), P>ty bty t, >t (11.34)

Comparing with eq. (11.28), we see that this expression is just the matrix element of the time or-
dered product T(Q(1)Q(12)...0(2,,)) between the ground state at f and the ground state at ¢,
Therefore the expression (11.34) is the ground state expectation value of a time-ordered product
of co-ordinates. In field theory, these will become the Green'’s Munctions.

We shall indicate how W[J] can be evaluated from eq. (11.33). To within a multiplicative fac-
tor independent of J

WIJ1 ~lim Q. T1Q. 1Y
T'=—iw

T joo

or

r
W[/} ~ lim f{dq] exp { if dt [L (g, ) +H()q(D] | . (11.35)
T' = —joo )
T— jo d
In field theoretic applications, the multiplicative factors independent of J never matters, and we
are allowed to be cavalier about it.

Lok R e i L e o o, A b i Nt g R i e e Bt [
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cyan 'i From eq. (11.34) and the remark following it, we have
S (TR )...0U DN ~ l}.m . qu....dq,,(Q, Tlg.. 10g:8qu t11qs t)¢5..q,4q,, 1,1Q, T,
e T i

..'t where 7, > t,...> 1, and ()9 denotes the ground state expectation value. Let us consicder con-

tinuing (Q())...00,)» in 1; analytically, from real to imaginary values t; = —ir,. Since

dg; 5 Gtq, ., -4,
Ve P EL*“‘('_ o _)

2 €

{g. tlg', t"y= lim fl"l
i

Fre o0
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depends on t — ¢ only through e:

e=(t—)n+1),

2 the analytic continuation is effected by writing
it 4i—4in,
& g, ) = lim P e (__ s *)
: {q. tg e ,,]-m fﬂ r €Xp [ V- r]CXI) [Z; € Lo 5 T
t'= — 7'
nd where
'u' ,
e~=(r—7)n+1).
. Thus the analytic continuation of (T€Q(¢,)...Q(t,)) may be written as
d
_ (T(Q1).-. QU Mo by, = _ir, hm f[dq]q(f.)q(fz) -q(7,)exp { f L,,”(q. ld_q)] .
I4] r:—t_m
o This suggests going over to an imaginary time, or Euclidean, formulation and defining
i ¢ w0 dq
, W1 = f[dq] exp {_J‘ dr [Lef,. (q, i¥)+J(T)q(r)}] : (11.36)
The boundary condition to be imposed on (11.36) is that ¢ approaches some constants as 7 - &ee.
It is convenient, but not necessary, to take these constants to be zero. The connection between
W[J} and W [/] is that
1 8nI1J] 1 "Wy [J]
L il o = (iyr ——— {(11.37)
W] 8J(y)...8J(t ) ;.4 WelJ] BJ(T,) ST, ) . )
| 2 0,7= ity
5)

where analytic continuation is implied on the right-hand side. Equation (11.37) is manifestly in-
dependent of the overall normalizations of W[J] and We[/] which are independent of J.

Finally, in order to illustrate the formal discussion, and especially the Euclidean formulation,
we discuss a simple example. Consider a simple harmonic oscillator in one dimension, whose
Lagrangian is

L

L(g. @) =3(¢* ~ wq). ' (11.38)
The transformation matrix in the presence of external source J can be computed from eq.
{11.29):
n dg(s))

', t'lg, t¥ = lim =
,,_mf. , V2mie

with the boundary condition ¢(t') = ¢', () = ¢. The integral can be worked out explicitly. The
calculation is posed as a problem, with enough hints, in Feynman and Hibbs, “Quantum Mechanics

exp {if dr[L{g(r). ¢(7)) + J(1)g(7)] (11.39)

T R Fe e T r"p'-"‘,..—;’_..."“.-"." -
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and Path Integrals”, p. 64. The answer is

(q'. Ulg. 1Y = [w/2misinw T expliQ(g’. ', g, 1)} (11.40)
where

T=¢0 -1t
and

' ' = - Q‘-J.__ 2 2 o ’
Qq.r.q.0 2sian[(q +q?)cosw T —2qq’]

L}

t '
PEEE J() sin o — Ddr +—T— [ J(r)sin w(t’ - r)dr
smf...v’i‘"r smth
1 t g
oo sin c'o_'T_t do rfJ'(cr)J(‘r) sin w(t’ = 7)sin wla — $)dr. (11.41)

We leave the derivation of eq. (11.41) as an exercise.
The quantity W([J] defined in the remark following (11.33) is

WIJ] =¢0,7'10, 1Y = qu' P& (g, r‘)f dq ¢olq. t)q', t'Iq, tY (11.42)

where “0” in (11.42) means the ground state, not the state with eigenvalue 0 for the coordinate;
¢, is the ground state wave function of the simple harmonic oscillator:

Po(q, 7) = (w/m)"* exp(—1 wgHexp(—i 1 w7) : (11.43)

so that the integrals over ¢ and ¢’ are just Gaussian integrals. The result is
¢t G i
(0, £'10, 1Y =exp [ifdof dvJ(o) [___ exp{—iwfo - r)}]J(r)] . *(11.44)
r i 2w

We will make the result more general by extending the limits on the integrals from —eo to oo,
Thus, if we are interested in the effect on the oscillator of the force term for just the period ¢ to
t', we may restrict J(7) to vanish outside of this interval. Finally, we shall write eq. (11.44) as
[see, R.P. Feynman, Phys. Rev. 80 (1950} 440}

-i = =
W[/ =cxp[ 5 _mf dr_;f do J(1) D, (r o}l(o)} (11.45)
where
D,(1)= -—;1—— [0()e~ 197 + (—p)eiwr], (11.46)
2iw
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Notice that

t—t) ==~ L S MU - eibs In W[J) (11.47)
DLe=13= 0 sanysnery| ., srnsiey ™ . '
In the Euctidean formulation (11.36), we have
Weld1 = [[dq) exp (=S, 1]} (11.48)
where
Sl = [ drLg(a),
Lg = 3(dq/dr)* + }w?q? - J(r)g(7). C(11.49)

We expand q(r) around g(7,), writing g(7) = qo(7) + 3(7), and then expand S in powers of y,

o= 5[.5(] GLE kel d E (.02
Sp(@) =Sglgo) + [ [aaéur?q—y} dr + f[g(?};) +-2—y2]d'r. (11.50)
-— q:qo — oo

We wish to choose go(7) so that the term in (11.50) linear in y vanishes. If the boundary condition

. is taken to be g{r = £=) = 0, we require qo(7 = ) = 0 also. Then the surface terms vanish when

the term (8L ,/8¢)(dy/dr) is integrated by parts, and we require that g4(r) satisfy the classical
equations of motion:

d 0Ly 6L }
— e — — =0. 11.51
dr 54(r) _ q() o

q=q0a(1)

[If ¢ is allowed tc approach non-zero constants g, in the limits 7 - s, we may require go~+ 0
and y -+ g, . Then there will be surface terms equal to Go(£)q, in (11.50). However, from the
general solution below it is evident that go(xee) = 0 if go(+ee) vanishes.]

Now we insert eq. (11.50) into eq. (11.48) and perform the integral over paths. The term
lincar in y has disappeared, so we write

L4

W] ~ exp{—Sp(qa)} [ T] dy(«r,.)exp[ - f [£i+wzy2] } o
i 2 2

-

The integration over ¥(r;) is just a number, independent of J, so we are left with
Wi lJ] ~ exp{-Sg(qo)}. (11.52)
Let us evaluate ¢o(/). From eq. (11.51)

d?
[d_ﬁ' w’] qo(T) = ~J(7). (11.53)

T L:- 1
ik B
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Define a Euclidean Green's function Dg(7) by

12
[;2 : of] D(1)= 8() (11.54)

with the boundary condition lim__,.. D;(7) = 0. The solution is

= dv oo T c—wlft

D . = e = p— l 15
e(7) L7 2 v+ W? 2w ) 2
and therefore
qo(r) = = [ Dylr — 0)J(0) do. e,

[With other boundary conditions, the most general solution is (11.56) plus the general solution
to the homogeneous equation, namely, Ae—«? + Bewt_If g, approaches a constant at both +e
and ~=, A =8 =0, and it follows from (11.56) that ¢a(t=) = 0 also.]

Now in the definition (11.49) of S, we substitute w?qy(7) from eq. (11.53), integrate by parts,
to obtain, using eq. (11.56)

- o 3

S:(q0) = — 5 fJ(r)qo(T)d'r=;— f dr fdoJ(f)DE(T—o)J(o) (11.57)

— oo

so that, from (11.52)

W] ~ exp |—% fdrdoJ(f)DE(r—o)J(a)] _ (11.58)
or
1 =Wl
Der—7)= WelJl 8J(8HT)| ;o

We can get the propagator D, (¢#) by analytic continuation in 7, by rotating counter-clockwise
from real 7 to imaginary 7:

D,(5) =i Dg(in) (11.59)

which yields eq. (11.46) immediately.

Note that the functional integral in (11.36) is a well behaved Gaussian (or more precisely,
Wiener-Hopf) integral. Qur notation may be simplified by writing the real time, ground-state to
ground-state amplitude (11.49) as

- 2
WIJ] ~ f[dq(:‘)] exp[ i f ['; (dgf[)) —- 5(w? — ie)g® +J(t)q(f)dl‘]} : (11.60)

—
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Then we can repeat the imaginary time analysis using (11.60) directly, to obtain eqs. (11.45) and
{11 .46) the ie in (11.60) serving to select the correct boundary condition on the propagator:

24 ~ dr exp( ivt)_

J mt-witie

D)=
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12. Path integral formulation of field theory

Physics — Where the Action Is.

Anonymous
599
We have remarked that the generalization of the considerations in section 11 to many degrees

of freedom is immediate. The transformation function is given by (1 1.24), which is a shorthand
for

] N " n+1 dpa(t'.)
lim H n dq():(ti) l—I I )

n=s o . .
a=1 j=1 i=1

50}

N
E pu([f)[qa(tj) = qa(!j_,)] —eH (I)(rj)’ )

« =1 -

q(t,.)_+q_(t,-;))]] (12.1)
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Eq. (12.1) can be applied to field theory. Consider a neutral scalar field ¢(x). Let us subdivide
space into cubes of dimension € and label them by an integer a. We define the ath coordinate
q,(1) = ¢, 1) by

|
¢, (1) = 'e"; f dPxg(x, 1),
Vg

where the integration is over the ath cell of dimension €®. We can also rewrite the Lagrangian as

L=[dx2> T e L2,(de(1), (D). 6.2 (1))

where éa(t) is the average of 9¢(x, £)/dr over the ath cell and ¢, ; is the average value of the field
in the neighboring cell @ * 5. The canonical momenta p, conjugate to ¢ are

, 9L, \
1)y=— —_— - = t).
Pl = s 0 s € el
The Hamiltonian is

H=2p,$, — L= 2 e,
& &

gca = ﬂaéa - ’th = gta(ﬂ-m ¢a! ¢'a :.s)'

We may now write the expression(12.1) as

n n+ e?
lim P do (¢} [T —dm ()
[ 11 fLeaoTl 5,0

D)0, 015 ) O ()18 Bos I 400, (1;_ )
€ ~#a (W )JI

n+1
X exp [i ,E;. € %} €3 [ﬂa(r}.) W) 3 , 5
= J‘[d(p][;—:rdﬁ’] exp[ij dffd3,v [ﬁ(x, T) ? o (x, T):” (12.2)

where we defined the momentum density conjugate to ¢(x, ¢) by
w(x, t) =0 L2fad(x, ¢).

1ts cell average is just the 7,(¢) defined above.

In field theory, all physical quantities are derivable from the vacuum-to-vacaum transition am-
plitude in the presence of external sources. The physical vacuum is the ground state, and plays
the same role as the state whose wavefunction is ¢o(g) in eq. (11.33).

This amplitude, which we shall call W{J1, can be calculated from eq. (12.2) with a term
TdPxJ(x, HP(x, 1) added to the Lagrangian, in the limit £ — e, t > —oo_ That is
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3 on
i/l = f [d¢>][—j-r—dn} exp[i f d* {m(x)p(x) -gf(x)+§ie*;+1(.\-)¢(x)}] . (12.3)

Theextra term %ie ¢? is simply a symbolic way of indicating how to rotate the time-integration
cortlour to pick out the correct limit as indicated on the left-hand side of eq. (11.33). More on
thislater.

Now it follows from eq. (11.34) and the discussion following it that

SnWIJ]
8/(x1)8J(x3)..80(x ) ;g

= PHUT(G(x1)g(xa)... (v, D = "Glxy...x,) (12.4)

where G is the n-point Green’s function, the vacuum expectation value of the time-ordered pro-
duct of n fields. The fact that the Green’s functions may be defined by (12.4) was first dis-
covered by Schwinger, and does not depend on the path-integral formula (12.3) for W[J]. How-
ever, eq. (12.3) provides not only a simple proof of (12.4), but an explicit formula for com-
puting W[J].

Eq. (12.4) gives the complete Green’s functions. In general, these include some contributions
from disconnected vacuum to vacuum diagram, which are simply products of lower order Green’s
functions. : '

The connected graphs are given by

( i)n - 6}1”}'[‘[]

. N —— — 2
Gl X X)) = ] 57120 8T00) et
or, writing
W] = exp{iZ[/] }, (12.6)
G (1) = (==t — Pl (12.7)

8J(x,)...8J(x,)’

The proof that the connected parts of the n-point function is given by eq. (12.7) is left as an
exercise.
When the Hamiltonian density takes the form

A(x) = Fr20x) + fl¢(x), Vo(x)]. (12.8)
The 7-integrations can be carried out explicitly, and we obtain
WU ~ [ [dg)expli [120x) + Jx)p(x)]d*x } ' (12.9)

where £(x) is the Lagrangian density
2(x) =$(3.9)* — flo(x), vo].

When we discuss vector meson theories, the form (12.9) will be inadequate and we shall have

.!o tse the original form (12.3). As an example, however, let us first consider a case where (12.9)
s applicable.
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Let us concentrate, for definiteness, the case in which the Lagrangian is of the form

L=0 +p, L, =3 [(3,6) — p¢?] (12.10)
and
L= L£(9).

The functional W[J] of eq. (12.9) is in general an ill-defined infegral even in the “Jattice” approxi-
mation. Recent advances in axiomatic field theory indicate that if one can construct a well-be-
haved field theory in the Euclidean space (., t), obeying certain appropriate axioms, then there

is a corresponding field theory in the Minkowski space {x,, x) as the analytic continuation of the
former as 7 = ix , which obeys the Wightman axioms. Thus any ambiguities should be resolved

by appealing to the Euclidicity Postulate, namely that the Green’s functions (12.5) are the ana-

lytic continuation of thosc defined by the well-defined functional integral in the Euclidean field
theory:

WelJl = f[dq&]exp{ [xdr [(%) + (V) + u? — £,(p) — J¢]] :

Note that since — £ is bounded from below the quantity in the square bracket in the exponent
above is also bounded from below. As we anticipate, the Euclidicity postulate determincs the

boundary conditions to be imposed on propagators. For the present problem it means that we
may provide a damping factor for the functional integration by adding a term in {25

LB > 3 [(0,)* — p*¢* + ieg?)

as we did in eq. (12.3).
First, consider the free field case:

Wol71 = [1dplexp{i [d'x[4(30)* 11297 + Lieg? + Jg]}
= |lim f[;l dqbaexp[i {%} (o ?54%¢aKaﬂ¢ﬁ+ aEe“Ja% ]] . (12.11)

e—=+0
Here, a labels space-time cells of dimension €, and the matrix K,p is such that

lim K ;= (=0% — p? +ie)6%x — »)

e~ 0

where « » x and 8~ y as € > 0. The ¢-integrations in eq. (}2.11) can be performed explicitly.
We obtain

I vl

27 : 1
W, IJT = lim ———— V;exa —din 2 et et — (K™Y J
o1 e~0 /detk U R [ : ? ; ﬂ'e‘“‘( as /s
where, of course, K™! is the inverse of K:

? Kar (K71 5= 80
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or,
4 ..1....K"l = ']—8 " -
2J€ Koy 8 v8 "~ galap (12.12)
¥
As e~ 0, we have
! 4 4 4
,ez.ﬁa'ﬁeﬁ(x—y), O,EG »fdx,
s0, with the definition
L (K0~ Aplx — )
&b af F Y

eq. (12.12) may be written, in the continuum limit € - 0, as

(-0 — p?+ie)Ap(x — p) = 8%x — p). (12.13)
Therefore, neglecting an inessential multiplicative factor, we can write

W [J] =exp(—} 1)fd“~cfd J)ACx — YW() (12.14)
where

d*k exp{ rk(xuy)}
a7 T Mt e (12.1%)

Aplx —p) =

is the Feynman propagator.
Now we are ready to discuss the interacting case. Returning to cqs. (12.10) and (12.11), we
write

W[J] ~ f[dqb]exp{ifd“x[.eo +.2,(0) +J¢1}

= exp[ifd“xﬂ (im)]f[dqbluxpﬁfd"r[_e +Jo1}

~ exp [ifd"xﬂl (1 5J(x )):, exp(— 1)fd4xfd“1 JOOA(x — pY(v). (12.16)

Equation (12.16) is the basis for the Feynman- -Dyson expansion of the Green’s functions of this
theory, and when it is substituted in eq. (12.4), we obtain a formula which generates Green’s
functions, W{J] can be expanded in powers of 2, for example, by simply expanding the ex-
ponential factor

oolfesali ) 5 limali

n=0

What corresponds to Wick’s theorem is simply the rule for functional differentiation:

o -_- :%.&FMW ‘:g—.'r *".-' ._Tc‘-{___‘__%,._ ”7-?,- 1_-_-. H"M\-—wf ;— r-mqq-ﬂj‘ 1._.-...7-.?..;:__14_..,_.,-.,-... - __.;_:.__ T I

"'":--"I'.
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|
|
|

V= 5%y v
BJ(.\‘)JU }=6%x — y).
The student should convince himself the rules outlined here are in fact the Feynman rules dis-
cussed in the second volume of Bjorken and Drell. In fact, collateral reading of the first six sectiop
of Chapter 17 of this book is urged. i
In order to quantize fermion fields by the method of path integrations, it is necessary to in-
troduce the concept of anticommuting c-numbers. We shall forgo this though, because the incor-
poration of fermion fields presents no special problem in quantizing a gauge theory.
In general, £, is a function of ¢ as well as ¢, and eq. (12.4) is inadequate. Just as in the one- 1
dimensional example discussed in the preceding lecture, we shall see, the action of eq. (12.16)
must then be replaced by an “effective action”, which contains a correction to the integral over

the Lagrangian. In that case, the correct Feynman rules are modified, and cannot be directly
read off the Lagrangian.
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13. The Yang-Mills field in the Coulomb gauge

We wish to apply these path-integral methods to theories with gauge vector mesons. Indeed, it
is in this case that the method becomes a powerful tool both to discover the correct Feynman
rules and to study renormalization, while the canonical Wick theorem methods become awkward. \

We shall study the three-component Yang-Mills ficld, although the generalization to other com-
pact non-Abelian groups is immediate. In this section, we work out the canonical formalism in
the Coulomb gauge, and construct the ¥[J) function, starting from the basic equation (12.3). In
later sections we shalt study gauge-invariance and work out the Feynman rules in a more mani-
festly covariant gauge.

It is convenient to write out the Yang-Mills Lagrangian in the first-order formulation, in which «
A, and F_ are treated as independent co-ordinates: /

1

£ =3F,, P AF,, - (3¥AY - 3%AK + gAk X AY), (3.0

(Bold-face symbols, dots and crosses all refer to isovectors and operations among them; we write !
out the space-time vector indices cxplicitly.) ]
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The Lagrangian (13.1) is invariant under infinitesimal gauge transformations

A ()~ AL Ful) X AL () ——éa#u(x)

dis-
L Section
. F'w—> Fw+ux Fw,. {(13.2)
. he Euler-Lagrange equations
incor- The Euler-Lagrange eq s
5.0 8.2,
AP L A S
16)  OF%, 8(3, 4% 842
over cive
ly =
F,= 3,A,~3,A, +tgA X A, (13.3)
and :
" F,,+gA*X F,,=0. (13.4)
Equations (13.3) and (13.4) fogether are equivalent to the Euler-Lagrange cquations of the
;;hcd) second-order formulation, in which £, is written in terms of A* and 34" only.

In classical field theory, one is given an initial configuration of fields in a space-like hyperplane
and then one tries to determine the fields at later times. Equations (13.3) and (13.4) can be
separated into two classes: those which specify the temporal evolutions of the fields are called

+ equations of motion; the others are constraint equations. From (13.3) and (13.4), the equations
: of ol motion for A; and F, are

8, A; = Foi +(V; +gA; XA, (13.5)
3,Fo; = (9; +gA; X)F;, — gA X F . (13.6)
i
Next, let us determine the independent variables. Since
52/5(3,A,) = —F°« (13.7)
ed
an F,, = —F° are the momenta canonically conjugate to A,. Since £is independent of 3, A°, A°
-ward. does not have a conjugate momentum, and must be treated as a dependent variable.
r com- * The constraint equations are
in _
3). In Fii = 0A; — QA T 2A, X A (13.8)
ni- which defines F; in terms of A; at equal times, and
vhich (Ve t8A, X)F,, =0 (139
which tells us that not all the conjugate momenta F, are independent (eq. (13.9) is analogous
13.1) to V-E = 0 in ordinary electrodynamics). It follows that not all the A, can be treated as inde-
pendent, and we are forced to impose a gauge condition. We choose the Coulomb gauge:
vrite
VA = 0. (13.10)

This is always possible because of the gauge invariance of the second kind of the Lagrangian.
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Eq. (13.10) means that A must be transverse. Therefore, the longitudinal component F:;,. of
the canonical momentum F_, is not independent, but depends on the other degrees of freedom
through the constraint equation (13.9). FL; and the transverse component FT. can be defined

i’ oi

F,,=Fl +FL, V,F,=V,FL Eiikvj[-';-k - 0. (13.1n

Our task is now to express A and F%, in terms of the independent variables and construct the
Hamiitonian. Let us write

Fi, = -V.f, F;, =E, ViFoi ==V (13.12)

where E; is purely transverse. Therefore E; and the transverse components of A, are the indepen-
dent variables conjugate to onc-another. From the constraint eq. (13.9), we find that

(V2 +gA, X V)M =gA, X E,. (13.13)

Equation (13.13) can be formally solved by introducing a Green's function D, defined as the
solution to

(V287 + g c7b A¢ V) DEUX, ¥; A) = §998,(x — ). (13.14)

Then fis a solution of (13.13)if

4 0 =gfd"‘ny‘é”(f\'. y; A)ebed AL (v, DEL(y, 1). (13.15)
Considering D, to be an integral operator, we may write (13.15) as

f=g®@ A, XE,.

The function D_ has no closed form, but can be expanded in a power series in g The first ap-
proximation is just the Green’s function for the Lagrangian, and

§ab | 1
Dy, y; Ay = ———— +g[dP7 ———— €AY, —— ¢
¢ (s A) 4rlx - y] gf 4mlx — zI KUK daly — 2

N—2Z

(13.16)

in analogy to the method for finding the Green’s function for H,+ H’ where #’ is small and the
Green’s function for /| is known.

We obtain an equation for A, by taking the divergence of eq. (13.5) and using (13.10) and
(13.11).

(VI+g A, X VDA, =V (13.17
which can be solved using @ _, since the operator in brackets is the same as in eq. (13.13):

Asx, = [dEyD(y, y; AV, 1)
or

A, = DV (13.17a)

Now we construct the Hamiltonian density 9 :
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i
A
M1t g{zE_._{__Q (13]8)
foat
X From (13.5), (13.11}, (13.12) and (13.17a) we find that
the ' LA =E -VE+(V,+gA, X)D, V¥
ar
10y =E, — [V, = (V; +gA,; X)D_-V?|f. (13.18a)
Cll Because of (13.14), the operator in brackets operating on fis explicitly transverse. From (13.18a)
and (13.13) or (13.15),
: A,
13) [aoxE, - —= [dx[E} +g(E, X A)- D, - V]
ot
the
| = [@*(E} — £-92] = [&x[E? + (V,0)?]
-14) and
£ =%F”,,-F‘“’ -3 up  (BUAY — 3"A* + gAM X AY)
15, =%(Fok)2 '"_;(B:')z:%(Ek - V.0? “"zl"(B.rc)2 (13.19)
where
L] T
So the Hamiltonian is
H=1 [d{E? + B2 + (v 0)*]. (13.20)
16y The last term is like the familiar instantaneous Coulomb interaction which occurs in electro-
dynamics when quantized in this gauge.
he Now we can write the Coulomb gauge generating functional W1/} in terms of the indepen-
dent co-ordinates and momenta, A; and E;, where T stands for “Transverse”, according to eq.
(12.3):
. - A ) Bty o
' Wl/1 = [IET)[dAT lexp{i [d'x(E, - A, — LE2 — B2 —1(V, -§,}3 - Ay iji (13.21)
A7
where £ is a function of E}" and AiT as expressed in (13.15). [We write the source term with a
negative sign, so that the covariant version below will have +A® - Ju.]
The transverse field E! is difficult to compute with. Therefore we introduce a dummy variable
EL by
¢
J1dET] = [[dET](dE*] [T 5(EY) (13.22
x
i 7a)

S

m-'— T T—— LW T T T I L e e T T

and define three independent components E, by

I !
E,=(5,.,.—Vi-v; v,.)E__;"+v,.—‘—7—2EL (13.23)

-
SRR ]
-"'l:"“j:"._"“ll'_l-_‘_‘j\_f) s T

o e e AT
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in an obvious notation. From (13.23).
EL =V.E,
and thercfore
f1aE) =f[dEz.].9[:[ 8(V,E,)
where @ is the Jacobian of the transformation from the three E, to EI.T, EL, and
[dE;] = I;] ¥ [31 dE(x).
i=la=1

To give 9 a meaning, we should go back to the definition of [dE,] as a limit of an approxima-
tion with a finite number of lattice points. In the limit, § - oo, but in a way independent of the
fields, so it is just a multiplicative factor in W [J]1 which doesn’t matter. The same construction
works for AT. Therefore,

W lJ] = f [dE;1 [dA,] I;I 8(VE)8(V, A expfi f d*¥[E A, ~3E2-1B2_L(V,0)2-A, -], ]}

(13.24)

At this point, we could examine (13.24) and obtain the Feynman rules in the Coulomb gauge.
But they wouldn’t be covariant, and the Lorentz covariance of the S-matrix will not be obvious
throughout the calculation. It isn’t useful to do calculations in the Coulomb gauge; the Coulomb
gauge is the onc in which the forin W[J] is most easily obtained from First principle.

The S-matrix, of course, is covariant and gauge invariant, so it must be possible to find a more
covariant-looking form of W [/] than (13.24). In (13.24), f is a function of E and A given by eq.
(13.15). We introduce £ as a dummy variable by multiplying eq. (3.24) by the constant

Jlde16(E- g @, - A, X E,) (13.25)

where by D_ - we mean the operation in (13.15). Since (13.15) is equivalent to (13.13), we
write (13.25) as

JLdf1det MS((V? +g A, X V)f - g A, X E,) (13.26)

where det A is the Jacobian of the transformation from f to (V* + g A; X V). M_ is a matrix in
X — 1 space as well as isospin space:

MP(x, ) = (V? 898 + g e2bcAS(1)V )%y — y)
= V2892 8,(x — y) + g ea0cG(x. WAV 18(x, — y,) (13.27)
where V?G(x, ¥) = §;(x — »). Now, eq. {13.24) becomes

WelJ] = f[c!A,.l [dE,| (dfldetat, TT 8(V,A) T] 8(VENSIVE+g A, X V,)f
X X

~g A, X Eql expli [{E - A, — (8 + B2 + (v, ()% — J,- A, Jd%1. (13.28)
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Next we change variables from E; to F;, defined by

F,;=E - Vf. (13.29)
Then, in (13.28), we write

[E] (M) [T 8(V.E)SI(V: +g A, X V) - g A, X E,]

= [dFo, 1 1df] [T 8(V,F, + VDS[Vf — g A, X F,,]

= [dF ] [df] [T 8(V,F,, +g A, X F,)6(V*f ~ g A; X F,,). (13.30)
x
oxima- Now we consider the [df) integration, using the last §-function in (13.30). The Facobian is
of tF ‘ just det A% an infinite constant which we drop (or absorb into the definition ofMC). Thus
uctio.q W/l = [[dA,11dF,;] det M, [18(V,A)8(V.F, +gA, X F,)
SR x exp{i [d*x[F,; -3, A, - }F2, - FVA - VA g A X AY —,-ALY. (1331
(13.24 To obtain the exponent in (13.31), we have written in the exponent in (13.28)
' gange. (£} + (VD] 2= (B, — V1) = F2,
wious J
yulor omitting the cross-term which vanishes upen integration over x.
¢ Next we write_the §-function as an integral, using A, as the dummy variable:
a more ' dA,
1 by eq. le 8(V,F,, +gA X F )= [:lf;;—exp{iA,, (VF,, —gA, X F_)}
(13.25) ~ 1A, exp{i [d*xF,,- (s A, x A = VA (13.32)
ve ; Finally, we write the term %(V,.Aj — VA +gA; X A;)? in the exponent in (13.31) as
JWF lexp GIEE, - F, —4F, - (v,A VA ¥ A X A} (13.33)
(13.26)

which is a standard Gaussian integral. Putting (13.33) and (13.32) into (13.31), and restricting J,
trix in . 0 Dbe zero, we obtain

WelJ) = [1dA, 1 1dF,, 1det M, T] §(V,A,)

13.27)

Were it not for the factor det M, (13.34) implies that one could get the Feynman rules directly
from 2. The extra factor is analogous to the correction obtained in section 11 for a velocity-de-
13.28) Pendent potential.

X exp[i SR {—4F F +1F,F, - 1F, (V A~V A kg A X AV (3 A, - v,,A°+ngxA,.)}]
, = [1dA,1[dF,, 1 det a, [T (VA exp{i [dix[£+4-A ]}, (13.34)
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How do we interpret det M. ? From (13.27),
det M =detV? - det [/+ L] (13.35y
where ;
L =gebeGx, p)A{(y) -V, 6(x, — y,), I=058%8%(x — y). (13.36) §
Now det VZ is an infinite constant, and
det(J+ L)=exp Trlog(/ + L)
(_ 1 )n -1 . : .
= expE- fd“.\'. e, Tr L (xy, ) L(xg, x5).. Lix . X)), (1337 ¢
n
The trace inside the integral is over isospin indices only.
We shall encounter Jacobians like det M. in the next few sections. Eq. (13.37) is a general
formula for evaluating them. In our case
] ¥
det(/+1) = expEﬁ(O) [—Eg—fdaxl...d:‘xnfdt TrIEI'-A,.l(x., nv,; lG(x., x;)T-A,.!(xz, I)VHG(.\',, X3,
n
,.T-A,. (x, t)V,. G(x,, xliﬂ] J (13.38)
where (7°), . = €72¢ and Tr means trace over isospin indices. :
Since (13 38) is a power series in the exponent, it is an effective correction in each order to
the Feynman rules obtained from £ alone.
Bibliography
The presentation in this lecture is similar to and inspired by
1. V.N. Popov and L.D. Fadde’ev, Perturbation Theory for Gauge Invariant Fields, Kiev ITP report (unpublished).
See also
2. L.D. Fadde'’ev and V.N. Popov, Phys. Letters 25B (1967) 29,
14. Intuitive approach to the quantization of gauge fields
Equation (13.34) can be further simplified. We can perform the functional integration over
£, and obtain
WlJ| = f[(IA#]dctMC Il 6(V,.A,,(x))exp{ifd4[13(x)+ J,(x)- A*()1} (14.1)
x
where £(x) is the second-order Lagrangian:
L(x)= -;'(a#A,, —9,A, TgA, X A).
Except for the factor det M, TI 5(V;A,(x)), eq. (14.1) is in the standard form for simple field
theories
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wis) ~ f1dlexp{i [d*x[2(x) + J)$(0)] }. (14.2)

The following intuitive argument due to Faddeev and Popov shows very clearly the raison d’etre

" for this extra factor.

The reason eq. (14.2) is not applicable to the gauge theory is that the quadratic part of the
Lagrangian

Lo = —f%(a#Ap — a,,AH)z déx = fd“xd‘y ;_A,u(x) - K#¥(x, y) . Ay(.Y),
K*(x, y} = —(2%"" — 3#23")6%(x — y)

is singular, in the sense that the operator K** which defines the quadratic form is singular and
cannot be inverted. In fact, the operator K*” is essentially a projection operator for the transverse
components of A,,. This means, in particular, that the Euclidean version of the functional integral
of eq. {12.2) [see the discussion following eq. (12.10)] has no Gaussian damping factor with re-
spect to the variation of the longitudinal component of A“, and eq. (14.2} is meaningless at this
elementary level even in the Euclidean formulation. More generally, the action is invariant under

the gauge transformation A, > A% where Af is the result of applying the element g of the gauge
group G to the field Ap :

1
AL -L=Ulg) [An L+ E U"(g)a“U(g)] U '(g). (14.3)

To put it differently, the action is constant on the orbits of the gauge group, which are formed
by all Af for fixed A, and g ranging all over G. Thus, the path integral for the vacuum-to-vacuum
amplitude W[J] diverges even in the Euclidean formulation, since for those variations of A

which are along the orbits, the action does not provide necessary damping. Faddeev and Popov
pointed out that the amplitude W[J = 0] is therefore proportional to the “volume” of orbits

Il dg(x), and this factor should be extracted before defining W(J]. In other words, for the gauge
fields, the path integral is to be performed not over all variations of the gauge fields, but rather
over distinct orbits of A, under the action of the gauge group.

To implement the above idea, we shall choose a “hypersurface” in the manifold of all fields
which intersects each orbit only once. This means that if

f(A)=0, a=1,2,..N (14.4)
is the equation of the hypersurface, N being the dimension of the group, the equation

f,(A%)=0
must have a unique solution g for given A,. We are going to integrate over this hypersurface, in-
siead of integrating over the manifold of all fields. The conditions f2(A,) = 0 define a gauge; the
Coulomb gauge £,(A,) = V,A? is an example.

Before proceeding further, let us pause here to review briefly a few simple facts about group
Tepresentations. Let g, g'€G. Then gg'€G, and

Ue)U(g') = Ulgg".

The invariant Hurwitz measure over the group G is an integration measure on the group space
Wwhich is invariant in the sense that

(14.5)
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If we parametrize U(g) in the neighborhood of the identity as
Ugi=1+iu-L+0@?),
then in the neighborhood of the identity we may always choose

dg = n du,, g~ 1. (14.6) )

Let us define the quantity A [A,] by
4,14, [11 det) | 1 8175001 =1, (14.3)

The “naive” expression for the vacuum-to-vacuum am plitude is
Juaa,) expti fasx 2003 (14.3)

We may insert the left-hand side of eq. (14.7) into the integrand of eq. (14.8) without changing g
anything: :

f[[ dg(.\')[dA#]Af[Au} x[_l 5I_Q(Af‘(x))] exp{ifd“.tB[A“(x)] 1. (149 §

Now, in the integrand of eq. (14.9) we can perform a gauge transformation on A x):
A, () > [A,()]e™ . Under the gauge transformation (14.3) the action and the metric are in-

variant, and one can verify easily from egs. (14.5)and (14.7) that A [A,] is gauge invariant:
87 (A8 = [ 11 dg'o) [T sls,(A% (x))]
= J 1T dee)g'en [T s1/,(AL¥ ()]
= JTHag'oo TT s17,0a8 0o = 872 (4,
or ;
A A = A[A, ] (14.10)
So, eq. (14.9) is equal to
[1dg(x) f1dA,1A,(A,] T 8L7,(A, ) exp{i Jax2[A,001}

and we find that the integrand of the group integration is independent of g(x). This is the obser-
vation of Fadeev and Popov, who saw that ST, dg(x) is simply an infinite factor independent of
ficlds. Therefore, it can be divided out, and W{[J] may be defined as

W01 = [[dA,14,(A,] IT 8L exp{i fa'x (2 () + J4(x) - A, ()] }. (14.11)

It is to the credit of Faddeev and Popov that they also gave the canonical derivation of eq. (13.34)
as discussed in the preceeding section, as well as this elegant argument. Before demonstrating the
connecction between eqs. (14.1) and (14.11) above, we shall compute A Al




(14.6)

(14.7

4.10)
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snce the factor Af[A#] is multipled by I'lx(S[f(Au(x))] in eq. (14.11), it suffices to compute
e former only for A.u which satisfies eq. (14.4). Now define Mf by

L(ASGN) =F(A, () + [ dy ‘bE M, (x, 1))ty (¥} + Ote?). (14.12)
Then from eq. (14.7) we find that
27140 = [ TTTT (du )8 U ASeent 3 = [ TT [T{du, (006,200}

forA, satisfying fa(Ap) = 0, so that
Af[A“] =detM, = exp{Trlan}. (14.13)

The hypersurface equation f, = 0 is just the gauge condition, and for the Coulomb gauge B

- adopted in the preceeding section, we have

A)=VA7=0
and
1
[(A) = v.Af + ;(Vz’d“” = ge"“A;"Vi)ub(x) + O(u?®)

jie]

1 I T
(Mx, 7)) 0y ~ ;w (6"" — gabe EAgv,.) 8%x — y) ~ [M_(x. )], (14.14)

which shows that eq. (14.1) is indeed a special case of eq. (14.11) above for f, = V,A%.
The form of eq. (14.11) suggests using a wide range of gauges order.than the Coulomb gauge.

_ - For the moment, we shall not ask what relations the Green’s functions generated in such a gauge

bear to those defined in the Coulomb gauge, but merely note the explicit formn of Ay when the
manifestly covariant Laudau gauge condition

o Ay(x), =0

is chosen. Equation (14.12) takes the form
1
FAE(x) = A (x) +—[2%u + gd"(A, X )] + O(u?)
4

s0 that Mf is given by
1 3
UJIL(X' y)]ab =_g_(6260b - geabcAf!a#)64(x - y) (]415)
when A is restricted to @A, = 0. Therefore removing the trivial factor (1/g)a?, we have

A =detM; ~exp{Trin(l +L)} (14.16)
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3

where ?;
3

2 -

(x, alLly, b) =geabchF(x z)A¢(z) 5;6“(2 — y)diz. d

_ u 3

More explicitly we can write
A = E(_g)nfd‘* d*x, Tr[a*Dp(x “ AL (x3)a8D L (x 3
L= exp ! — . Xy dix, Trl plxn — x)t L (X2) X2 — x3) :

w Dp(x,, — x,)t-A_A(x,)]} . (1417

Here we have used the conventiona! notation
(=9 +ie)Dp(x — y) = 5%(x — y).

The ie, € > 0, is chosen according to the Euclidicity postulate.

The necessity of having the extra factor Afﬂx B[f(A”(x)] was first noted by Feynman. We can -
write eq. (14.11) as .

W1 = [1dA ) TT SUAA, G explilSee + [d'xI*(x)- A, (01} (14.18);
where
Sue= [dtx2() =i Tr M,

In the case of the Landau gauge, it has been observed that the additional term in the effective ac-
tion —i Tr In M| can be viewed as arising from loops generated by a fictitious isotriplet of complex

scalar fields c obeying Fermi statistics, whose presence and interactions can be described by the
action

S = [dix[#cT(x) - 3,0(x) + g2#ct(x) - A (X)X e(x)] :
~ [dixd®y T ¢t )M, 0, 1)),5c, 0.
a b
That is, eq. (14.18) may be written as

WLl = [1dA, 1 T] 81LAA,GNIf 1det] [de] exp

i[S+8, + [ dix Ju(x) - A#(x)]]_ (14.19)

In fact it is not difficult to show that the ¢- and cf-integrations could be carried out trivially if
they were commuting c-numbers, yielding

JUdeT) el exp(iS,) ~ (det My ) = exp{~Tr In M, },

and

exp{—TrinM } ~ exp[—Tr In(l + L)}
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where the terms in the exponent may be viewed as arising {rom loops of the complex boson fields
. If the ¢ are fermion fields, then the terms TrL" have to be multiplied by an extra sign, so that
wa have

-1 o+l
f[dcf][dc]exp(iSc) ~ exp [+TrL -+ TrL?.. +(—;) Tr L”? ]

=exp{Trin(l + L)} ~ det M, .

The Feynman rules for W, (J] of eq. (14.19) can be worked out in much the same way as we
¢id for a scalar field theory in section 12. The gauge boson propagator is determined from

we ) = f1aa,) «Sla"A,‘(x)lexp[i [ d"X{—%(a“A,, — 3,A )+ I(x) AH(x)}]. (14.20)
i X
A convenient way of computing eq. {14.20) is to write
i . o
lx] 8[3*A, (x)] ~ ﬁ}1_1}10 exp li-;fd“x[a”A“(x)]z] .
[We have discarded an infinite constant IT_+/27«.] Then we have

Ll AR J10A,] exp [i |— Jax A [ PgH” + o4a¥ (1 - ;—)]Ay(x) + fdx () - AL K)

]

= lim exp(:%)fd“xd“y J,0)-DE (x = y;a)] (») (14.71)

«=0

where the vector boson propagator D{” in this gauge is

DHY (y Ca 4k {_k‘ ( . I: +f’.".’ff(1 —o:)] a0
¥ x—yie) 2y SR =) e [
d%k 1 ( k,.ku)
wx — p)=— [——exp{ik- (x — »)} —— —-—— (14.22)
DE(x — ») f(zn)‘* exp{ik- (x — »}} e B T T

and is four-dimensionally transverse. The rest of the Feynman rules can be derived as in the

scalar case. They are recorded in the following fig. 14.1. In addition, the following rules must

kept in mind: the ghost-ghost-vector vertex is “dotted”, the dot indicating which ghost line is
differentiated; a ghost line cannot be dotted at both ends; a ghost loop carries an extra minus sign.
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7, VERTICES BARE VERTICES : r
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f E-;:; Fig. 14.1. Feynman rules in the Yang-Mills theory. Solid lines arc vector mesons. Dashed lines are scalar ghosts.
h

I'5. Equivalence of the Landau and Coulomb gauges

B Formally, the S-matrix computed in the Landau gauge is the same as that computed in the
8 Coulomb gauge. An element of the unrenormalized S-matrix is obtained from the corresponding
Green’s functions by removing single particle propagators corresponding to external lines, taking
the Fourier transform of the resulting “amputated” Green’s function and placing external mo- St
menta on the mass shell. The demonstration we shall present is rigorous except that the S-matrix ™
of a gauge theory is plagued by infrared divergences and may not even be defined. In fact this
may be the reason why massless Yang-Mills particles are not seen in Nature. The point of pre-
senting this demonstration is purely pedagogical: the spirit and the technique we espouse here
will become usefu! when we discuss spontaneously broken versions of gauge theories. T
We shall first establish the connection between WcIJ/1 and W, [/]. Recall that [eq. (14.1)]

Weldl = [1dA, 1A 14,1 T] S(V,A,.(x))eXp[iS[An] +i [dox 3 .A#] (15.0)

where A. = det M and that

A i TTdgo) Tl sa2Agx)) = 1. (15.)

W

Inserting the left-hand side of eq. (15.2) in the integrand of the functional integration in eq. (15.1
. we write
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wels1 =f [TdeCx) [1dA, 1A (A, 1A, A, TT 8(V,A (x))
X [T 8 A5 exp(iSIA,] +i fdux s A }.

We now make a gauge transformation of the integration variables A W A (x) > [4 MeINLd '
Recaliing the gauge invariance of the action S, A, and the metric [dA (x)] we find that

Weld] = [[dAIALTA,1TT 8(a4A,(x)explSIA, 1)
X ﬁc[A”]f 1 detx) ﬂ B(V,.Af")exp{ifd“xjn .Ai"]

=f[dAy]AL[A#} [;] 6(a”Au(x))exp{iS[Au] +ifd“xJ"-Ai°] (15.3)
where Af:" is the gauge transform of A, which satisfies o*A, =0, such that
_ L-VAf =V, {U(go)[L-.Ai +é U"(go)V,.U(go)] U“(go)} =0. (15.4)
In deriving eq. (15.3), we have used the fact that
acla)f [T dg) D BV AF ) = AclA,lf [U [ dua(x)} I;I a(v,.Afo .gI-MC[Aio]u) |

~ AclA 1AL [ASR] = 1.
Now, we must find out Ag° by solving eq. (15.4). It is possible to construct Ag" in a power

series in A ;. We leave it as an exercise to construct first few terms in this expansmn For our pur-
pose it suf fices to note that

1
Afo = (% -Vt v,)a, +0cap).

The source J,, in the Coulomb gauge shall be restricted to
=0, v, =0. (13.26)
Therefore, we may write
Jatxae Ao = fat g - F (x; Ay

where

3 Fx;A)=A L () + O(AD). (15.5)

We can finally write down an equation for We in terms of W, . It is

Wold] = [exp[:fd"x]"(’f) F (‘ l;j )]]W (7]

(15.6)

j=0
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iy |
E‘ It is helpful to visualize eq. (15.3) or eq. (15.6) in terms of Feynman diagrams. These equa-

tions say that Green's functions in the Coulomb gauge are the same as those in the Landau gauge,
when the source is suitably restricted [eq. (13.26)] except that one must take into account extra

gt

e vertices between a source and fields, represented by the term
e dy- JH . I
fatxd (F, —A) sy
: E when one tries to construct Coulomb gauge Green’s functions by the Feynman rules of the Landay
: gauge. This connection becomes much simpler, if we go to the mass shell. In this case, we ought
o to compare only the terms having a poie in each of the external momenta, p;, when p? - 0. Of alj
‘E.- f the diagrams generated by the extra couplings of (15.7), only those in which the whole effect of
‘ the extra vertices can be reduced to a type of self energy insertion to the corresponding external
15 line survive in this limit. The other corrections introduced by (15.7) will not contribute to poles

. of the Green’s functions at p? = 0, and therefore not to the S-matrix. Therefore in the limit
p; = 0, the Coulomb gauge and the Landau gauge (unrenormalized) S-matrix elements will differ

s t by a factor ¢” where # is the number of external lines and ¢ is a factor independent of #n. Com-

: : paring the two-point Green’s functions in the two gauges C and L: 3
;f . , Z,, ] ,

@ E pI;To D,p L)= ;2—_'_—"; (8, +..), Plzl_xllo D, p:C)= St (g, +..)

3 we find i . f

0t=Z./Z,.

o In gencral, unremormalized S-matrix elements in the two gauges C and L are related to each
R order by

Sc = 0"S, = (Z/Z S,

so that the renormalized S-matrix element
- =2 _ a=nf2
Sren = ZC " Sc “ZL"/ SL

is independent of the gauge chosen to compute it.

In sum, what we have shown here is that W /1 is equal to the expression (15.3) which would
be W [J] except that the coefficient of J# is Aﬁ" instead of Au. For the S-matrix, the only con-
sequence of this difference is that the renormalization constants attached to each external line
depend on the gauge.

Thus we have shown that the S-matrix can be calculated from W, [J], not just by the intuitive
argument of section 14, but more formally, by obtaining W.[J] from first principles, and then
demonstrating the equivalence of S and S, . .

As pointed out earlier, the only flaw in the above argument is that the singularity at p? =0 is
not in general a simple role.
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¥
16. Generating functionals for Green’s functions and proper vertices

.

Ta In this section we develop the formalism of generating functionals of connected Green’s func-
tions and of proper vertices. This topic is slightly out of the main line of development of this re-
view. However, many recent papers on spontaneously broken symmetry make use of this elegant

N1 ormalism for a very good reason: this formalism allows the discussion of the conditions for spon-

di | 1aneous breakdown of symmetry which goes beyond the one based on the classical Lagrangian

i, e . . -
and which is valid to all orders in perturbation theory.

it Let us go back to the discussion of section 12 on scalar fields. We-define the generating func-
f tional Z[J] of connected Green’s functions by
b Wil =expliZ01) = [1dg) exp (i [d*x (219001 +3(x) - $(x)]} (16.1)
ere ¢ and J are multicomponent fields and sources, respectively.
T The first derivative of Z[J] with respect to J; is
8Z[J
20N L [1ag16,x)exp i [t £(r) +30x) - 9(0)] } (16.2)

&4, 8J.(x) 7 [.l]
We give it a special name, ¢;(x)>
Z{31/8J(x) = D,(x). (16.3)

¥) is the vacuum expectation value of_cp,.(x) in the presence of J(x); i.e., it is the classical field.
i\ The value of eq. (16.2) when the external source is turned off (J(x) = 0) is the vacuum expec- =
tation value of the field ¢:

8ZIT)[8J(x) |50 = ;- (16.4)

Note that v is independent of space-time, since in the limit J = 0, the left-hand side of (16.4} is
transiationally invariant. _
[t turns out that higher derivatives of Z{J] at J = O are Green's functions of the field p = ¢ — v
rose vacuum expectation value vanishes. For example

LRVARR!
8,008, sm0 d - d*x2
59,00 2o wm]f (46 (90 — v], 160 — ], exp(i [ d*x.2)
¢ E 16.5
W[O] 1fd xL(x)} . ( )
as can be verified by differentiating eq. (16.2) with respect to J; and letting J -+ 0. More generaily
i we have
57Z(J] NP
= H— T N b O ¢ 16'6
5.],-1 (xl)...ajl-n(xn) reo (l) ( (¢l1(xl) ¢IM(Y”))) ( )

@Where the superscript ¢ denotes the connected part of the Green’s function) as can be shown by
‘uction,

e S e AP = A
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We shall now define the Legendre transform I'[®] of Z{J]. It is defined as
rje]=2(1] - fd4xJ(,v)‘¢(.r), 8Z[31/8], =, (l6.7i

The meaning of eq. (16.7) is this: I" is a functional of ®(x) as defined by the right-hand side
of the first equality. In it, J is to be expressed in terms of ® by inverting eq. (16.3), which defingg
@ as a function of J. The Legendre transform (16.7) is a functional version of the well-known
transformation familiar in classical mechanics and thermodynamics. By differentiating eq. (16.7)
with respect to @;, we find that

ST {®]/6®,(x) = ? Sy 162101/67,6)1 {67,0)/58,01)} — Je) D [dty @,0)187,0:)/5%,0x)),
!

or
ST[P]/8%,(x)=—J,(x). (16.8)

Equation (16.8) is dual to eq. (16.3): by this we mean that the relation (16.3) which expresses
& in terms of J is the inverse of eq. (16.8) which expresses J in terms of &. This, in particular,
means that eq. (16.4) can be written as

ST{®)/6,(x)f, ., =0, (169)

i.e., when J = 0, ® takes the valuc v, and vice versa. Equation (16.9) is very important. It EXPpresses
the vacuum expectation value v of the field ¢ as the solution to a variational problem: v js the
value of @ which extremizes M'[®],

What is the physical significance of I'? To streamline our discussion, let us agree on the follow-
ing convention: We will denote by subscripts i, j ..., any labels J or & carry, including the space-
time variable x. We will adopt the convention that summations and integrations are always to be
carried out over repeated indices. Differentiating eq. (16.3) with respect to &, we obtain

8°Z(1] 8J; _

8,81, 5, o (16.10)
From eq. (16.8) we learn that ;

8J, /6@, = -621“[(1)]/5(1),.5(}»,.. (16.11)
Define

(XU}, = -82Z131/84,87; (16.12}
and

{Xlel}, = 8T [®1/8d,50,. . (16.13}
Equations (16.10) and (16.11) mean that

(X)X =6, (16.14
Since
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X 'y=0} }:‘j = —-522[11/6.],.6.&“:0 = +[A'F}‘.’.
is the full propagator for the barred field, and J = O implies @ =, it follows that

(X[ =V]},; = 8 TI)/50,60, |

is the inverse of the full propagator.
Next differentiate eq. (16.10) with respect to J,. We obtain

8*Z[J] . 8T
—— X —_— (X! =
§J,8J.8J, ey 5%,;59, 50, X ym =0

or

1 &Z[)] . . 5 [@)

—_—— = (] X! X! Xt [' —-——] 16.15

7 8J,8,87, XX G X |1 oo 5% S,
Now take the limit J = 0, ® = v. In this limit X '[J = 0] is the full propagator, so that

631"[@]/6@,.6(1)]-6(1),‘ . I‘}fg (16.16)

is the three-point proper vertex. A proper vertex (or one-particle irreducible vertex) is a Green’s
function which cannot be made disconnected by cutting a single internal propagator, and from
which (by convention) full propagators corresponding to external lines are removed. The three-

nt function has no such disconnected graphs except corrections to the propagators, which are
explicitly removed in (16.15).

In general, the nth derivative of T" at @ = v is the n-point proper vertex:

5'T/6®,8, ... =V ...

¥

The proof of this statement proceeds inductively. Assume that §7Z [J1/8J; 6.1 . can be expressed
as a suin of tree diagrams, each diagram consisting of proper vertices correspondmg to
T (@] /3, 8, ..., internal lines corresponding to AL connecting pairs of proper vertices, and

external lines. In particu!ar,
P 8"Z[)]

1 §"T (@]
"=18J,87,...

=X X, 58,50,

]+ one-particle reducible terms. (16.17)

Now, differentiate eq. (16.17) with respect to Ji. Recall that
& 8% 5 5z 5
8, 8], 5b, 81,67, 60,

—(X™Y,,8/80,. (16.18)

The differential operator 8/8®,, when applled to the right-hand side of eq. (16.17) can act elther
onsome X' or on some dmI/8d, 6(1) . In the former case, we have

&°T
5@ &P, S‘D

1
‘5(1)( Dt = XD, G X7, (X7,

e L

o

S

L=




94 E.S. Abersand B.W. Lee, Gauge theories

which amounts to adding a new external line to a newly created three point vertex, and in the
latter

LW atind

l__6_ 6ml'1 Smi-lp

=X - =5
167, 80,60, X il 50 56 54,

which amounts to adding a new external line to what used to be an m-point proper vertex. In any

case, when the differential operator of eq. (16.15) is applied to the right-hand side of eq. (16.14),
we generate all tree diagrams for the (2 + 1)-point Green’s function, and

l_ﬂlz[_” _5::+1]'1[¢]

” MESJI_”_': GX™,GX7"),, .. i Bt-I),(S(I)m..'. + one-particle reducible terms. (16.]9);
Therefore, in the limit J =0, @ =v, e
+1 ; f

8" IP[®]/5,60,,..|, _ = :

is the (n + 1)-point proper vertex. Now our proof is complete, since the induction hypothesis is
true for n = 3, as shown in eq. (16.15).

The generating functional of proper vertice I'{®] has the representation:

Po] = iz ﬁlﬂ‘ﬁh.:a...._f" (® ~ )y, (@ ~ V), (@~ v),_ ' (16.20)
with ‘
e = (an],, | (16.21);
Let us revert to the standard notation:
FET,):'Q....:,, = Ff(':.)iz...i,, (*1, X2, .00 X,,). i

Because of the tranglational invariance I'® depends only on n—1 differences X;—X;, so that its
Fourier transform ' js defined as

T

Fﬁl’)‘.ln (r., ...p”)(27r)464(p, + ... +pn) = (I_[ fd"xexp(ipixl-)) r“g':.)“'.n (X1, ens xn). (16.22)
i=1

This means that four-momentum must be conserved at vertices.
In discussing the implications of the condition (16.9), it is convenient to consider the case in
which @ is a constant ¢ independent of space-time. Define the super-potential ¥ by

T(® =] = (2053 (0) V($),

~

M |
V(P)=- o ren (0,0, ..., 0)(9 — v);, (¢ ~ v);, ..(¢ — V)
w=2"""

i iy iy

(16.23)
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so that
N
_GIB | ™, 00,0
5¢ 5¢ .d¢N 1 dg. . dy N2
1y 12 'H ¢=u

is the negative of the N-point proper vertex evaluated at the point where all external momenta
vanish. The condition (16.9) translates into

dV(¢)

= 0. (16.24)
8 {pey

Furthermore,

eV %, .
Ty GO (16:25)

is positive semi-definite, since Z;.‘ behaves like (p? -- m?) near p? =~ m? and it cannot have any
other zero for p? < m?. Thus the vacuum expection value ¢ = v is the value of ¢ which minimizes
7 (¢). The discussion in section 2 suggests that ¢ =v must be the absolute minimum of V, but
we do not prove it here.

When 2 is invariant under

¢i~> ¢l — iBO‘L;; i

it follows from the structure of eq. (16.1) that Z[J] is invariant under
Jo»J, - iB“Lng,

and so on, and finally the superpotential <V (¢) is an invariant function of ¢ under the above trans-
formation. The analysis of section 2 on the potential ¥ c¢an now be applied verbatim to the super-
potential V', with —[AL(0)],; of eq. (16.29) taking the place of M,?,. of eq. (2.19). We find there-
fore that the occurrence and the number of the Goldstone bosons discussed there are true to all
orders of perturbation theory. ’

We can construct Z[J], I'[®] and<[¢] in perturbation theory. For simplicity we shall con-
sider the case of a single-component field. An effective way of expanding these quantities in a
series is to write eq. (16.1) with a fictitious parameter a:

expliz11} = [ [dglexp|i fatx [ale(x) +3(x) -¢(x)}]

| I & ]
~ i —p |- —
exp{lfd xa ‘[i 5360)

exp [i— f d*xd*yal()Ap(x - »)I0)} (16.26)

and expand Z{J] in powers of 4 and let @ = | afterwards. Since each propagator is multiplied by a
and each vertex by a”! when we use eq. (16.28) as the definition of Z, it follows that a Feynman
diagram with £ external lines, J internal lines and ¥ vertices is multiplied by the factor, afti-v,
There is a topological relation that holds for any Feynman diagram. It is

i m—— 1

*

S 7 Sp—
#
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L=f-V+1

where L is the number of loops (i.c., the number of independent four-momentum integrations)
in the diagram. Thercfore the expansion in this fictitious paramcter a corresponds to expanding
a Green’s function in the number of loops in the Feynman diagrams. The reason this ex pansion
is preferable over the expansion in powers of some coupling constant is that in the former any
symmetry ol the Lagrangian is preserved in each order of perturbation theory since, effectively,
a multiplies the whole Lagrangian. In contrast, if we were 1o split up the Yang-Mills Lagrangian
into a free and perturbing parts to develop a perturbation expansion, for example, cach part
would not be separately gauge invariant and the consequences of gauge invariance of the
Lagrangian might not manifest themselves in each order of perturbation scries. (Recall that non-
Abclian gauge transformations depend on the coupling constant.)

In the following we shall discuss explicit constructions of Z, I and <V in the first two orders
ol loop expansion for a simple model:

L=~ 3t - 3No0". (16.27);

The method can be generalized easily to other models. Our discussion will not show that our con- .
struction is in fact the cxpansion in the number of loops, but the interested student can convince
himselt of this fact by first referring to Nambu’s paper which shows that the loop expansion is
also an expansion in the Planck constant h, and then noting that our method is an asymptotic
eviluation of these quantities in ;1.

Imagine that eq. (16.1) is written in the Euclidean space as explained in section 12. Since the
exponent in the right-hand side is bounded from above in this case, we are tempted to evaluate
the functional integral by the method of stecpest descent. We shall keep the Minkowsky notation
for simplicity, but the ultimate justification of this method lies in the Euclidicity postulate.

We shall expand the exponent on the right-hand side of eq. (16.1):

SIe1 + [dxJ0e(x) = [d*x [£(x) + J(x)p(x)],
about a point ¢(x) = ¢o(x):

5
SI61 + [ dxJ()ox) = Slgo) + [ dxJ(x)galx) + fax { _"—az[?;; +J(x)} [60x) — do(x)]
1]

it S d 2600 ~4o0)] [60) o)) —ooPol (16.28)
21/ ° " B0u(x)Bgo(y) '

and choose ¢, so that the term linear in ¢ — ¢o is missing from the expansion of eq. (16.28). This
will be achieved provided

8S[¢o]/60o(x) = —J(x) (16.29)

which means that ¢, is the solution of the classicai (non-quantized) field equation in the presence .
of the external source J(x). For the Lagrangian (16.27), eq. (16.29) is

(0% + uHgo(x) + N ¢3(x) = J(x). (16.30}

In any case, ¢, is obtained from ¢q. (16.29) as a functional of the external source J.

i ron
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Wheneq. (16.28) is substituted in eq. (16.1), we obtain |1
exp(i ZIJ1) = exp{i S[go] +i [d*xJ(x)gu(x}}
. 1 3%S[¢l ]1 )
X [Id [ dixdly — — ————— (¢() X -I] 16.31
f[ ¢lexp{| f Loy 5601 )56(r) (B(x) — oINSy} — Poly)) %.31)

The lowest order approximation (which is one order lower than the steepest descent approxima- |
tion} is obtained if we ignore the functional integral over ¢(x) altogether and set |
|

ZUY = Slgo] + [ dxJ(x)golx) = Z°(J) (16.32)

which isa functional of J only, because ¢, is a functional of J. We can evaluate Z° explicitly by .
first solving for ¢, in eq. (16.30) and then substituting that ¢, in eq. (16.32). Equation (16.3Q) . |
_.h be solved in powers of A: |

9ax) = — [d'y Ap(x = y; p)) — M [d% Aplx — y; u)JI(3)] >+ .. (16.33)

where the use of Ap is dictated by the Euclidicity postulate. When eq. (16.33) is substituted in
eq. (16.32), one finds that Z°[J] is the generating functional of Green’s functions in the tree-
(i.e., no loop) approximation:

a
) = —%fd“xd“y.l(x)AF(x y:u’)J(y)-f—Zfd“u Il fd“xrl(x,.)AF(x,. —wuh+... (1634)

=1

‘e

We can see more readily that Z° is the tree approximation to Z if we compute ['[®] in this ap- i
proximation. Since ]

° 1
B(x) = 5% = Ej’(zx) = [a* [ 2‘;;8;’)] %9(%3 +J(») 65¢j’ff)-)]+ $olx), T* ;
' we have, to this order, ?
P(x) = po(x). (16.35) ! ;j.
Therefore, I'[@] can be computed to this order: [ j.
o[} ~ 2001 — [dxJ(n)(x) ] 4

= (S[2] + [dxJ(0)®(x)} — [dxJ(x)D(x) = S[D]. (16.36)

So, to this order, proper vertices are generated by the Lagrangian itself and Green’s functions are
built up of these unmodified vertices by the rules of tree graphs. The superpotential V{eq. (16.36)
is, to this order b

V(g) = —-5(¢) = V(¢)

‘_where ¢ is independent of space-time and V is the negative of the part of the Lagrangian which is
independent of derivative of fields. That is, ¥'(¢) is the potential of the field ¢. This justifies the
1e “super-potential” for .

LA b PR =
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We can proceed further by applying the steepest descent method to the functional integral in
eq. (16.31). This consists of neglecting terms higher than quadratic in (¢ — ¢4) in the exponent
of the integrand and performing the functional Gaussian integration. In this way we obtain

1 65
Jiaorexp [ i fatx dty o) 3¢_(\§§;1_w [6(x)  $o()1 [60") ~ Bo(3)]

Sy — .!.__._. - — = ex (__[ )Tr ln 82S[¢0]
Vdet 525(go] [6de(x)8e(y) PV 2 B6o(x) 5000y

so that
ZIJ) = Z°J) +3iTr In{82S[pol/8¢o(x)8¢0 (1)} = 2'[J]. (16.37)

For the Lagrangian (16.27), for example,
825/8¢(x)8(y) = (—32—p?-3NPH(x))E%(x — y),
so that
i LAY

~ L P

T s T ln(l e )

i 3 2 | 2

5 5 a A0 - XA — x5). Aglx, — X606, (1638)

n=1

Let us now construct '[®] to this order:

rMNel=z2'[v] - fd“xJ(x)CIJ(x), {16.39)
where
D(x) = 8Z [J]/8J(x) = dolx) + e(x) (16.40) -

and e(x) is given by

i fn 625 [¢o]

- n-—m—_——.
8J(x) 280 8¢o(£)}8¢e(n)

Fortunately, it is not necessary to know the form of e(x) to construct ['[®1 to first order in e(x),
as we shall demonstrate presently. First, note that

Z°lJ1 = Slgol + [d*xT(x)golx)

ex)=

651,
=S[P] + | ExJ()P(x) — d“y{ -+ J} () + O(e?)
f f 8¢0(»)
= S[@] + [ d*xJ(x)(x) + OCe?) (16.41)
] '.I.ﬂ"' e e T D TP e
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py virtue of eq. (16.29). Therefore to order ¢, we have from egs. (16.37), (16.39) and (16.41)

i 525[®]
1p] =S[P] +—Tr 1 —— 16.42
e =Stel+ 5 T I bsam (1642

The second term is the one-loop correction to the generating functional of proper vertices.
The super-potential % can be evaluated explicitly from eqs. (16.38) and (16.42). Recalling the
definition of <V of eq. (16.23), we find

Lk L9
29 (2m) =1 N \K? —pu? +ie

2 N
fv(¢)=+%¢’+z;i’¢“+ ) . (16.43)

The terms for N = 1 and 2 are divergent. However these terms are proportional to ¢? and ¢* and
the divergences in these terms can be amalgamated with u3 and X,. :
We may write

V(P) =347 + 120" +J(97)
where
T R U
A6 2 f(2'ﬂ')'1 N?a N(k2 — i+ ie) (16.44)

and p? and A are defined as the value of the two- and four-point vertices at the point where all ex-
ternal momenta vanish.
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17. Renormalization in the g-model

The formalism developed in the preceeding section is useful in discussing renormalization of
spontaneously broken symmetry models and, in particular, the o-model. In the generic sense, the=
o-model is a model in which a symmetry is broken by a term of dimension one, i.e., by a term
proportional to a boson field.

A simple example of this kind of models is

i e

e 124

%
L£=310,m? +3,0°] — ud(0? +7%) — Iho(0? + 732 + co = Lym tco a7y

which is a two-dimensional generalization of the model discussed in the preceeding section. Except
for the last term co, the Lagrangian (17.1) is the one studied in section 2, and it was noted there -.’g
that this Lagrangian is invariant under a U(1) transformation of the fields ¢ and 7. The salient
features of this model are that the “almost”™ conserved current

Au =1ra”o-—oau1r (17.

[3=)

A o b L L

has a divergence proportional to the 7-field

B”A" =¢m

(173

and that the o-field acquires a nonvanishing vacuum expectation value thanks to the last term in ;?

eq. (17.1). Equation (17.3) is a version of the PCAC condition, and for this reason the model is : }

of some physical interest. :
It pays to study first the classical solution of the Lagrangian (17.1). The potential is given by

Vo, ) = {N0* + 722 + Lu(6? + 1?) — ¢o (17.4)4

{we drop the subscript 0 on A and #? for the moment). The minimum of the potential occurs at
7= 0and 0 = u where

AR

u(p* + A =¢, (17.5)

AT

u being the vacuum expectation value of the o-field in this approximation. If we displace the field~
o by the amount u and defines by s = ¢ — 2 eq. (17.1) takes the form

L=31(3,57 + (,m)] — u2s? — 2p2a? — IN(s?+ 12)2 — Auu(s? + 72)s (17.6}%
so that in this approximation the s-field represents a particle of mass p2: ;
12 =t 3 (17.7);‘%
and the r-field a particle of mass u?: :

1

S L D VIS (17.8)%

In this approximation, when ¢ = 0, i.e., when the Lagrangian is invariant under the U(]) trans-
formation, either ¥ = 0 or uz = u? + Au? = 0 according to eq. (17.5). If u* = 0, then u*> 0 in order:
that 4 = p2 = u? > 0. This is the “usual” way the symmetry of the Lagrangian manifests itself:
the particles cotresponding to the fields o and 7 are degenerate. On the other hand, if pi=0, we

i = b
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must have u? < 0 since Au? > 0. The second case is the Goldstone mode of the symmetry with
the field = playing the role of the Goldstone boson. In that case, u? = —Au?, and pi=-—2u*> 0.
For more thorough discussion of the o-model, see the monograph “Chiral Dynamics” by one of
us.

We refurn to the discussion of the full solution, including radiative corrections. An important
fact about the o-model is that the Green’s function of this model are generated by the generating
functional of Green’s functions of the symmetric theory. The latter is given by

exp{iZ{J]} = f[do} [dn] EXp{ifd“x[Bs,,m(X) +J,()a(x) + 7 (x)m(x)] },

J =, ) (17.9)
Now, expand Z[J] in J aboutJ, = ¢ and J,_, = 0. We have
n+m+1l
I 8 Z (17.10)
jarmed 8 (x1)...8(x, Y87, (v)..8]_(v,) | Jo=c.dy=0
1 . .
" Wie 0 f[dol [drls(x))...5Cx, ) (3)..7(p ) exp{ifd“xﬁ(x)} — disconnected pieces,
c,
where s = 0 — u, u being the vacuum expectation value of ¢ so that
[1do1tdnls(x)expli [d*y.2()} =0, 5(x) = 0(x) ~ 1. (17.11)
and

=

Wle, 0] =f[da][dwlexp{ifd"x[.@sym(x) +co(x)]}=f[da] [dn] exp{i fd"x.Q(x)}, (17.12)

1s the vacuum-to-vacuum amplitude of the g-model. To recapitulate; if we expand [J] about
J =0, the expansion coefficients are the Green’s functions of the symmetric model (i.e., the
theory given by the Lagrangian L'sym); if we expand Z[J] about J = (¢, 0), they are the Green's
functions of the o-model.

The point is simply that the symmetry-breaking term co has the form of an external source
term Jg for constant J = ¢. This important theorem has an analog in terms of I'. Since

SI[@] /8D ,(x) = —J,(x), L(®] =Z0) = [d*xI(x)- D(x) (17.13)
where

SZ[F]/8J,(x) = @,(x) (17.14)
we have from eq. (17.13)

ST {®) /6%,(x) [, _, = —¢; (17.15)

which is the analog of eq. (16.9). Eq. (17.5) is the lowest order version of (17.15). Furthermore,

We can repeat the analysis leading to eq. (16.17), but this time taking the limitJ=cand ® = u,
te find that

8" ]
54 s = ) iy
6(1,."8(1): .._6(1)_ ! F,l,,z,._;”(ll) {] I ]
2 in o
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i

is the proper n-point vertex of the o-model. (In eq. (17.16) we have reverted to the convention of-
representing the internal symmetry index and the space-time variable x collectively by an index i)
" To recapitulate, the generating functional of proper vertices of the symmetric theorz generates
the Green's functions of the o-model when it is expanded about ® = u(c), where u(c) is given by -
eq. (17.15). As was shown in the preceeding section, I'[@] ~ S[®] to lowest order, so that eq.
(17.5) follows from eq. (17.15). ;
Let us now consider the limit ¢ > 0 of eq. (17.15). Equation (17.15) is really an equation whick-{ *
determines the vacuum expectation value u in terms of c. To study the ramifications of eq. (17.15
it suffices to consider the superpotential defined in eq. (16.20):

Cl®=9¢] = —(2m)*840)V (9) t

o ' "'i:'-i:!"

g

b ok

where ¢ is independent of space-time. Eq. (1§.15) is equivalent to

BV(@)69,] _ =c,. anin;

The limit of u(c) as ¢ > 0 may or may not vanish, depending on the parameters of the symmetric 5
Lagrangian. I[ it does not, i.e., u(0) = v # 0, the symmetry of the Lagrangian is spontaneously
broken.

Let us consider, however, the case in which the parameters of the symmetric Lagrangian are

such that u(0) = 0, that is, the case in which the symmetry is manifested in the usual way. From
eq. (17.16) it follows that i

G el )

A ¥ 1 t
v B = oy o i _ (n) ; =
£ I 22 A (@0 (P =W (D — ), T, (). (17.18):{ &
Further, the analog of the relation i
s - C
¥ d \" am d n+m I
3 (Z)@ =2 ()
i dx =z m=o0 m! \dx ‘=0
2 gives
. 3 a
oo =3 1 w; u, .y, TGrm) (u=0) :
f1.62...0, m=0 "!! F1 % fin fl-il-‘--"n-ilvfb”-jnl
or, in momentum space, lE
re ¢ W=D L Ferm ( 0,0,..0) (1719} ¢
iyig. iy PV P2 P meoml g Lt WP P Do = )
m
- ~ n
Ineq. (17.19), the indices #’s and s stand for ¢ or 7 and Py, w.q..)=T, (@q ..;u=0)is t
the momentum space proper vertex of the symmetric theory (¢ =0, u=v = (). ; t
Equation (17.19) is important in that it affords us a handle for removing the divergences from n
the o-model if we know how to renormalize the symmetric model, since eq. (17.19) expresses
the proper vertex of the o-model in terms of proper vertices of the symmetric theory. We shall ¢
give a brief review of the renormalization theory in the next section, but suffice it to say for the ¢

moment that if we write the Lagrangian of the symmetric theory as
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£=1[(30) + (am)? — p(0? + 7)) — IN(o? + 1)
+3(Zs — DI@0Y? + (3m)? — p2(0? + 1) — L8pu¥(0? + 1?) — LEN(0? + 72)? (17.20)

where u* and A are finite constants, and choose Z;, §u?, 8\ in an appropriate way, then all infini-
tes of the theory can be removed. Thus starting from the Lagrangian it is possible to construct a
finite generating functional I'[®] for u = 0. Once we have a renormalized (i.e., finite) expression
for '[®], we can expand it about @ = u, where u is determined from eq. (17.15), to recover the
proper vertices of the o-model characterized by the parameters A, 4 and c.

Finally, we turn to the Ward-Takahashi identities of the model. Since YV (¢) is the generating
function of zero-momentum proper vertices of the symmetric theory when we expand it about
¢= 10, it follows that <V is a function of the invariant of ¢, i.e., of $* = ¢2 + ¢2. Thus eq. (17.17)
takes the form

20,8V(B)/8@?) | 4 -\ o 2o =€ {17.21)
Since the inverse m-propagator at zero momentum is given by [see (16.29)]
-AN0) = 8V (¢)/80, 6¢a! ba=0.bgmu 28V (¢)/5(¢H) | é=u (17.22)

it follows that
—up N0 =c¢ (17.23)

from which the value of i can be determined conveniently, if we know AZ'(0) in terms of \, u?
and . : = *

The above prescription for constructing renormalized proper vertices of the o-model works
if u? > 0, since in that case there is a comparison symmetric theory that makes sense. However,
once I'[®] is constructed in terms of A, u? and ¢ there is nothing that stops us from expressing
Fl®] in terms of A, u and m2, where the last is defined as

my = —AN0) = 25V (9)/8¢7 |,

and taking the limit mZ - 0. Then eq. (17.23) reads
um? = ¢, (17.24)

Equation (17.24) is the renormalized Goldstone theorem: if ¢ = 0 either « = 0, or m2=0. The
latter corresponds to the Goldstone mode. In this case the basic parameters of the theory can be
taken to be A and u = v, instead of A\ and —p?.

The moral of the above discussion is that the renormalizability of the o-model in the Goldstone
mode depends only on the renormalizability of the symmetric theory. The process of renormaliza-
tion does not induce additional symmetry breaking, in the sense that the symmetric counter-
terms exhibited in (17.20) suffice to remove infinitics from the theory whether or not the sym-
metry is broken externally (c # 0) or internally (v # 0).

Later we will discuss a way of renormalizing the o-model without making explicit reference to
the symmetric theory. This method makes use of the Ward-Takahashi identities. Let us derive
them. The generating functional Z{J] in eq. (17.9)} is invariant under the U(1) transformation of
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the external sources:

2ILLG
£, . . ; 8 ]
(J‘,):(cosﬂ sin 0)(.!0) : . L'_‘;}.,
J, sin 0 cos 0/\J - S K !5-‘"
: i See also
as can be seen by making the change of integration variables ; Gl
(o)’_(cosﬂ sinO)(o) 3
™ sind  cos @/ \nm : 18 BP
which leaves the scalar product Jo0 +J 7 invariant. Therefore, Intl
- . = reeent
dZ/ag = 0, : =
¥ : or IFirs
: 5Z0] 5201 ' produc
: AR VAR ST
4 d®x [——— S lx S o(x ] =0. 17.2 L
: f 8/, (x) n(x) 8/ (x) o(¥) ( 7& -
& - 0; =
T Substituting eqs. (17.23) and (17.24) into eq. (17.27), we find that : Let
o <
3 ST (@] @] ] 8§ nected
1 d e (x) = —P (x) = —! =0 17.2
7 f N { olx) ¢, (x) «x) 8P (x) s ( hines, /
% "' ' fth typ
f_ which shows that I" is an invariant functional of ¢ under the U(1) transformation: : ,
g . A .I
3 ‘B
' G\ fcos® —sin@\[P :
( ") =( . )( ")‘ (17.29
: b, sin @ cos 0/ \ P EpA
Note that the invariance of I' under the transformation (17.29) is true whether u?>> 0 or u? < (. _

. The renormalized I' constructed according to the prescription above, thus satisfies eq. (17.28) as‘?i The
¢ we continue m2 to zero. % by cou
‘a Equation (17.28) is the Ward-Takahashi identity for the generating functional of proper vertice It is
3 An infinite number of Ward-Takahashi identities is obtained if we differentiate eq. (17.28) with & D
! respect to & and &, repeatedly, and set ®_ =0,®, =u. If we differentiate eq. (17.28) with re- &

Z. spect to ¢, and set @ =0, ®, = 1, we obtain the “eigenvalue” equation for u, eq. (17.23). If We.g_ the lus
differentiate it with respect to @, and ¢, and take the limit, we obtain tion w,
U2y ALY = ‘0 _ . 0" one e
A (P*) = AP =ul,, (»;0, —p). (17 3; (15.2).
An important lesson to be learned here is that the Ward-Takahashi identity for t € penerating D=
functional for proper vertices is the same, whether or not the symmetry is spontaneously broken- -
It is satisfied by the generating functional constructed first in the symmetric theory and then cox or,
tinued to the Goldstone mode by varying an appropriate parameter of the theory. o
i +
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18. BPHZ renormalization

In this section we will give a brief survey of renormalization theory developed and perfected in
recent years by Bogoliubov, Parasiuk, Hepp and Zimmermann (BPHZ). Nothing will be proved,
but we will try to give definitions and theorems in a precise manner.

First, we will give some definitions. The intcraction Lagrangian is a sum of terms 2, which is a
product of b; boson fields and f; fermion ficlds with d; derivatives. The vertex of the ith type
arising from £; has the index §, defined as

5,=b,+if;+d,— 4=dim 2, 4. (18.1)

Let ' be a one-particle irreducible (IPI) diagram (i.e., a diagram that cannot be made discon-
nected by cutting only one line). Let E, and Eg be the numbers of external boson and fermion
lines, [y and f. the numbers of internal boson and fermion lines, #; the number of vertices of the
ith type. Then

Eg+2g= 23nb, {18.2)
i ' 5

Ep+20.= 2n,f, (18.3)
i

The superficial degree of divergence of [ is the degree of divergence one would naively guess
by counting the powers of momenta in the numerator and denominator of the Feynman integral.
Itis

D)y=Znd, + 203 +3Ip -4V + 4 (18.4)
the last two terms arising from the fact that at cach vertex there is a four dimensional delta func-
tion which atlows one to express one four-momentum in terms of other momenta, except that

one delta function expresses the conservation of external momenta. Making use of eqs. (18.1),
(18.2), and (18.3) we can write eq. (18.4) as

D=%ns, - E, —TEFE] (18.5)
e

or

D+E +2E, —4=3ns,, (18.6)

_ The purpose of renormalization theory is to give a definition of the finite part of the Feynman
integral corresponding to I':

v = lim [dk,..dk, I (18.7)
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where I, is a product of propagators Ay, and vertices P: g whe
Y : 3

2% Ip= T[] ate TP, (18.8% 2

. ab,a a £

: 2]
The finite part of F. will be denoted by Jr and written v :
H fand
t Jp = lim [ dk,..dk, Ry (1898 inte
= Ciad D A pear
;52 We shall describe Bogoliubov’s prescription of constructing R from 7. ;; It
Let us first consider a simple case, in which I is primitively divergent. The diagram I is & ‘u.lc!
i primitively divergent if it is proper (i.e., IPI), superficially divergent (i.e., D{I") > 0) and becomess | ding
convergent if any line is broken up. In this case, we may use the original prescription of Dyson. & ¥
i We write %
B i A
Jp = fdky.dk, (1 - Oy % wort
"r'_:l . o A r -
1. % theo

A Rp=(1 — M. 2
H 2 % R
VS The operation #7 must be defined to cancel the infinity in J.. I, is a function OfEg+Eg — 1= °
2 S i
r £ — 1 external momenta p,, ...p;_,: 1
f e # .
.: Ir.r= f(p L _‘_pE“ i ). ; :IIL
3 ¢ eV
o The operation (1 - ¢7) on f is defined by subtracting from f the first D(T') + 1 termsin a Taylor # v, (1
bl expansion about p, = 0: ;
iR
b - 1 E-1 adf :5
b AP, s b ) = RO, s OF et — 5 (o WP s )X (18103 N
d! P F1NE g (aph),\(ap“)“...(ap’,-d),, *Ez i
' =1 nitic
i‘ where d = D(T"). The operation (1 — ¢T) amounts to making subtractions in the integrand I, the = this
;‘ number of subtractions being determined by the superficial degree of divergence of the integral. I
'I-; Some more definitions: A renormalization part is a proper diagram which is superficially di- - by s
5, vergent (D = 0). Two diagrams (subdiagrams) are disjoint, v, Ny, # @ if they have no lines or ] ’
7 vertices in common. Let {y,, -7} be a set of mutually disjoint connected subdiagrams of T.
o Then A
B F=T/{y,...7,)
1 is defined by contracting each 1y to a point and assigning the value 1 to the corresponding vertex.
L We are now in a position to describe Bogoliubov’s R operation:

(1) if T is not a renormalization part (ie, DM < - 1),
R.=R; (18.11)

i g (2) if T is a renormalization part (D(v) = 0),

- — o - Fig |
R.=(1-1MR,, (18.12:4 *

g
ag.
g
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. where R is defined as

[+
ﬁr"'!r"' E IFI{h,---'rc} ﬂ 07 . (18.13)
{7157} r=1

and 0, = —-tzﬁy, where the sum is over all possible different sets of {,;} . This definition of Er
in terms of R appears to be recursive; in perturbation theory there is no problem; the R, ap-
pearing in the definition of R . is necessarily of lower order.

It is possible to “solve” eq. (18.13). We refer the interested reader to Zimmermann’s lectures
and merely present the result. Again we need some more definitions before we can do this. Two
diagrams y; and 7y, said to overlap, ¥, 0 v,, if none of the following holds:

Y0y =0, Y12 Ya, Y22 Y-

A I-forest U is a hierachy of subdiagrams satisfying (a)—(¢) below: (a) elements of U are re-
normalization parts; (b) any two elements of U, ~' and " are nonoverlapping; (c) U/ may be empty.

AT-forest U is full or normal respectively depending on whether U contains I itself or not. The
theorem due to Zimmermann is

Re=3% Tl -y, (18.14)

alluy AEU

* where I extends over all possible (full, normal and empty) I'-forests, and in the product TI(—#)
the factors are ordered such that * stands to the left of t° if AD a. IfA N ¢ =0, the order isirre-
levant. A simple example is in order. Consider the diagram in fig. 18.1. The forests are ¢ {empty);

i (full); v, (normal); 4, v, (fuld). Equation (18.14) can be written in this case as
!

|
|

!
s,

'RI‘ =(1 — 1 —pr2 4 ﬂlﬂz)]]‘ =(1 - (1 - t‘h)]l"

Note that in the BPH program, the R-operation is performed with respect to subdiagrams
which consist of vertices and all propagators in " which connect these vertices. By the BPH defi-

nition, the subdiagram 72 above does not contain renormalization parts other than itself and in
this sense the present treatment differs from Salam’s discussion.

In formulating the BPH theorem it is necessary first to regularize the propagators in eq. (18.9)
by some device such as by

Ae(p) - App;r,e) = —i f da exp {ia(p? — m? +ie)}
reg ;

7
D%

SN

I

:;:.OIS.]. Lxample of the BPHZ definition of subdiagrams in a particular contribution to the feur-point function in a A cotpling
v,

Lor T P T T T T T L e e ey
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and define /.(r, €) as in eq. (18.9) in terms of Ap(r, €), and then construct R (r, €) by the R-opet. |
ation. The BPH theorem states that Ry existsasr— 0 and e — 0+, as a boundary value of an &
analytic function in the external momenta. Another theorem, the proof of which can be foung F
in the book by Bogoliubov and Shirkov, section 26, and which is combinatoric in nature, statesf_-f
that the subtractions implied by the (1 — tT) prescription in the R-operation can be formally j
plemented by adding counterterms in the Lagrangian. ;
A theory which has a finite number of renormalization parts is called renormalizable. A thearj-;
in which all 8, are less than, or equal to zero is renormalizable. In this case the index of a subtrage
tion term in the R-operation is bounded by D + Eg+ %EF — 4 which is at most equal to zero by:}F
eq. (18.5). In such a theory, only a finite number of renormalization counterterms to the .
Lagrangian suffice to im plement the R-operation. In the ¢ model we considered in the preceedix%g1
section, all two-, three- and four-point proper vertices are superficially divergent. The two~point*}f-*
vertices (sclf-energy parts) are quadratically divergent so the R operation makes two subtractionjg
in p? from the Feynman integrals. The other vertices are only logarithmically divergent. %
The BHPZ renormalization can be combined with the Ward-Takahashi identities discussed in-ag
the preceeding section to produce a systematic scheme for renormalizing the o-model without exs
plicit reference to the symmetric theory. This was first worked out by Symanzik. Construction ‘i

the (7 — 1) loop approximation, in such a way as to satisfy the Ward-Takahashi identities, and we
are té{ construct proper vertices up to the n-loop approximation. Suppose further that we have a E
regulirization scheme so that the Ward-Takahashi identities hold for regularized proper vertices. ¢

For example, we have, from eq. () 7.30), §
~ -

A 05N =8B =uT,__(5;0, p:r) (18.15)§ -
where r is a cutoff parameter which should be set equal to zero at the end We apply the R operaeE
tion to relevant vertices and write f%
ANPEN =P Z - mi 4 (1 - (O[ATGE ] 3
APy =p? - m2+ (1 — ") [A(p2 M), 3

Tonn(Pi 8 k1) = =20t + (1 — T, (g, kin)l, (18.16

—_—

where D(T')) =2, D(I",) = 2, D(I'5) = 0, and the symbol [ 1 signifies the quantity constructed -
by the R operation as in (18.13), wherein the vertices P, in eq. (18.8) take the values of the
corresponding renormalization parts at subtraction points as determined up to the (n — 1) loop =
approximation. In (18.16), the degrees of the subtraction polynomials are determined by the
superficial degrees of divergence of the proper vertices in question. We have chosen the coefficient
of p%in ALl equal to one by convention, i.e., by renormalizing the 7 and o ficlds appropriately.
Likewise we have chosen the value of Ponn(0;0,0;7) to be ~2A 1 by convention. Now substi-

tuting the cxpressions in (18.16) into (18.15) and identilying terms proportional to (p*)° and 4
(p?), we obtain ]

T

]~ %
Z=1 +u(-(2-f‘mm(p;0, —pr) , (18.17)
d[’ P2=0 2
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m? =m2 + 2\’ J

The BPH theorem then asserts that the quantities appearing in eq. (18.16) together with Z defined
in (18.17) are cutoff independent, i.e., weil-defined in the limit » » 0; furthermore this procedure
determines the values Z, m2 of the renormalization part A up to the » loop approximation. In -
fact, by a systematic exploitation of the Ward-Takahashi identities, it is possible, as Symanzik
first showed, to determine the values of three- and four-point renormalization parts at subtraction
points completely in terms of m?, —2\u and T, (0, 0, 0, 0) = —6A.

The inductive procedure described above becomes complete when we realize that in the tree
(zero loop) approximation the values of renormalization parts at subtraction points are those
read off the Lagrangian (they, of course, satisfy the Ward-Takahashi identities). Thus the values
of renormalization parts at subtraction points have the expansion

Z=1 +21A+22?\2+...,
(0,0,0) = —6Aufl +ay A+ N2+ ... ],

FHGG

Cooao(0s 0,0,0)= —6A[1 + 6,1+ B, N2 + .. ],

¢

B yona(0,0;0,0) = —2A{1 + 4 +9,A2 + ... ].

The symmetry breaking parameter ¢ is given by eq. (17.23), or (17.24).
This discussion makes sense only if there is a regularization scheme which oreserves. the Ward-
Takahashi identities, and this leads us to the subject of the next lecture.

" The Symanzik procedure outlined above is equivalent to the renormalization procedure dis-

cussed in section 17. This statement is clearly true in the tree approximation. Let us recall that the
Lagrangian is first written in terms of bare quantities as

L=72[(3,00)* + (3,76)?] — $u3(03 +73) — INg(02 + 72)? + €000 (18.18)
Af ter making the renormalization transformations
0= Z3(u +5), 7o = Z§?m, co =23,
o= (A + 8A)Z32, HE= Zgl[mefr +8m2 — u(\ + 8\)] (18.19)
we can write the Lagrangian as
L=1(3,5)* — $(m? + 2hu)s? + $@,m? — tm2n?
“hus(s® +7%) —dNG2 a2+ 2, . (18.20)
where £2_is the sum of the renormalization counterterms:
L =325 = DI@,)? + (3,71 —18mia? - L(6m? + 2u6N)s?
—ubhs(s?* + %) — FONS? + 72 + [¢ — u(m? + 8m?)]s. (18.21)
Now, suppose that the Symanzik procedure is equivalent to the subtractions of infinities by the

above counterterms up to the (2 — 1) loop approximation. We then have, in the i loop approxi-
mation,

gy - —

R e & T e Tt
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AMPEN = [T+ AM +(Z5 ~ DIp® — (m2 + BO) + 5m2) + (1 — YA NP2 D,

E 4 ...'
T

AJPLE R =11+ C0) +(Zy — 1)) p? — (mZ + 20 + D) + m2 + 2u%80) + (1 — trz)fA_;‘(p_z;h;ii‘;
Fom = 22uil + E(r}) — 2udh + (1 - t‘"3)[FOM} (18.2% Mal
:\;;hi:reA(r), ... E(r) are infinite (i.e., r-dependent) quantities. We choose Z,, c'Sm; and 8\ such 3 ;

a o
Zs=1-A(), §m? = ~B(r), §A = AE(). ( 8-23; Ly
Then the Ward-Takahashi identity (18.18) tells us that S oany
5 = i{ loo
Cry - A(ry=u 51;; [T, 2: 0, —p; P . (18.2% |’ il

P -
which is cc;nvergent asr—+ 0, and fj ;
+ D(r) + 8m? + 2u*8x = 0. asasyl

] ]
H

The combination of (18.22), (18.24) and (18.25) is clearly equivalent to eqs. {(18.16) and (18.17)

A he
o i_-,,: whe
Blbhography EJ aen
i ab vard
For renormalization theory see %
1. F.J: Dyson, Phys. Rev. 75 (1949) 486, 1736. ! k
2. A. Satam, Phys. Rev. 82 (1951) 217; 84 (1951) 426. :
3. 8. Weinberg, Phys. Rev, 118 (1960) 838. 3 ) ind
4. N.N. Bogoliubov and D.V. Shirkov, Introduction to the Theory of Quantized Fields (Interscience Publishers, N.Y., 1959) ] .
Chapter IV, and references cited in p. 330 thereof. V-3 looy
3. K. Hepp, Comr. Math, Phys. 1 (1965) 95; Théorie de 12 Renormatisation (Springer, Berlin, 1969). :
6. W. Zimmermann, in Lectures on Elementary Particles and Quantum Field Theory, eds. 8. Deser, M. Grisaru and H. Pendleton =
(MIT Press, Cambridge, 1970) p. 395 et seq. E F
For the renormalization of the ¢-model discussed here, refer to Symanzik's papers cited in the preceeding section. E !
L 3
0 whe
19. The regularization scheme of ’t Hooft and Veltman af  and
' Sl ishe
ol
Recently, 't Hooft and Veltman proposed a scheme for regularizing Feynman integrals which = C
preserves various symmetries of the underlying Lagrangian. This method is applicable to the
o-model, electrodynamics, and non-Abelian gauge theories, and depends on the idea of analytic . and
continuation of Feynman integrals in the number of space-time dimensions. The critical observa-« dive
tions here are that the global or local symmetries of these theories are independent of space-time - e,
dimensions, and that Feynman integrals are convergent for sufficiently small, or complex N, 7er¢
where N is the “complex dimension” of space-time. : |
. 0 . o . o o
Let us first review the nature of ultraviolet divergence of a Feynman diagram. For this purpose
: it is convenient to parametrize the propagators as " whe
1 ' = Cuss
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l oo
ap(p?) == [ da explie(p? - m? + ie) }. (19.1)
i
o
Making use of this representation, we can write a typical Feynman integral as

I ©o L
[ (ﬂ I da,)( I fd"'kj) G (ki) ), X exp (i D - mf +5e)) (19.2)
i=1g i

F=1

where / is the number of internal propagators in I', L the number of loops, and /,, ... [, may take
any values from 1 to L. The momentum q; carried by the jth propagator is a linear function of

loop momenta k; and external momenta P.n- The exponent on the right-hand side of eq. (19.2)
can therefore be written as

I I
T alq} —m?+ie)=1 §k,.A,l.(a)kj +f2”2 kB, (@)p,, — 3 a,(m? — ie)
J . i

(=1

=3kT-A-k+k-B-p— 2 a,(m? — ie)
i

where K is a column matrix with entries which are four-vectors. The matrices A and B are homo-

geneous functions of first degree in a’s, and A is symmetric. Upon translating the integration
variables

k- k' =k+A'Bp

and diagonahalizing the matrix A by an orthogonal transformation on k', we can perforn the
loop integrations over kj in eq. (19.2). The result is a sum over terms each of which has the form

) oo 1
FI‘ ~ TA,u.--V( [_I f da‘)n-—[A.(am exp[ i{;p-C(a)-p+ Z;af(mf — iG)]] (]9.3)
i= 10 i I i

where T, is a tensor typically a product of g,,’s, A,(e} is the ith eigenvalue of the matrix A,
and s, is a positive number which is determined by the tensorial structure of F.. Note that 4,(a)
1s homogeneous of first degree in a’s. The matrix Cis

C=BTA™'B,
and is also a homogeneous function of first degree in a’s. In this parametrization, the ultraviolet

divergences of the integral appear as the singularities of the integrand on the right-hand side of

€q. (19.3) arising from the vanishing of some factors {1,[A,(a)]*7 as some or all a’s approach to
210 in certain orders, for example, '

¢ <e,<..< @,

where (r,, ry...7,) is a permutation of (1, 2, ... /). See, for instance, a more detajled and careful dis-
Cussion of Hepp.




A A

P et

L3

&

i)
Tn ST

1.

# 30

L

4T
el

o7l
z

S e R

S AT )

i

%
5
- O
g
r
i
1
okl
o3
53
b
o8
g
;.:."
-‘.
el -
4
i
5

112 .S Abers and B. 1. Lee, Gauge theorics

The 't Hooft-Veltman regularization consists in defining the integral F
1> 4 (one-time and (V — l)-space_dimensions) while keeping external momenta and polarization;
vectors in the first four dimensions (i.e., in the physical space), performing the n—4 dimensiongf®
integrals in the space orthogonal to the physical space, and then continuing the result in 2. (For
single-loop graphs one may perform all » integrations together.) For sufficiently small », or COMmee
plex u, the subsequent four-dimensional integrations are convergent.

To see how it works, consider the integral

2
g
o
&

i
=
§

r in n dimensions,

L i
Fr(n) ~ (lj f da,.)( /S d"kj)”(ka‘kb)ﬂ(kc-pm) [Tk, e,)exp i?a,(q}—m,?-!'ie)J (19.4f
i i=-1 ’3“

where, now, the k; are n-dimensional vectors. As before we can express the ¢, as linear functions%;

of the &, and the external momenta p,, where the P, havgﬁonly first four component nonvanishin&_
From now, we shall denote an n-dimensional vector by (£, K), where is the projection of & ontes

the physical space-time and K = & k. Thus, p = (5, 0). Equation (19.4) may be written as a sum ;
of terms of the form E
7 L YR :_5;

Fro~( 1T faar)(TT fa (17 fer-ssc) (11 x,. ,) (195
i=1 F= i=1 a, b ]

sk

o, m d, e f

. X ( I /?c-ﬁ,,,)(ﬂ kg 5,)([7 k,- /?f) exp[i{ic?"A'ﬁ +K-Bp — KT AK — i Do, (m2—ie)
Eh ! = i

The integrals over K; can be performed immediately,
Je-*k K, K, K, exp(-iak?)
11'"/2

|

idy-nf2+2-r
27yl €Sy, 60(01). o{az)aa(aa). 0(014)'“60(&2r—1). o(azr) (i4)

using the formulas

i e

where the summation js over the ele

: ments o of the symmetric group on 2r objects (a,, s, ... azr).;{:.

and
80p8pa =0 — 4. %
Thus £ of eq. (19.5) will have the form 3
Fp(m) ~ (’_I]l Jde) mz{%’uﬁ—f ( mn Jak) &I G, £, ;

X H (k, - &)exp (i I:Ia,.((},? —m?+ ie)l :5

where f{n) is a polynomial in # and r; is a nonne

[TK,- K, in eq. (19.5). For sufficie
alla’s go to zero disappear.

The reasons this regularization preserves the Ward-Takahashi identities of the kind discussed in 4

5
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the preceeding sections are, firstly, that the vector manipulations such as
ke(2p + k), = [(p + k) — m?] — (p* — m?)

or partial fractioning of a product of two propagators, which are necessary to verify these identi-
ties “by hand”, are valid in any dimensions, and, secondly, that the shifts of integration variables,
dangerous when integrals are divergent, are justified for small enough, or complex n, since the
integral in question is convergent.

The divergence in the original integral is manifested in the poles of F p(n) at n = 4. These poles
are removed by the R-operation, so that J.(n) as defined by the R-operation is finite and well-de-
fined as n = 4. Actually, to our knowledge the proof of this has not appeared in the literature, ex-
cept for the original discussion of 't Hooft and Veltman. Hepp’s proof, for example, does not
really apply here, since the analytical discussion of Hepp is not tailored for this kind of regulariza-
tion. However, the argument of *t Hooft and Veltman is sufficiently convincing and we have no
reason to believe why a suitable modification of Hepp’s proof, for example, of the BPHZ thcorem
should not go through with the dimensional regularization.

The above discussion is fine for theories with bosons only. When there are fermions in the
theory, a complication may arise. This has to do with the occurrence of the so-called Adler-Bell-
Jackiw anomalies, which we discussed briefly in section 5. The subject of anomalies in Ward-
Takahashi identities has been discussed thoroughly in two excellent lectures by Adler, and by
Jackiw, and we shall not go into any further details here. In short, the Adler-Bell-Jackiw anomalies
may occur when the verification of certain Ward-Takahashi identities depends on the algebra of
Dirac gamma matrices with vy, such as YuYs +¥sv, = 0. Typically, this happens when_a proper

- vertex involving an odd number of axial vector currents cannot be regularized in a way that pre-

serves all the Ward-Takahashi identities on such a vertex, and as a consequence some of the Ward-
Takahashi identities have to be broken. The occurrence of these anomalies is not a matter of not

being clever enough to devise a proper regularization scheme: for certain models such a scheme is
impossible to devise. The dimensional regularization does not help in such a case, due to the fact

that ys and the completely antisymmetric tensor density €)uvp AT€ Unique to four dimensions and
do not allow a logically consistent generalization to n dimensions. When there are anomalies in a

spontaneously broken gauge theory, the unitarity of the S-matrix is in jeopardy since, as we shall
see in the forthcoming sections, the unitarity of the S-matrix, i.e., cancellation of spurious singu-
larities introduced by a particular choice of gauge is inferred from the Ward-Takahashi identities.
Gross and Jackiw have shown that, in an Abelian gauge theory, the occurrence of anomalies runs
afoul of the dual requirements of unitarity and renormalizability of the theory.

Thus, a satisfactory theory should be free of anomalies. Fortunately, it is possible to construct
models which are anomaly-free, by a judicious choice of fermion fields to be included in the
model. There are two “lemmas” which make the above assertion possible. One is that the anoma-
lies are not “renormalized”, which in particular means that the absence of anomalies in lowest
order insures their absence to all orders. This was shown by Adler and Bardeen in the context of
an SU(3) version of the g-model, and by Bardeen in a more general context which encompasses
n.On-Abelian gauge theories. The second is the observation that all anomalies are related; in par-
ticular, if the simplest anomaly involving the vertex of three currents is absent in a model, so are
all other anomaties. This can be inferred from an explicit construction of all anomalies by Bardeen,
or from a more general and elegant argument of Wess and Zumino.
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To make sure that a non-Abelian gauge theory is anomaly-free, therefore, it suffices to check
that one-fermion-loop contribution to the three-gauge-boson-vertex is free of anomaly. Let

UvT, vf .-3':}

be the coupling term of the gauge boson 4 " to the fermions. Here  is a column matrix of ali
fermion fields in the theory and I, is a matrix whose elements may depend on v, . Now the one-
i I fermion-loop contribution to the cubic coupling of the gauge bosons is {

Ci

e g :‘:’_‘E-:'A'r._'l'l:'

4 P, g 1) ~ [k gy lyp ] r ! r,—— 4 (b c)] e |
G g, 1) ~ [~ N s P .
e awtPe &I S ams A 4y gy oy T T ey e TAE T Y )
i " where M is the mass matrix of the fermions, and p + ¢ +r = 0. As can be deduced from the discug-+
sion of Gross and Jackiw, for example, the vertex of eq. (19.6) is anomaly-free if the part of this
vertex proportional to €, ,,,,p? or €, ,,,g° is convergent. This calls for

Trvs C,{T",,T 3}, =0. a9emn

Equation (19.7) is a sufficient condition for the absence of anomalies in a gauge theory.
- Georgi and Glashow have discussed various ramifications of this condition. Physically, eq. (19.7) }
] implies that the anomaly caused by one kind of fermions is cancelled by that caused by another.
In some models, this cancellation may be arranged among leptons and among hadrons, separately;
in some other models this cancellation takes place between leptons and hadrons. In any case
anomaly-free theories tend to contain more leptons and hadrons (quarks) than the phenomenology
warrants at this time.

The rather restrictive constraints which the consideration of the absence of anomalies imposes
on mode! building may in fact be a blessing in disguise. The possibility of a certain correspondence
between leptonic and hadronic building blocks or of new-quantum numbers and new dimensions
in hadron spectroscopy is intriguing and perhaps exciting.

Let us conclude with a simple example of dimensional regularization: the vacuum polarization
in scalar electrodynamics. The Lagrangian is

£= (3™ —ieA* B*) (3, ¢ +ied ¢) — £(0,4, — 3,4,)* - V(¢) 31

= il

i faa

e e

50

L
r

3 gk i bt S o

v

and the relevant vertices are shown in fig. 19.1. There are two diagrams which contribute to the T
vacuum polarization, shown in fig. 19.2. The sum of these contributions is

g

d"k 1 |
=< Gay J Geapype? figa LKD), 2kp), = 2(KHpY =g, ). s

We use the exponential parametrization of the propagators to obtain

=1

2 e n
1= 25 [ da [ d8f Sk exp ilalktp)+Bki—(aB)a—ie)] } (2K +p) (2k+p), — 2(k + p)? )
s (2my" g (19.9) 4

The exponent is proportional to
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Fig. 9.1. Photon-scalar meson vertices in charged scalar clectro- Fig. 9.2. Second order vacuum polarization diagrams in charged
dynamics. scalar electrodynamics.

lJ (19.6)

e discus- . a 2 af .

of this (atf)k? + 2k pa + ap® — (a+B)(p*—ie) = (a+ﬁ)(k + ﬁp) + ;;Bp‘—(wﬁ)(u’—-m),
so we may write

(19.7)
Y P d’k of
I==e* | da | d8 - exp[i(o¢+{3)i’c’+i|:—p2 (a+ﬁ)(,uz-—ie)]}

\q. (19.7) of Df / (2m) at+f

S fune{)

arately; kK, +( Kop?) +

se . ﬁ) Py = g [20 1) (+B)2”]]

en. gy 2 ak 8

n o .
e? ) ( ) d o "“"L—" (ot _6]}

Aposes @.0,—p,,) f a f dp Gy P B | p® (et B) (s —ie)

ondence

nsions py ~ _d"k

o e f do [ a5 G exp et 4 [y -ie)|

tzation o o

X {4k k, — 2g (k2—p? b (19.10)
73 v gyl) —u )—gpu (a+.6)2p . 3 .

3 the The first term is explicitly gauge invariant and only logarithmically divergent, so that a subtraction
will make it convergent. It is the second term that requires a careful handling. We need the formu-
las

19.8) d"k irn/4
( 7= | exp(ink?) = SXPT/4)
i (27'.)11 (2\/ Tf?\)n
. f exp(11m/4)
= kiexp(iNk?) =— ( )
o f(z y PNy =y V)"
Py -E,

1 d"k s exp(imn/4)
gm,(2 7 k? exp(iNk?) = Buv Ty ( -3) == Ty

(19.11)

(19.9) JEE . )nk“k,eXP(llk’) =
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so that the second term, /,, is 3 symm
(imn/4 1 ( H|  cussio
exp(imn/4) = @ ,[:,6 i 1nif
L= —g2gp momr ot 20 L —p?  (at 2_ 19.19y nuinly
s e*g,, NG !dagf dg (g expll +Bp (e+B)(u 15):” { 2 o
“t teract
2 . n) [ aff ] tional
— S i S —_ + 2 -
X o5 [1(1 > arp” (atB)u : renar
o exp(imn/4) T dA ) ) 1—n/2 . i) W,
=-lie’g,, Qv f da df (1 —-a—f) of ,\Tz_‘lexp{lk(aﬁp’—#’ﬂe)}[ ot l(aﬂpz-u’}]!

For sufficiently small n, n < 2, the A-integration is convergent, and

oo

where

da _ ofl=m2 N = od , o 21 ginit.
f ‘N,,—z_,EXP{IR(A"'lE)}("““)\—'HA)Lofdkgi{?\‘ 2exp[in(A4 + i€)] } = 0. (19.13)%

o g 5=
So the dimensional regularization gives the gauge invariant result, i S,
L=0. : Ity
sealat
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20. Feynman rules and renormalization of spontaneously broken gauge theories: Landau gauge | tion
The reader who has followed the developments so far should have no difficulty in comprehend- A
ing the recent literature on various renormalizable formulations of spontaneously broken gauge
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symmetries. In the following sections, we shall try to convey the general ideas underlying the dis-
cussions of Lee and Zinn-Justin on this subject, without getting involved too much in mathematical
manipulations.

For concreteness let us consider an Q(3) gauge theory in which the triplet gauge bosons are in-
teracting with a triplet of real scalar fields ¢,. As we explained in section 14, the generating func-
tional W of Green’s functions in the Landau gauge is written as [the subscript “0” refers to un-
renormalized quantities] :

W ,,3] = f[dAD,‘,] [dc,) [def]exp [i {S +85, +fd4x [— i}z (0"A,,(x))?
0

F1ou0) - AJ(x) +J,(x) -?o(x)]” (20.1)

where, we recall, ¢, is a triplet of fictitious complex scalar fields of the wrong statistics and the

limit @ ~ 0 is understood. The action, S, and S, are given by

$= JEH40,A0 — 0A0u +80Aou X Agu + 1 @uBy +20A0u X ) ~ Ll gl Na(@D (202
S, = [d%{~a4c}(x) - 3,c,(x) - goa"cl(x) A} X ¢, (x)]. (20.3)

If 42> 0, the theory is the usual one of massless gauge bosons interacting with a multiplet of
scalar fields of mass u. Let us consider the renormalization of the theory in this case. All the
three-point and four-point vertices are logarithmically divergent (i.e., the superficial degrees of
divergence D = 0), and all the self-energy parts, for Ay, @y and ¢, have D=2 ie., are quadrati-
waily divergent, according to the power counting procedure discussed in section 18. .

The Ward-Takahashi identity for W, of eq. (20.1) is obtained by considering the effects on W
of the transformation

1
Agulx) = A, (x) — alx) x Ay () +§— 9, (x)
) 0

$o(x) > $o(x) — @ (x) X Bo(x) (20.4)

which leaves S invariant, after eliminating the c,- and ¢! -fields. Since we are going to derive the
Ward-Takahashi identity for I¥ for a more general class of gauge conditions in a later section, we
shall forego writing it down here. Now, when momentum-space Green’s functions are dimen-
sionally regularized, they satis{y the Ward-Takahashi automatically. When we generate renorma-
lization counterterms in the manner described below (or scale fields and parameters in the way
specified below), the renormalized Green’s functions are finite as 11 > 4, satisfy the renormalized
form of the Ward-Takahashi identities [see eq. (2.8) of Lee and Zinn-Justin I1]. It is necessary
10 ensure that the renormalized Green’s functions satisfy the renormalized Ward-Takahashi identi-
ties, because the latter will be used to show that the renormalized S-matrix is free of spuriots sin-
Bularities, ;

A simple way of generating all the necessary renormalization counterterms in the eff ective ac-
tion is to perform the following scale transformations on the quantities appearing in eq. (20.1):

A =ZIPA,, You = 25123, 6 = 7179,

T

e Pl S il gl ¥ —m K A
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: -' ; Jo = 221 J’ F 2
. ik = = 322, 7 i i
HElE Co = Zj%c, 80=82,/Z3 =8Z,\/Z,Z4",
i (10)* = p* + 8%/ Z,, Ao = NZ,/Z2
and
oo = Zsa,

where the superscript ‘0" signifies the quantities appearing in eq. (20.1). In terms of the new
(renormalized) quantities, the generating functional W, has the same form as eq. (20.1), except
that § and §_ acquire additional pieces AS and AS,, where

AS = [d% (-1(Z, — D,A, - 3,A) +1g(Z, ~ DA, X A, (3,4, —3,A,) :

i e s i "__:..
ST T e g W P

—38%ZYZs~1)A, X A,)? + H(Z2 =D, 9) ~17¢?] — gZ,(Z,/Z3)-1 1A, - ($X 31¢) :
HEUZYZNZZ)-11(A, X ¢)? — Lo g2 — iNZs—1)(9?} (20.6)

and -

AS, = [ax{~Z, — 1o*ct-a,c — g(Z, — Dyaret ‘A, X c}. (20.7)

R T | BT
N L,

When properly regulated, the self energy-parts of A, and c are only logarithmically divergent,
and if we choose Z;, Z;, Z and 8u? to make the propagators for A, ¢ and ¢ finite; Z,, Z, and

k- _ Zs to make the 4 yB%, A nc*c— and ¢* proper vertices finite, then the counterterms exhibited in
- ;& eqs. (20.6) and (20.7) render finj_te all renormalization parts of the theory. In particular, the re-
ok normalization constants Z,, Z,, 7 1 and Z; can be chosen so that

Z1/Zy=Z,/Z,,. (20.8)

This is first shown by A. Slavnov and J.C. Taylor. Also, if we choose the renormalization counter-
terms in the above manner, then the counterterms for the A:— and Azrp’-vertices shown in eqs.
(20.6) and (20.7) remove divergences from these vertices.

The proof for this is considerably complicated by the fact that we should not perform sub-
tractions from renormalization parts at the points where all external momenta vanish, since at
these points infrared divergences of the renormalization parts are uncontrollable. For this reason,
the BPHZ R-operation has to be performed at some points where all external momenta p, are
Euclidean, p; < 0.In any case, the gauge invariant renormalizability of Green’s functions in the
Landau gauge, i.e., the possibility of renormalizing Green’s functions in terms of the scaling as in
eq. (20.5) as indicated above, were shown in paper I and paper I1, section 2 of Lee and Zinn-

: Justin*,

Ti Let us now consider the case u* < 0. For this case, let us mimic the developments of the o-
1 model we presented in section 17. From the generating functions Z {J,. 3] of the connected

o F Green’s functions

*1t should be borne in mind that the gauge transformation for the renormalized gauge fields is

1{Z3 _ 1Z,
Ay~ Au— w X Ay +§(-Z-l~)a#w Ay ~wX Ay +g—(zl- e,
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W(,, 1) = exp{iZ[J, J1}, (20.9)
we define the generating functional of proper vertices
Py, @1 = Z[0,, 3] — [d'%(«,00) - J4x) + 3(x) - B(x)) (20.10)
where
o1, (x) = 8Z/8J%(x) (20.11)
and
®(x) = 8Z/53(x). ' (20.12)
The Maxwell equations dual to eqs. (20.11) and (20.1 2) are
—J,(x)=8T/8 2 ,(x) (20.13)
~J(x) = 8T/6®(x). (20.14)

The expansion of I around @ = Q and .af# = 0 generates proper vertices of the symmétric theory,
#* > 0,and conversely, the knowledge of the renormalized proper vertices amounts to knowing
the renormalized form of I'. Now we consider the equation

7= N/60() |4y 4,20 (20.15)

which determines the vacuum expectation value of the scalar fields, when the system is subjected
1o a constant external source v:

u = u(y), (20.106)

The direction of ¥ may be defined as the z-direction in the isospin space. The isospin invariance

of I implies that u is along the z-direction. Just as for eq. (17.22) of section 17, we obtain from
eq. (20.15)

-u A}0) =y (20.17)

where A, is the momentum-space propagator of those components of the scalar field which are
perpendicular to y. Denoting

~A0) = m2,

we see that eq. (20.17) may be written as

wmi =y, (20.18)
So the spontaneous breakdown of the gauge symmetry entails

mi =0 (20.19)
and

VEu(y=0)# 0 (20.20)

where v is the spontaneous vacuum expectation value of the scalar field. We can adjust §u2 so
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that* m; ~ 0: the expansion coefficients of I" about #L, = 0,® = v are the proper vertices of the
spontaneously broken gauge theory. The generating functions Z[J , J] satisfies the same Ward. = !

Takahashi identity in the limit m; = (O, for its response to the gauge transformation (20.4) is in-
dependent of the value of 2.

In the spontaneously broken Symmetry case, it is convenient to write the scalar field ¢y as

$o=(vo+ ¥o) + X0 (20.21) +

AR T ol B e i AT 4 ’
LL SR LW T L R e Ll AT

so that vy - o =0, ¥y X0 = 0. The action (20.2) can be written as
STAou, Yo, Xo] = [ {5 BuAor — 3,Aou +20Aow X Ag)? +Lg3(ve X Agy)? (20.27)
+3 10 — (20u3)7] + 2 (3uX0)* — ZoVo" (Ao X 3*%) — goWro- (Agu X 8"x,) ¢
~&0Xo" (Aow X 30) — oXo (Ao X 8"x0) + g3 {(Wo X Agu)?
F20vo X AB) (X0 X Aou) +2(vo X AB)- (Yo X Agu) + 2(Wo X AE)- (xo X Aoy)
0 X A0i)®] = Novoo(¥d + X3) — {ho(Wd + x3)? — 2 AAYE + x3) — veAu?Y]

where we have written

.l

Ap® = ud + Nov}.

Since the vacuum expectation value of g is Vo, Yo must not have one. This leads to the condition
that

' Uo[Ap2+ 8] =0 (20.23)

where v, Au? is the contribution of the last term on the right-hand side of eq. (20.22) to the vacuum t
expectation value of , and v, is the higher order contribution to the process Y - vacuum. Ac-
tually it can be shown that (Ap?+ §) = —[AZMO0)] nrenormatized SO that eq. (20. 23) is nothing but
(20.18) in the limit y = 0, and tells us that Ap? should be chosen to make m; = — < (0) vanish.
We can perform the renormalization transformation of eq. (20.5) in Aop, do =vo + Wy + X0, g and
Ao in eq. (20.22) [note that v,, ¥o and %, must all transform like ¢, ] to generate necessary renor- »
malization counterterms. The discussion of the preceeding paragraph then implies that choosing
renormalization constants Z,, Z,, Z,, Z,, Z, and Z; to be the same as in a symmetric theory will t
eliminate divergences completely from the spontaneously broken symmetry version of the theory.
The Feynman rules for this theory are obtained if we write

S[AOH» ¢0] +S(_-[A0.U: CO) CE] = SIJ [A“’ 'r”) X, C’ c"'] +S][Au: 'p, X, C, CT] (2024)
with

So = fd“x{—-ﬁ (3,A,~3,A )+ g*vX A )+3 (aﬂx)=+§[(ap Y)P—(2Av?)?) —gv - (A Xd*x)—a4ct a,c}
(20.25)

where all quantities in the definition of S, refer to the renormalized ones, and S| is defined as the

rest, including renormalization counterterms. The generating functional Wy “n' J] may be written
as

— Uy e e e TS

‘ * A change in 62 affects Z°s only by finite multiplicative factors, see for example K. Symanzik, Comm. Math. Phys. 23 (1972) 46.
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¥, 1, 1 = expliv [a*xJ.(x) Yexp (i S,[8/i6%, 8/i8J,, 8/i8], , /6K,
SIBKIW L, 134, 3, K, KM} o _ptoy (20.26)

where

¥, = J1dA,1{d¥] [dx] [det] [de] exp [i So+ fd% [— i(B“Ap(xW

+ 1,060) - ARG) + T3 ()P0 + 3(x) - x(x) + KT(x) - elx) + e(x) - K(x)] ]] , (20.27)

X and KT being anticommuting c-numbers. The propagators of the theory are casily obtained from
eq. (20.27), and perturbation theory is based on the formula (20.26) and on the idea of loop-wise
expansion, as explained in section 16. The propagators are,asa — 0,

AV —ilgy, — kKK + i) (R — p? + ), u =g,
X2 cif(k? + ie)

Al P —i(gy, — kKKK + i)

v Dif{k? — (220 + e}

ch®3 ik + ie).
This model may be considered as the Georgi-Glashow modet discussed in Part I, without
fermions. A} is the photon, ¢ is the physical neutral Higgs boson, (4, = i A%)/v/2 are the W#

boson fields. The W boson propagator in this gauge may be written as

—i(g Ll ) i = -i(g . N i e _1_ . (20.28)
Bk +iel kP — it + e B ur TR P+ ie ur ok*+ie

The first term on the right-hand side is the canonical propagator for a massive vector boson with
three degrees of polarization freedom. The second term corresponds to a massless scalar boson
which couples to the source of the vector meson gradiently. The trouble is that this scalar par-
ticle is associated with a negative probability. So Green’s functions of this theory are full of
“ghosts™,

What happens in an S-matrix element, which is obtained from the Green’s function by removing
¢xternal lines, setting external momenta on the mass-shell, and contracting tensor indices with ap-
Propriate physical polarization vectors, is that the poles at k? = 0 associated with the projection
Operator (g, , — &, k,/k%) in the vector boson propagators, and of the propagators for the un-
physical Higgs scalars x'2 and for the scalars ¢"*3 of the wrong statistics cancel, so that none of
the massless scalar particles in the theory are physical. The physical particles are the photon (A; )
which is massless and has two polarizations, a neutral massive scalar meson () and a pair of mas-
sive charged vector bosons with three polarizations. This precisely is what is predicted by the
Higes-Kibble theorem discussed in Part 1. The reader is invited to verify this fact for a simple
Process like W* + ¢ » W* + / in lowest order. In this case there are four diagrams which contri-
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Fig. 20.1. Lowest order graphs for v - W* elastic scattering,

bute in lowest order (see fig. 20.1). When all external particles are physical, the pole in the -
channel at ¢ = Q is absent.

The proof of the cancellation of spurious poles at £ = 0 in the S-matrix proceeds from the i
Ward-Takahashi identities satisfied by renormalized Green’s functions. These relations are used to:
show that when the imaginacy part of an S-matrix element is computed by the unitarity reIation,%
the contributions from massless particles associated with the three kinds of the & = 0 poles add *
up to zero. The proof is extremely tedious and was worked out explicitly and in detail for inter-

S e

mediate states containing one, two and three such unphysical quanta in paper 1I of Lee and Zinp-
Justin. g

The discussion to be presented in the forthcoming sections obviates the necessity of proving %
the cancellation of spurious singularities in this manner. {;
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21. The R,-gauges

In this section we will discuss a formulation of spontaneously broken gauge theories in a class
of gauges in which the proof of the unitarity of the S-matrix is fairly simple. But first, Jet us de-
scribe spontaneous broken gauge theories in a general way, without making commitments as to
the group involved and the representation of scalar fields.

Let ¢, (i =1, 2, ...K) be a set of scalar fields transforming, in general, reducibly under G of di-
mension N:
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where u* are infinitesimal parameters of the group, and L s are representations of the generators

.of G. We include the coupling constants of the gauge theory in L so that the structure constants,

€3, defined by

(Lo Lgl =iCyp, L, (21.2)

depend on the coupling constants. We choose ¢ to be real so that L can be made imaginary anti-

symmetric, and C,. real and completely antisymmetric. With this convention, the gauge-invariant
renormalizable Lagrangian is written as

L= g F P + 3 (0407 +19TL,A)0,0 — iLy486) — V(p) (21.3)
where V(¢) is an invariant quartic polynomial in ¢, and
Fi, = 0,47 0,45 + C,, ABAY. (21.4)

Let v be the vacuum expectation value of ¢ in the Landau gauge, and define ¢’ by
¢=U+¢'. (215)

|As Appelquist et al. (see bibliography) have stressed, the vacuum expectation value of a scalar
field v depends in general on the gauge. In final results, we can always trade v for the mass of a

surviving Higgs scalar meson, for example, which is gauge invariant, as a fundamental parameter
of the theory.] In terms of ¢', the Lagrangian (21.3) can be written as

L= —gFF 4 (0, LoL0)ASAPEH (0" +ig TA®L )(3,0'—iASL ')
+i(v, L,3,¢ A% + (v, L, Lp"YAZAPE — V(g'+v), (21.6)

The gauge invariant potential can be written as

aV(w) 1 FVpy 1 V() 1 'V (v)
V(6) = V(v) + ¢~ 4 L g o PP, e+ Bl B — D (21,7
@) =Vw) +¢; oy, 2! oy dvou; 3! Gl v du0v, 4! Gl 3v;0v,0v, 3y, A

Let us recall the discussion of section 2. The vector boson mass matrix
(U*)ge= (v, L Lgv), pr= ()Tt (21.8)

has rank N — M where M is the dimension of the little group of v. We can decompose the represen-
tation space of ¢ by the projection operators P and (1 — P);
LaPco if e litth pmp

8y =Py +(1 - P); Pi=2 (Lav),.(l—z) WTLy); of v, (21.9)
o.f M g

P' is the projection Operator onto the space of the Goldstone bosons which is N — M dimensional.
Note that the sum over « and §in (21.9) actually extends over the N — M generators which are not
of the little group of v. We may decompose the quadratic terms of ¢’ of (21.7) into two parts:

a’V(u)/au,.au,. =(M*),; + P, o V(v)/ov,du;,
75y = (1 = Py, 07W ()3, 20, (21.10)

We can always adjust the quadratic term of V(g), $90TA9, [A, L] =0, so that M? is a positive
emi-definite matrix.
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To lowest order, v is determined by the condition

B il

a::iu)=0, v+ 0, (2[_];’§
from which it follows that [see eq. (2.18)] "«E
Py 8%V (v)/ov,0u, = 0. (21.12¢§
In higher orders in the Landau gauge, v is given by %

P [ATHO)],, =0 21138

which is the generalization of eq. (20.17) (with v =0). In(21.13} A(Q) is the scalar meson propa
gator matrix at zero momentum, which is a function of v.

Aowge

bk

3

We shall write the Lagrangian £as é
£=2, +I:[ H
where j §
=

)

Lo=-3(0,4,-0,4,)T(@4A4"—0"4*) +} AT WA (24073, $) -1 o' TM $+iA5(, L3"¢") (21.14

a8

-

and 2, is the rest [the sum of interaction terms and the counter terms

$;3V(v)/av, + %qb,.P,.k ¢ian(v)/avkaui] - Ineq. (21.14), we have expressed Aj as a column matrix.
The Lagrangian (21.14) is a perfectly straightforward free Lagrangian for M massless vector boso
N — M massive vector bosons and a multiplet of scalar mesons, but for the last term, which couples

b3

[

3

the longitudinal components of the massive vector bosons to some of the scalar mesons. .
The development in section 14 suggests that we consider a wider class of gauge conditions than
the Landau gauge. Let us further generalize the considerations there and consider gauge conditions

of the form f
F(d,,¢)—-a,=0 (21.15)4

i

where a is in general an arbitrary function of space-time, so that
Fa(Af‘,(Pg)—ac,,:O (21.16:‘

has a unique solution for g, given A, and ¢. Following the discussion of section 14, we define the:

Vw‘qﬂ.!-n-....}i

determinant A by g

3

87 (4,91 = [ T1 dgtx) T 81F, (45, ¢%) ~ ). 2117%

x x,Q ;

The counterparts of eqs. (14.12) and (14.13) are -

AplA,, ] = det M (21.18)¢
where

(M, )] o5 = BFL(AL(), $5C0/B1ts0) |, o (21197
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and for g in the neighborhood of the identity,

F AL (x), F(x)) = F (A ,(x), p(x)) + f d*y BE (M p(x, Y] gptig(0) + O(u?).

The generating functional of Green’s functions in this gauge is

W[5 ;] =f[dA;‘j] [do;)Apl4,, 4] [] 5[Fa(A#,¢)~aaiexp{ifd“x[B(x)+JEA“+JT¢]}. (21.20)

Repeating the argument in section 16, where we showed that the renormalized S-matrix is the
same in the Coulomb and Landau gauges, we can show that the renormalized S-matrix is indepen-
dent of the arbitrary function a, in the gauge condition (21.15). One may therefore integrate over
u,(x) (with an arbitrary weight fzctor) the right-hand side of eq. (21.20) without changing the re-
normalized S-matrix

Iy = J‘H daa(x)exp{ ;—fa;(x)d“x}wp’a (21.21)

where we have inserted a Gaussian factor arbitrarily. We obtain finally
We~ [1dAZ11dg,1det M expli [d*x{2(x) — FTF + /T4 + JT$}]. (21.22)

Equation (21.22) is the basis of a formulation based on the general gauge condition (21.15).
The idea is to choose F, in such a way that the part of £2(x) — 1+ FTF which is quadratic in Au
end ¢ is nonsingular. We choose F,_ to be, with a real, nonnegative &,

i |
Fo= x/?{a"A;‘: — é(v, L“¢')] . (21.23) {
Then the sum of £, in eq. (21.14) and — FTF is

1
2, ~FTF= _1AT[-g"a? + 340*(1--§) — g’u?] A, + ;¢'T[—- M ?Lav)(uTLa]¢'(21.24)

where we have dropped terms which are four-divergences. The cross-term in the square of F has
cancelled the term which couples the longitudinal components of the massive vector bosons to
some of the scalar bosons.

The propagators in this gauge are obtained from the formula

Weo ~ [1dAZ1 ;T expli [dx{£,(x) = LETF +JTA* + 774}

~ exp (f ;)fd“xd‘y[J:(x)A’,‘,”(x—-y)Jy + T ()AL -y W] (21.25)

[We apologize for the proliferation of the symbol Ap:inegs. (21.17)—(21.20), it is a Jacobian of
iitld variables; here it stands for the Feynman propagator.] The propagators satisfy

0%+ u? — i) — 049°(1~§)] A, (x—p; §) = —g"*8%(x — 1),
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1 .
[-a’ - M* - 3 2o L) (VL + 16]Ap(x—y; £)=8%x —y) (21.26%§
g & d

which incorporate the boundary condition given by the Euclidicity postulate. The momentum f
space propagators are given by Js?
=
1 1 1 it

Ak =—[“"—(l———)kk = 21.2
A BTV R e ried B Pt e @l 7)§
and ..ké
1 . =
l o

Ap(k? 8)= ——=— —————————— =P +{1-Py=——-" 1.2
r(E58) B-M-Q1/8)Z L v) (WL +ie kr—pft+ie ¢ )kQ—M2+'e S EH

where the projection operator P is defined in eq. (21.12). (The derivation of the second line ofeq
(21.28) from the first is left as a challenge to the dedicated reader.)

Now let us consider det M. For infinitesimal i, we have ‘3‘
$5 = ¢ — i1l 9, 2129}

3

[A51% = A% — 11°C 5, A% — B,u°, (21.305
so that TJ

F (A5, §8) = Fy(A,, ) = 071 — | Cyp 05(AL1P) +-::?(u. LeLB®Yi uf + O?). (21.31)

Making use of eqs. (21.18), (21.19) and discussions of section 14, we can write

det My = det {8F (AL G610} 5= 0

—
2
—
Wl
(3]

o
f B deriis

2
1 ol

=f[dca] [dellexp [ifd“ [E)“c;ﬂaMcm—c‘”(53 T ) cpticyp,dciAl g —-E-cT(vTL"'L% )e H;

af E

where ¢ and ¢t are N-component complex fields of anticommuting ¢-numbers. The propagator forirI
cis 5
AC(K?, E) = if (k% — p*E + i€). (21.33)2

The propagators (21.27), (21.28) and (21.33) become those of the Landau gauge as £+, In
fact in this limit, the Feynman rules for the §-gauge are identical to those of the Landau gauge.
Incidentally, the vector propagator of the form of eq. (21.27) is precisely that devised by T.D. Leg
and C.N. Yang over a decade ago in their attempt to construct a regularizable theory of weak inter:
actions, which they called the £-limiting procedure. In this gauge, the spurious k? = 0 singularities
in the vector and scalar propagators, and the propagators for the fictitious scalars of the wrong

statistics in the Landau gauge, have been displaced to k2 = p?/t. Furthermore, we shall show in the
1

next lecture that the renormalized S-matrix is independent of the parameter £. This can only mean
that the poles at k* = p2/¢ disappear in the S-matrix completely.

Note that the vector boson propagator of eq. (21.27) behaves as 1/k? for large k2, and all the -
interactions of the theory are of the renormalizable type, so that the superficial degree of diver-
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gence of any proper diagram in this gauge is at most two. One is at liberty to consider the limit
t- 0, after Feynman integrations are performed. To take this limit in the integrand is dangerous,
since the integral may not then be well-defined (with the dimensional regularization, however,
only-loop diagrams for S-matrix elements seem to be controllable even in this gauge). In any case,
we may just take this limit in the propagators to see the particle content of the theory. In the
kmit £ - O, there are M massless, and NV — M massive vector bosons, K — N — M massive scalar
hosons and no other spurious particles. Thus in this limit we are in the unitary gauge discussed in
section 3. In this limit

1 1
det Mg ~ f[dcal [dctlexp [ifd“x cl(x) [— Euiﬁ "% (UTL"L%'(x))] cﬁ(x):l

~ exp [54(0)fd4x 2> [In(1 +J(x)lm]

where
V)] g = (/D (0, LTLE'(x))

a result originally due to Weinberg.
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22. Proof that the renormalized S-matrix is independent of &

In this section we will derive the Ward-Takahashi identity for W and show that the renormalized
S:l?latrix is independent of £. In particular, it will then follow that the poles in propagators at
i"-_ ¢ are spurious. We shall then comment on the practical way of performing renormalization in
_Ulls scheme: In the following discussion all fields refer to unrenormalized ones, and alt Feynman
m!efgrals are dimensionally regularized.

_ The Ward-Takahashi identity for W is so complicated that unless we use a compact notation it
s 2lmost impossible to print it. We shall let ¢, be the set of all fields including the gauge fields, so
that 1 runs over o = 1,2,...Nandi=1,2,3, .., K, in the notation of the previous section. As be-

fore, « Jabels the generators of the group G. We let the indices ¢ and « stand for the space-time
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variables and tensor indices as well as the internal symmetry indices, and summation and integr
tion over repeated indices will always be understood in this section. With this convention, the
finitesimal transformation law of the field ¢, may be written as

¢t = ¢, + 5,0, + Aglu, + O@u?) (221
where I‘:‘b is a reducible representation of the generator labeled by a, so that, for example,
o

baca ('lb

if b and c refer to one of the «’s, and
= =8 5 (x, —x,}

so that
AGuy, = 3, pttp(xp).

According to the discussion of the preceeding section, the generating functional of Green’s func—-:é
tions in the general gauge F can be written as

WelJ] ~f[d¢lAF[¢1e><p[i{S[¢l —3F2+J,0,1] (22.2)§
where & |

Aplg] = det M,

(Mp)op = 61'"(,,(1;%’)/:5:13|"= 59, (F 0.6, + AP), (2235
so that
F(¢£)=F (¢) + (Mg)ypuig + OW?). (22. 4

' »ﬁmm-m,”?ﬂh kil Al s

The Ward-Takahashi identity for W [/] is obtained if we consider the change of integration

variables ¢ to ¢% where g
6. 95 = 6, = ¢, + (1,8, + AP, (22.5)%
where we shall restrict 2, such that ‘t
Mplagitg = (22.6)2

A, being some constant independent of ¢. Since M. depends on ¢, the allowed u’s depend on ¢:
= [MZ(P)] ghg. (22.7)%

The reason for this restriction is that the change in F, is then simple. From eq. (22.4) we see that

F (') = F(¢) + A, + O(\). (22.8)7
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The functional metric [d¢] and Ag(¢] defined by eq. (22.2) are not invariant under the transfor-
mation (22.5) when u is restricted by eq. (22.6). The reason is that the transformation is no longer
linear in ¢. [A simple example is afforded by dxdy which is invariant under the transformation

x> xcos@ —ysin@,y— ycosd +xsin 8. The metric is not invariant if @ depends on x and .}
However there is an important lemma, derived by Fradkin and Tyutin, and Slavnov for the

Landau gauge, and generalized to any gauge by Lee and Zinn-Justin in the Appendix of paper 1V,
which states that the product A [¢] [d¢] is invariant under such nonlinear gauge transformations:

[de)Agl¢] = [do']1AgI0'], (22.9)

for ¢' given by egs. (22.5) and (22.6).

The proof is interesting but somewhat lengthy, so we refer the reader to Appendix of Lee —
Zinn-Justin IV.

Since a change of integration variables does not change the value of the integral, the change in
W with respect to A must be zero when we change the variables by eqs. (22.5) and (22.6).
Writing ¢ for ¢', we have

8
0= [[dg] Aplo]expli{Sig) L F2(9)+/,8,1] o (SI01 4 F2(@)+7,0, }
or
J 1001 818 exPUiLSTO1 —3F2@)+1,6,}1 (- F(0)+/, (T + ADIM)] 5o} 0. (22.10)
Equation (22.10) can be converted into a functional differential equation satisfied by WF[,,?] -

{-_Fa G 5}) £, (rg% 6—‘}3+ Af)[ Mz (—f %)] ] WelJ] = 0. (22.11)

b Po

This is the Ward-Takahashi identity for W[J].
To make use of eq. (22.11), we must know what

ol )] v

is. Consider

Wogld] = [1d8][de, ] [ded]c,chexplifSI6] —LF2(9)+chM ) upcs+J, 0, }] (22.12)
where ¢ and ¢, are anticommuting fields, so that

Aplp) =det M, = [ [de, 1 {delTexp{i el (Mp)ygc,). (22.13)

The functional Waﬁ [/} is the Green’s function for the fictiticus scalar ficlds of the wrong statis-
lics in the presence of external sources J, and satisfied the equation

16
[Mp(;a—f)] Wl - S 1401 (de] (Aet M) gpc! expliTSTo] —LF2@)+eL(M sy +ode)

3
= f[drb} [de) [detic] (— S—c?) expli{S{p] —3FU@) +elMp)ype,+/,6,11,
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ﬁﬂﬁﬂiﬂémﬁw Fm

He W
F (18 15.
_/l'IF (’;‘ 5})] WﬂT IJ] = 5‘” WelJ]. (22.1 Lar
of g‘v the
We sce that EE the
-ﬂl“"(—l 2 )] W71 =W, [J)] (22. zsf; '
NEAVY- VSR pat ™
3 !
Next, let us consider what happens to W.[J] when we vary the gauge condition Foby AF . ::"
- | . _ SAF, %
WeiaplJ)=Weli] = f [dp) Apexp(i{S[¢]~3F2(}+7 0, )| —iF,AF +- 5, (08, 6,+ABY[M3(9) r
.'-: (221 % H=
where we have used the fact that, from eq. (22.3), il Y
4 * as !
8F, B8AF, 5 o ! 5 :
Bpyap = det (6¢a i _-6-¢ )(l" »p T A, )J %
i
- SAF, SAF, :
- cleth +— T * (08,0, + ~ Ag 0, 2(ré, 6, + DM g
to first order in AF,. We will operate i AF_(8/i J) on eq. (22.10). Noting that
18
. i AF, (1 gj).fbexp(i J.8,) = exp(i J,0,){J, AF,(9) + SAF,()/86, ), 1 wh
. 2 pre
: we obtain l 9“?
3 _ ) - ) SAF (¢) ] . 1 l*‘ L of
4 0=f1ds1 8,161 exp(i{S[9] —FH(S)H,0,1) | —iF,AF,+|J AF (d)+ ](r o0 AD MY, o7 Lo
1 a -
¥ [a
. (22.17); of
¢ Combining eqs. (22.16) and (22.17), we finally obtain ; =
g WevarlJ1-Weld] = [1d¢]1AL1¢]1exp(i{S[9] —LF2(S)+],, I, AF (@)TE,8,+ADYM;1),,
: or, valid to first order in AF,
WearlJl = f[d¢|AF[¢]GXP(I{S[¢1—1F2(¢)+J (6, HIG 8, tADME ) gAF (@1} (22.18) (111h
- t
f _ i.¢., the effect of changing the gauge from F to F+ AF is merely to add extra vertices between 1o
by the source and fields: '
. F~F+AF :
. Ja¢a e J {¢ + (Fab b A:)[ng‘l(ﬁb” agAFg(¢)}- ;
ks L .y




(22.14)

(22.15)
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(22.10)
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What happens to the S-matrix under such circumstances has been discussed thoroughly in section
i3, in conjunction with the change in the S-matrix as one passes from the Coulomb gauge to the

Landau gauge. We shall adopt the conclusion there to this case, that, if two W[J] s differ only in
the external source term as in (22.18), the result is only a redefinition of the renormalization of

the unrenormalized S-matrix. The change in an S-matrix element § may be expressed as

Spear = l’—I (Zpsar!Zp)*Sp

where (Z,), is the wave function renormalization for the /th external line and the product IT ex-
tends over all external lines. Thus, the quantity

S=8/[1@Z))" (22.19)
)

is independent of F. Let us recall that we have been dealing with dimensionally regularized (with
n = 4—¢) quantities. In eq. (22.19) (Z..), is to be calculated from the two-point function
[G};?)(e)], for the particle of type I. In general S, and Z depend both on F and €, and are finite
aslongase # 0,2, etc.

When we specialize to the §-gauge, the quantity in (22.19) is

S(e) = lim n _rm G
€)= T GY
e 11]1 2 o1 (%, €),

(Z(£, €))
Jim (GO e)) = ———

2
Py my py—my

{22.20)

where GU')(¥, €) is the regularized n-point Green's function in the £-gauge. The discussion of the
preceeding paragraph implies that S(e) is independent of &. Therefore it is devoid of spurious sin-
eularities in & depending on £ for all € # 0,2, as can be seen by taking the limit £ > 0 in (22.20).

To obtain the physical S-matrix, we must take the limit € > O after renormalization. One way
of accomplishing this is renormalize the Green’s function G)(E, €) for arbitrary &. In paper IV,
Lee and Zinn-Justin discuss the renormalization scheme for arbitrary £ based on the Ward-
Takahashi identities for a particular model. The same has not been worked out for a general class
of models.* However this is not necessary. Since S(¢) is independent of £ one may take the case
£ == (the Landau gauge) and obtain

n  (pl-m?)
Se)= lim [] — = G"Xeo, ).
P?"“‘Iﬂ}]:l [Z(OO’ e)];.‘Z

This is.. precisely the regularized S-matrix element in the Landau gauge, and we now learn that this
duzntity is devoid of spurious singularities in k2. We can now rescale the coupling constants and
Other parameters according to the discussion of section 20, i.e.,
g = Z(e) g Z,(€) ‘
=g == gtc.,
"1Zy(e)]% 7T [Z4(e)) V2 Zs(e)

IAI . .
Ole edded iy proof: This has now been done; this will be reporied in a forthcoming paper by B.W.L.
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and take the limit e > 0, while'keeping &, and other renormalized parameters fixed. The result js,
finite S-matrix element, which is devoid of spuricus singularities.
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23. Anomalous magnetic moment of the muon in the Georgi-Glashow model ;

As a practical application of these ideas, we calculate the first weak correction to the anomalous
magnetic moment of the muon in the Georgi-Glashow model, using the RE gauge. In peneral, the &
parity-conserving terms of the u~ electromagnetic vertex have the form

- v "
: io,.q :
Vy=ulp+ 11/2)[7yFl(q2) t = F;(cﬁ)}:(p ~q/2) (23.1)%
where ptg/2is the final (initial) muon momentum, ¢ is the momentum transferred to the photon,
and s is the muon mass. Using the Gordon decomposition :
2y, = 2p, tio,q"

eq. (23.1) can be rewritten

A

p

V,=Hp+ q/2)['yp[F|(f]2) + Fy(g) —n—:Fz(qz):, u(p — q/2) (23.23%

or :
. Py i0,,q"

v, =ip+ q/2)[’—n Flqh) +—— [Fi(g?) + Fz(q’)]] u(p - q/2). (23.3)

In any of these forms, F\(q?) is the electric form factor, and Fi(g?) is the magnetic form factor.
In particular. F,(0) is always renormalized to be 1, and £3(0) is the anomalous magnetic moment.
In ordinary electrodynamics, V, is just a matrix element of the neutral, gauge-invariant, electro-

Fig. 23.1. Photon exchange contribution to the meson anomalous magnetic moment.
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(d) {e)

Fig. 23.2. Neutrino and scalar meson exchange contributions to the muon anomalous magnetic moment.

magnetic current, and therefore the form factors are independent of the gauge. In the more general
case we have been considering, this current is not invariant under gencral transformations of the
non-Abelian gauge group, and the form factors will be gauge-dependent. In particular, for the RE
gauge, F1(g*) and F,(¢*) will depend upon §£.

However, the electric charge and the anomalous magnetic moment, £,(0) and F,(0) respectively,
are physically measurable quantities; they are related to residues of the photon pole in the S-ma-
trix for u*u elastic scattering, for example. Therefore, since the S-matrix is gauge independent, we
expect them to be independent of £. This is the fact we wish to demonstrate by an explicit calcu-
lation.

In all models, there is a contribution to Fy(0) from the photon-exchange graph, fig. 23.1 , which
was calculated long ago to be a/27. The remaining graphs are formally of order also, but they
are all proportional to e/u? (i is the W mass, as in the previous sections) and so are numerically of
the order of the Fermi constant G, and may be thought of as weak corrections to F5(0). In the
Weinberg-Salam model, all these corrections are equal to Gin? times constants of the order one, so
are very small indeed. In the Georgi-Glashow model, graphs with heavy-lepton exchange ¢ontri-
bute terms of the order GM,m (M, is the mass of the neutral heavy muon) and may be more in-
teresting experimentally. We outline the calculation in a simple approximation.

Heavy muons M° and M*, of mass M,y and M, can be added to the Georgi-Glashow model dis-
cussed in section 9 in exact analogy to E° and E*. In addition to the photon exchange graph
(lig. 23.1), the graphs of figs. 23.2 and 23.3 all contribute to F,(0). In the U-gauge, praphs con-
taining the charged scalars s* are absent, but the remaining ones are not all unambiguously con-
vergent. In the RE gauge, we must include them, but this gauge has the advantage that the contri-
bution of each graph to F5(0) is convergent. The propagators for the scalars and the W mesons
are given in eqs. (21.27) and (21.28),

The neutral scalar exchange graph, fig. 23.2a, contributes a term proportional to Gm’(m’/mﬁ, ),
which we take to be negligible, even though the model does not strictly require m,, to be very
large. The neutrino exchange graphs, figs. 23.2b—e, are all of the order Gu? while the M° exchange
contributions of fig. 23.3 are proportional to GmM, and are therefore the largest.

{d)

(o) (b}
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[ Fig. 23.4. Vertices needed for caleulating the graphs in fig. 23.3. ;
whe
_ We calculate these M® exchange graphs only. Since M, is arbitrary, the term proportional to M,,-J,E
3 must in any case be independent of ¢. We make the approximation = ;
m? <€ M2 < p? (23.4)%
and for convenience restrict ¢ so that %
r: M2 < pt/E (23.5}%
; as well. Our result for each graph separately will therefore not be valid in the Landau gauge § >
which may be treated as a separate case. - |. \
The vertices which occur in the graphs in fig. 23.3 can be obtained from the coupling terms we o
wrote down in section 9.
From the muon analog (£9.12), the uWM?® vertex [fig. 23.4a] is
= : 1
eM®[cos By*up +v*ugl. (23.6)"
The sM°u vertex, fig. 23.4b, is obtained from the muon analog of eq. (49.22):
G, [Hfs*u;{ cosf3+pusME] +HC. + G, sin ﬁﬂ_ﬁs",u,'{ + H.C. (23.7):
where
f 2 We
€ —e . i
Gy=—[m - M, cosf], G,=— M,ysin B. = |
u u :
According to eq. (£9.20), the W, A, s vertex of fig. 23.4c¢ is just 3
l;' —e g, (23.8)
:! The W—W A vertex, fig. 23.4d, can be read off the trilinear term in ~F,, - F"’, asin fig. 14.1. b
; The result is : ¢
e Top, = elgaglhy — ka), +8,,0q — ki)y +g5,0k0 — @)1, (2395 anc
A simplifying feature of the calculation is that we need only the term in V, linear in ¢ to ob- !
_ tain £,(0). Therefore, terms of higher order may be dropped, but the terms proportional to g n
1 must be kept until V, is expressed in one of the forms (23.1—3). We use the following notation: Fh
Vi, Ve VEand V,‘f are the contributions to V,; from the graphs in figs. 23. a—d, respectively,
1 and I3, I3, F5 and F§ are defined similarly.
We turn to fig. 23.3a:




il to M,
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et o /) g + 11O/ ra12
Vi = Gy SH R/ DN up-q/2) g5 + “‘—(;;-'+q/i)=—_,;z/g+ie'—J
(1-1/E)k—q/2),(k~q/2)° L
_pb ¥ 12 ag2
X [ S el e ]Paﬁu[(l’ ky'=Mg+iel™
X [(k—q/2)*—p2+ie] " [(k+q/2) —u2+ie] ! (23.10)
where [y, is defined in (23.9), with k, = k—q/2, ky = —(k,+q/2). From (23.6) and (23.9)
(/DN u(p—q/2) = aT(p+q/2)[cos 8y “_T“) + e “—J’g—)] (23.11)

(1“75-)+ ¥ (1""75)
2 2

X {y-(p—k)+M,) [cos By ]u(p—q/Z)

= z7(p+q/2)[f1fo 08 B yoyY +1(1+cos?B)yy - (p—k)yY + terms in s Ju(p—q/2).

We ignore the parity-violating form factors proportional to vs. The first term in (23.1_1) is the
one proportional to M,, so we neglect the term in 1 + cos®8 as well. Thus, we replace (23.11) by

NY =M, cos f y*yY = M, cos B[g*r — io®7]. (23.12)
First, we-compute the term in (23.10) proportional to gggg. It is
i
(2m)*

e’fd‘k u(p+q/2)N°‘7u(p—q/2)[2kngn7 + (-:}q—k)mgmr

~(k+39),8,,) [(p—kY — M —ie]™ [(k—q/2)? ~p>+ie] ™ [(k+q/2) +ui+ie] 1. (23.13)
We parametrize the denominator in the standard way:

Hp—k)?—-M+ie] " [(k—q/2)? —u?+ie] ' [(k+q/2)+uP+ie] !

. :
= 2fd_xfl_xdy{k’—~2k- (ap—Bq)+am®+4(1—a)q?- (l—a),u’—aM3+ie]'3 (23.14)
[ [}
where
a=1—x—yp, =Hx —y) (23.15)
and change the integration variable from & to I:
k=1+ap— pg. {23.16)
Then, using (23.12), the expression (23.13) becomes (we omit writing the spinors)
3e? U, + (e~ lp, —pg, + my, |

- Eﬂ; M, cos ,Gfd“l dx dy ~*- (23.17)

12— (1 — a)e? +ie] ?
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where, using (23.4), we have neglected terms in the denominator proportional to m?, g2, and M;i
The !, and fq, terms vanish after integration, leaving

From (23.2), we conclude that this term contributes

i am M, cos 3
4 u?

to F2(0).

Next we compute the “crossed” terms in eq. (23.10), i.e., those proportional to g8 (1 — 1/§)
and gfr(l — 1/8).

We use the identities

(23.18!

ﬁs.mmﬂeﬁﬁmmm .

kysTof =Kok, — g8k2 (23.1921
—k 038 = kik,, — o K3 (23.19b)

which hold up to terms quadratic in ¢. Using (23.19), the sum of the crossed terms in ¥} can be &

S I MR EL

written f
e? -

(2 )4 M cos B(1 — 1/E)up+q/2)y*y u(p— Q‘/2)U(1 Y+ I(Z)) (23. 20)3
where ‘
1(') = fd“k gaﬁkw(kﬁk"' g""".k’)(k2 — u?fE +ie)(k? — p? +ie) (k2 — p? +ie) [ (k — p)? —M§+i6§

_ f d* dwdxdydz 8(w +x +y +z — Dgogh 1y (K8 ko — g“k2 '_i
[w(k? — u/8) + x(k? — p?) + (k2 — p2) + z[(k — p)*~ MI] 2] +ie]* ;

and /&) is defined analogously. 3
We define / by 3
k=1+zp+ing (23. 21)!
where ;

A=x—yp+w

and make the same approximations in the denominator as before to obtain

d*l dxdydzdw §(x+y+z+tw— 08 :

IW=¢ 23.22)1
f [P—(xty+w/E)’ +iel? o (

where
Tg;?u {Hzp+ (\- Dal, {[Hzpti(At1)g] [ Hzp+; (?\+1)q]#v—[l+zp+§ (A+1)g)?g,, }- (23.23)
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Linear and cubic terms in / in {23.23) vanish upon symmetric integration. The term independent
of [ is proportional to m?*/u?, so we neglect it. Thus, effectively, we may write

T8) =30 gy 2p, + 300+ g, ) +2,, (20, + TN+ g, ] —g,, [Szp, + 35N+ g, 1} (23.24)

[®) can be worked out analogously. The total contribution of (23.20) to Vais

Gie? d“l d.xdydzdw S(xty+ztw—1) I’
—— Mg cosp(1-1 GnrY 2305
(2 )4 0 B( [E)T yoy l‘f [12 —(x+ty+tw/Hu+iel] P Sl ( )
where, with gt =x — y — w,
Toyss = Qo [3(0—50)q, —42p, ] +g, [T (A~ Su)q,, 42D, ] + 8, 122D, +1 (N H)g, 1. (23.26)

Inserting (23.26) into (23.25) and contractmg Ty With %Y, we obtain for the contrlbutlon
(23.20)to ¥

-9 e*M, cos f8
@2y

and the contribution to F2(0) is

d*l dw S{(x+y+z+ g
(-1/8) OYquwf_'___dxcl,:dx w 8(x ytztw— l)l (23.27)
[[2—(x+y+w/E)ud+ie]?

3a mM, cosB

= (1-1/8) [dxdydzdw 6(x+y+z+w-—1)|:x+y+w !E] (23.28)
The integral in (22.28) is , e
. 1—1
sft[(l—t) ~Etlog (1 + ;)]dt
o &
and (23.28) becomes
_am Mo[l g 1 ¢ ]
! . 23.29
T e W20 T2 Bt (23:29)
The remaining term in Vi [eq. (23.10)] is
On )4 Mo cos B u(p+q/2yyeyru(p+q/2)(1-1/£)?
k k k. KT
f at E M . (23.30)
[(k—p)>~Mi+ie] T [ki—p*+ie) "' [ki—p¥i+ie] " A —p2+ie] ' [A2—p?/E+ie]
From either eqs. (23.19), it follows that
KRS Ty, = 0 (23.31)
%0 there is no contribution from (23.3 0). Therefore, from (23.18) and (23.29),
. M 1 & 1 ¢
Fo=2" °[1 _= - ] ] )
T 2D 2 o8¢ (2332
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~Next we turn to the graphs of figs. 23.3b and 23.3¢. The relevant vertices have been worked
out in (23.6), (23.7), and (23.8). For instance,

(1-1/8)(k~q/2),(k—q/2)
b= 4 ) o . [ u©
: ey )"fd"“(’”‘” Woupsa/2) -8, + ==
3 X [(k-p)? Mf,+ie]"{(k+q/2)’—p’/£+ie]"[(k-q/2)2—,u’+ie]" (23. 33
4 where

1— )
( s 7 ( ';fs)

e o

N“—[(m cos B Mo)( "5)+(m_Mo 05,6)( ”‘)][Mow (p—k)) [cosﬁ'y“

=My cosfy - (k—p)y*—M (1+cos*Byy>+parity violating terms + terms of order miMy.(23.34

The second term, proportional to M3 o» contributes terms of the order m/u times those we are
keeping to FP(0), so we shall neglect |t
Similarly, we take V, tobe

‘ 2

First we calculate the terms in (23.33) and (23.35) proportional to 8ap- This can be done by in-=

in (23.34) to obtain a common denominator. The calculation is straightforward, with the result
that the contribution of these terms to F"(O) + F5(0) is

W HIEEE R A S b G R e e R B A i

li':

i i i BT

A

V= oy Mo €05 B A% upral 2y - (b-plutp—£[2)
L L 1/2)(l»+fz/_2) (k+q/2),/ {(k+q/2)* —p?/§+ie} | (23.35)_‘;&.
[k—p)*-M3—ie] [k+q/2) —p*+ie] [(k—q/2) e +ie] E

troducing Feynman parameters into (23.33) just as we did in eq. (23. 14) and interchanging them -

A mcm.*;:.n GE

amMycosf S X amMocosﬁ [ ]
-~ | dx 1+ ——|dx
O of éf Y ey T f
amMocosﬁ[l £ 1 £ ]
= - - - 1 . 23. 36
n o LG T2ic 8F - (
1 There remain the terms proportional to (1—-1/%) in (23.33) and (23.35). We can parametrize
i them just as we did the “crossed” terms in fig. 23.3a to obtain
—bie?
——— (I=1/E)Mq cosf [d*k dwdxdydz S(wxty+z~1)
(2m)*
¥ (k-ply k,
X fip+g/2){— —
A5 ){[w(k% WX (G~ 1] E)+ Y (= /) +2 [(k—pY*— M3 ] +ie]*
v kv (k—p) -
----- —q/2). 23.27)
* B a0+ 56— W) kT w2l Gy 3 viel® | YO (
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Define

k=1+zp+7g/2 A=x—-p+w)
in the first term, and

k=1+zp+uq/2 H=x-y—w)

m the second. In the approximations (23.4) and (23.5), the denominators in both terms are the
ame. Up to terms of order n?/p?, (23.37) becomes, after. doing the l-integration,

i_cf. i]oﬂs_é_(l . fdwd.xdycl\' 6(x+y+z+w—l)[(122—4)py+3(x—~y)q“]

(23.38)

32t [w + Qetp)/E]

The expression (23.38) is identically zero for all £. We conclude that

. —o mMycosfr & 1 ¢

FNO) + F(0) = =2 [ = ! ] 23.39
,(0) + F5(0) T pe D 2G1y ogé ( )

Finally, we compute the contribution of fig. 23.3d. The A, s's” vertex is the usual charged
scalar meson electromagnetic vertex, and the other two are given by (23.7). Thus

—i e?
= oo S [AK R 2N wlp=q/ 22K, K= i +ie] [k — g +ie ] [(pk—MB+ie]
(27)* u? g
(23.40)
where
o 1 1-
A= [(m cosf—My) ( ?5) + (m—Mycosf) ( 275)] [y - (p—k)+M,)
|- | '
X [(m cosﬁ—Mo)( 275) + (m—M, cosf) ( J;YS)] . (23.41)
Therefore
4 —2ie? M3cos .
pd = —(‘2? fL“z—'de“k k, [k1—u?E+ie] "' (k3 —p¥/E+ie)  [(p—k)2~ME+ie] ! (23.42)
+ terms smaller by at least miM,.
Provided M3 < ©*/%, the integral in (23.42) is of order 2, so that, in our approximation,
Po= rge0) =0, (23.43)
From (23.32), (23.39), and (23.43), we conclude that the }eqdillg term in £7,(0) is
T . M
FoL0) < FHO) + F(0) + F5(0) + FH(0) = ——Tom (23.44)
T M

v N
ch s independent of £ as expected.
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This result is independent of our limitation on £, In the Landau gauge limit, & = o, the
in(23.42) s o idently of ordor 57 nstead of 7% and @it that case

ity

. amM, ) E
15(0)'—4 5 § = o),

g (23,43
Caretul treatment of the graphs in figs. 23
value (23.45) in that fimit, The calcul
in this limit, so that

-3b and 23.3c¢ shows that Freoy+ 175(0) also has the
ation leading to the expression {23.22) for F;‘(O) Is correcp

¥

) 23,44
: 2r ou? . : (23.4

The sum is still given by (23.44), independently

of the approximation {23.5).
What is the experimental Sttt

ation? Using egs. (9.14) and (9.27) we can rewrite (23.44) a5
Fy(0) = —GmM, [ 202 /T sin? B

s U

== R

(23.47
where M, is the mass of the charged heavy muon.
Electromagnetic corrections to

trodynamics, with the result

oy

F3(0) have been calculated up to sixth order in quantum elec-:

‘]
FREP(0)= (116582 + 1) x 102 (23.48) §
Hadron corrections to the photon Pbropagator have been estimated to add (6.5+0.5)X 10310
this value, so that, neglecting weak corrections, the theoretical prediction is : 3
FIMN0) = (116589 + 2) X 1078, (23.49)
The most recent available experimental ligure is
FP(0)= (116618 + 32)x 108 (23.50)
so that the theoretical value js well within the present experimental error without adding any
weak corrections.
The weak correction calculated in eq. (23.47) has the valye :
F3(0)= —4.5 X 107 (M _fm)/sin? p. (23.51) §
We know that M, /m > M k/M = 4.7, s0 that IF(0) in the'heavy muon model is at least
2.14X 102, Let us take two standard deviations as a reasonable lower limit for the true expert-
mental value for F,(0), so that FINO0) + FY(0) > 116542 x 1078, Then F}¥(0) must be less thax
47X 107, and (M, /m)/sin® 8 must be less than 100. Thus - f
M, < 10 GeV. (23.52]:;
Clearly, a more accurate Ineasurement of F,(0) could put a much lower upper bound on the massy
of the heavy muon. i
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[5 it to be concluded that to be on intimate terms with na-
wre has a soothing influence, while the passion to penetrara
the mystery lying behind appearances provokes expenditure =
of nervous energy which ultimately wears out the body and
wul?
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