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LS. Abers and B.W. Lee, Gauge theories
[ntroduction

The four-point Fermi theory of the weak interactions in the V-A form, together with the
conserved vector current hypothesis, has long been known to be an incomplete theory. Even
though it describes well 4 and beta decay, it is not a renormalizable theory, and higher-order ef-
fects cannot be calcutated. Physicists have long felt that mediating the interaction by vector
boson exchanges would solve the problem, but until a few years ago have been unsuccessfui at
domg $0.

Perhaps the most significant development in weak-intcractiop theory in the last few years,
both from a purely theorctical viewpoint and for its possible impact on future experiments, has
been the construction of renormalizable models of weak interactions based on the notion of
spontaneously broken gauge symmetry. The basic strategy of this construction appeared in 1967
and 1968 in papers by Weinberg and by Salam. In these papers, the weak and electromagnetic
interactions are unified in a Yang-Mills gauge theory with the intermediate vector bosons W*
and the photons as gauge bosons. The idea itself was not new. What was new in the Weinberg-
Salam strategy was to attribute the observed dissimilarities between weak and electromagnetic
interactions to a spontaneous breakdown of gauge symmetry.

This mechanism has been studied by Higgs, Brout, Englert, Kibble, Guralnik, Hagen, and
others since 1964, It takes place in a gauge theory in which the stable vacuum is not invariant
under gauge transformations. In the absence of gauge bosons, non-invariance of the vacuum un-
Ader a continuous symmetry implies the existence of massless scalar bosons, according to the
Goldstone theorem. In a gauge theory, these would-be Goldstone bosons combine with the
would-be massless gauge bosons {with two transverse polarizations) to produce a set of massive
vector bosons (with three polarizations). In fact, the number of vector mesons which acquire
mass exactly equals the number of Goldstone scalar mesons which disappear.

There are two attractive features of the model of Weinberg and Salam. The first is their ele-
gant unifications of the electromagnetic and weak interactions. The second is the suggestion,
stressed by th(_esé authors, that a theory of this kind might be renormalizable because the equa-
tions of motion are identical to those of an unbroken gauge theory. Not much was known about
the renormallzablllty of these theories, and so the development of the Weinberg-Salam theory
lay dormdnt for some years.

Two developments were responsible for the resurgence of interest in these models in 1971, The
first was the quantization and renormalization of the Yang-Mills theory. After the pioneering
works of Feynman, deWitt, Mandeilstam, and Fadeev and Popov, vigorous studies on the renormal-
izability and the connection between massive and massless gauge theories were carried out by
Boulware, Fadeev, Fradkin, Slavnov, J.C. Taylor, Tuytin, Van Dam and Veltman, among others.
The second is the detailed study of the o -model, which is the simplest field theory which exhibits
spontaneous breakdown of symmetry. We learned from this study that the divergences of the
theory were not affected by the spontaneous breakdown of symmetry so that the same renormali-
zation counterterms remove the divergences from the theory whether or not the symmetry is spon-
taneously broken.

In 1971, G. 't Hooft presented a very important paper on manifestly renormalizable formula-
tions of massive Yang-Mills theories wherein the masses of the gauge bosons arise from spontane-
ous breakdown of the gauge symmetry. His formulation takes explicit advantage of the gauge free-
dom afforded in such a theory.
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4 ES. Abers and B.W. Lee, Gauge theories

Since then, there has been an explosion of interest in the su biect, and the study of spontane-
ously broken gauge theories has become a major industry among theorists. Many models have
been proposed and their implications explored. These models all predict new heavy vector mesons
or heavy leptons, with interesting experimental implications. The fact that each model has a spe-
ctfic prediction for the properties of weak neutral currents has stimulated experimental interest
in trying to detect them.

One of the most difficult problems has been to include hadrons naturally into the scheme.
There have been many proposals, some of them very complicated. Surely this is an important sub-
Ject for further research.

On the other hand, because the models are renormalizable, all higher order corrections are now
calculable. There have been many calculations of radiative corrections to the muon anomalous
magnetic moment and to weak decay rates, and, in some models, of electromagnetic mass differ-
ences. The possibility of doing such calculations has rendered the old “cutoff” methods obsolete.

In the fall of 1972, B.W. Lee gave a series of lectures on these subjects at the State University

by both of us afterwards. They are divided into two parts. Part I describes the construction of
models with spontaneously broken gauge Symmetrics, and some of their phenomenological imn-
plications. Part 11 describes the path-integral formulation of quantum field theory, and its appli-
cation to the question of the renormalizability of these theorjes.

Part 1 begins by reviewing the theoretical tools needed to construct the models. Section | de-
scribes local gauge invariance and its application to non-Abelian gauge groups. Section 2 explains
the spontaneous symmetry breaking mechanism and the origin of Goldstone bosons. In section 3
this idea is applied to locally gauge invariant theories, where instead of massless Goldstone bosons
one obtains automatically massive vector gauge mesons, without introducing explicitly a symme-
try-breaking mass term in the Lagrangian.

The next three sections are a brief review of the phenomenology of weak interactions and
conventional theoretical ideas about them. They are far from a complete review of the subject;
rather, their Purpose was to make the series of lectures self-contained. The subjects covered in-
clude a few basic phenomena, the V— A theory, intermediate vector bosons, Cabibbo theory, and
a few special topics which will be useful in later lectures.

Section 7 describes the original model of Weinberg and Salam in some detail. Section 8 dis-
cusses some experimental implications of this model, the inclusion of hadrons, and the question
of neutral currents. Section 9 discusses a class of models with heavy leptons, and describes in
some detail the model of Georgi and Glashow. Several other models are briefly described in sec-

ultimately, to show why they are renormalizable. The subject is formulated in the language of
path-integral quantization. Since this language is not very familiar to many physicists, we begin
by reviewing it in detail, .

Section 11 develops the integral-over-paths expression for the time-translation operator, fol-
lowing Feynman. In section 12, the method is extended to quantum field theory, and a general
expression for the Green’s functions is obtained. Using this principle, in section 13 we obtain
the rules for calculating the Green’s functions for the Yang-Mills theory in the Coulomb gauge.

e T
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The Coulomb gauge is the easicst 1o quantize in from first principles; what is really needed is the
rule for caleulating Green’s functions and the S-matrix in any gauge. In section 14, the elegant,

3 though somewhat intuitive, prescription for doing this, due principally to Fadeev and Popov, is
described. Section 15 contains a formal proof that the Landau and Coulomb gauges give the same
renormalized S-matrix.

In section 16, the generating functionals for the proper vertices are obtained and the idea of a
superpotential is introduced. The ¢-model is discussed in section 17, as an example of the useful-
ness of this approach in renormalizing theories with spontaneously broken symmetries. In section
18, we outline the renormalization scheme of Bogoliubov, Parasiuk, Hepp, and Zimmerman,
whose topological analysis forms the basis for renormalizing gauge theories. The renormalization
scheme of 't Hooft and Veltman is described in section 19, and the general application of all these
methods to the renormalization of spontaneously broken gauge theories is discussed in section 20.
Renormalization is done there in the Landau gauge, and the Feynman rules are derived. A more

:neral class of gauges, called the R, gauges, are derived in section 21, and in section 22 it is

proved that the S-matrix is the same in all these gauges, and that the Goldstone bosons really do » 3
disappear in all gauges. As an illustration, the muon anomalous magnetic moment is computed in P R
the last section, and shown explicitly to be gauge independent.

In the second half of Part Il we fail to give a comprehensive review of all the work done by L

others (among them, notably, ’t Hooft and Veltman; Ross and J.C. Taylor) towards proving the

renormalizability and physical acceptability of spontaneously broken gauge theories. For the

moment we are not equipped to do so. We apologize to our colleagues and the reader for present-
v only our views and strategy. It would be presumptuous to assert that the renormalizability

&
.us been proved completely by us here or elsewhere. There are still some loose ends in our argu- :
ments for that. We do hope, however, to have marshalled suf’ ficiently strong arguments for it, so :
that serious students of spontaneously broken gauge theories can accept their renormalizability :
as something more than just a working hypothesis. ¥ i
These sections are not a final report on a closed subject. Rather, they are a reasonably self-con- o
tained course of study about a beautiful idea. Indeed the mathematical elegance and aesthetic i
apeal of this scheme for constructing models of weak interactions is what convinces many physi- ;
cists that it may contain a germ of truth. The fact that some of the phenomenological implica- £
fions of the various models may be tested in the near future is very exciting. L
We have benifited greatly for our education in this field, from discussions and correspondence L p
with many of our colleagues, among them: C. Albright, T. Appelquist, W.A. Bardeen, J.D. L
ey

Bjorken, S. Coleman, C.G. Callan, H.H. Chen, R.R. Dashen, L.D. Fadeev, D.Z. Freedman, P.
Freund, D. Fujikawa, H. Georgi, S. Glashow, D.J. Gross, R. Jackiw, W. Lee, Y. Nambu, A. Pais,

E. Paschos, J. Primack, H. Quinn, A.L Sanda, G. 't Hoott, $.B. Treiman, M. Veltman, S. Weinberg,
M. Weinstein, L. Wolfenstein, C.N. Yang, J. Zinn-Justin, and B. Zumino. We would like to record
our gratitude to them. One of us (ESA) would like to thank Professor C.N. Yang for the hospitality
of the Institute of Theoretical Physics. We would like to thank Mrs. Dorothy DeHart and Mrs.
Hannah Schlowsky for typing the difficult manuscript.
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6 E.S. Abers and B.W. Lee, Gauge theories

PART I
GAUGE MODELS OF WEAK AND ELECTROMAGNETIC INTERACTIONS
1. Gauge invariance in classical field theories

Now if we adopt the view that this arbitrary convention
should be independently chosen at every space-time point,
then we are naturally led to the concept of gauge ficlds.

C.N. Yang

In field theories one takes as the basic object the Lagrangian density .2 which is a function of
all the fields ¢;(x) in the theory, and their gradients 3,¢,(x). The Lagrangian L itself is the space
integral of 2, and the integral over all space and time is called the action S:

o=

S= [ L dr= fd*x 2(g(x), 3,6,()). Q.1

The equations of motion follow from Hamilton’s principle,
2
§ [ L(nde=0 (1.
r

for any ¢, and ¢,, where the variations of the fields must vanish at ¢, and ¢,. Hamilton’s principle
implies that the fields satisfy Euler’s equations:
[ 2 5L

00 axs §(0g.faxH) .

The idea of gauge transformations stems from the old observation that to every continuous
symmetry of the Lagrangian there corresponds a conservation law. For example, suppose .2 has
no explicit time dependence: the form of 2 is independent of the time x°. Under an infimitesi-
mal time translation, each of the fields ¢, is changed by

(1.

8¢, (x°. x) = ¢, (x° + €, x) — ¢, (x) = €dp,faxe and (2,8, = €d,[3¢;/8x°]. (1.
Similarly, § 2 = ed.2/oxo:
9.0 &L 52
- - NE L:
€ 3% i [5¢,. N 8(a,0,) 6(a“¢')] )

Using the equation of motion in the first term, one gets

e 32 _ . E[a,,( 5.0 )_34’14, 52 ] (Mh)} .

axe G 83,6, axo  8(3,8,) *\ax,
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5L 39
%, 7 (1.7
axe M7 8(3,9,) ax°

which can be rewritten

a_ﬁ[ 52 3¢,-]= D 82 ¢

e L8 500, foxe) ax0 T 5(79) oxo St

The bracket on the left-hand side is the Hamiltonian density % (x). Since the fields are required
to vanish sufficiently rapidly for large Ixi,

where H = fd3x%{x) is the Hamiltonian.

Continuing along these lines it is easy to see that in a Lorentz invariant theory, the encrgy,
momentum and angular momentum can be defined and are conserved. In order for the equations

of motion to be covariant, £ must be a Lorentz scalar density. This is one of the reasons that it is
useful to work with 2 instead of H in a relativistic field theory.

Here we will be interested in conservation laws that are inor consequences of classical space-time
syminetries. For every conserved quantum number one can construct a transformation on the
ields which leaves 2 invariant. The simplest example is electric charge. Suppose cach field ¢; has
charge g, (in units of e}. Then define a group of transformations on the fields by

¢;(x) > exp(—ig;0)¢,(x). (1.10)

The group is the group of unitary transformations in one dimension, U(1). If is not hard to see
that .2 must be invariant under these transformations. Every term in 2 is a product of ficlds
&y...¢,. Under the transformation above,

Pi(x)...9,(x) > exp{-i(g, + g2 +...q,)p }P1(x)...0,(x).

Charge conservation requires that £2 be neutral; thercfore the sum g, + ¢, + ...q,, must vanish.

Some terms in .2 contain gradients of the fields as well as the fields themselves. But since 8 is
independent of x, 3,6; ~ exp(—iqiﬂ)a#qbi as well, so these terms are also invariant. A transforma-
tion like (1.10) is called a gauge transformation, or more properly, a gauge transformation of the
first kind. The invariance of 2 under the gauge group is called gauge invariance of the first kind,
or sometimes global gauge invariance (because @ is independent of x). '

The infinitesimal form of (1.10) is

b¢; = —ieq, ¢, (1.11)
where in (1.11) € is an infinitesimal parameter. Global gauge invariance can be succintly stated:
SL=0. (1.12)

If 2depends only on ¢; and on d,9;, then eq. (1.12) gives

i e e

Al

P S, T

" e ey i kb e 4B



R T,

TR it

E.S Abersand B.W. Lee, Gauge theories
50 5.2 agr 61
0=80="""8p+—"— 52,4, = —ic —-[-—_ .¢.]
56, B(a gy o ax, [8(a,0p ¥
Thus for the operation (1.11) which leaves the Lagrangian invariant there is a conserved current J#
afM(x; g)faxk =0

with

i b
JH =
50,09

q:%;-

‘The gauge group has an infinitesimal generator Q. The g, are just the eigenvalues of Q, and

exp(—iq,0) is a one dimensional representation of U(1) generated by Q. In quantized theory the
operator Q

Q=[d (v, 0
is the charge operator, and
86, = —ie[Q. ¢, = ~ie ¢,0,.

A theory may contain more than one conserved quantity, and be invariant under a more com-
plicated group of transformations than U(1). The simplest non-Abelian example is isospin. In a
theory with isospin symmefry, the fields will come in nmultiplets which form a basis for represen-
tations of the isospin group SU(2). Then we can define a gauge transformation by

¢~ exp(—iL-0)¢ (1.13)

where ¢ is a column vector and L is the appropriate matrix representation of SU(2). For a doublet,
for example, L =37 (7 are the Pauli matrices). For a triplet

L, = —iefik,
Since the generators, T, of the group satisfy
(T, T;) =ieli*T,,
the representation matrices satisfy the same rule : [L?, L/] = ie/f* Lk The Lagrangian 2 will be in-

variant under any of the transformations of the group.
Under an infinitesimal transformation,
8¢ = —iL - ep (1.14)
where we may think of € as three independent infinitesimal parameters.

Thus if ¢ is a two component isospinor,

6¢’ = —"%t £¢,

and il ¢, are the components of an isovector,

B i s e S
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86, = €Treld .

Isospin invariance requires 8.2 = Q for all &.

The idea is easily gencralized to any internal symmetry Lie group G. Let T, be the group genera-
tors, and ¢, the structure constants:

7, T;1 = icy T (1.15)

The fields ¢, will transform according to some (generally reducible) representation of G. The T,
are represented by the matrices L;. A finife gauge transformation is

¢ ~ exp(—iL-8)¢ (1.16)
the corresponding infinitesimal one is
dp=—iL-e¢ (1.17)

where the number of independent parameters 67 is the dimension of the group. The Lagrangian
£ is invariant under the group: § 2=0. i

It is well known that electrodynamics possesses a formal symmetry larger than gauge transfor-
mations of the first kind. The gauge transformation can depend on the space-time point which is
the argument of the field:

¢, (x) > 8; (x) = exp{—ig,0(x) } ¢, (x). (1.18)

This is called a gauge transformation of the second kind, or focal gauge transformation. The in-
finitesimal form of (1.18) is

8¢,(x) = ~ig,0(x)¢(x). (1.19)

Here 6(x) is an arbitrary infinitesimal function of x. Terms in the Lagrangian which depend only
on the fields are obviously invariant under (1.18). Terms with field gradients, such as the kinetic
energy term, need more care. The reason is that, from (1.18)

9,¢; ~ exp{—iq,0(x)} 2, ¢,(x) —iq;[3,68(x)] exp{—ig,0(x)} ¢,(x). (1.20)

The second term is the difference between the way d,¢; and ¢, transform; but the Lagrangian will
be invariant only if it is a product of terms all of which transform like (1.10), with the sum of the
g; vanishing. '

Electrodynamics is made invariant by introducing the photon field according to the following
rule, usually called minimal coupling: A gradient of a charged field, 3,9,. is allowed to appear in
£ only in conjunction with the photon field, A, in the combination (0, ~ieq;A )0, A, is the
field of a spin-one meson — the photon — which is our first example of a gauge boson. We require
it to transform under local gauge transformations in a special way, so that the combination
(3, ~ieq; 4,)8,(x) transforms like ¢,(x) in (1.10). That is,

(an—ieq,.A#')qb,.'(x) = exp{ ig,8(x)}(a, —ieq;A,)¢,(x). (1.21)

Then 2 will be invariant under local gauge transformations as well. Putting in what we know

WF
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for 8, ¢, (x). we get

exp {—ig8(x)}8,,(x) ~ig;[3,00)) exp{—ig,8(x) 1o, (x) —ieq,A, (Vexp {—ig,8(x} }§,(x}

= exp{—iq;00(x)}8,0,(x) - ieq; A ()exp{—ig;0(x)}$x). (1.22
The solution to (1.22) is

AS(x) = —-%apf)(.\')i-A”(x) (1.23
or

84,(x) = —-:-auo(x). (1.2¢

In addition to terms coupling the photon field to the charged particle fields, there could be
quadratic Kinetic energy and mass terms coupling A, only to itself. The solution is well-known.
Define the field-strength tensor F,:

‘an= apAv_auAp‘ (12'
Then §F,,=0 under (1.23), and therclore the photon kinetic energy term, will be gauge invaria
if it is constructed out of £,

Ly = —3F F*. (1.2

45 up

The coefficient —% is dictated by the requirement that the Euler-Lagrange equations result in
Maxwell's equations with the conventional normalization of the electric charge e.

A photon mass term would have the form —%m’AHA”, which obviously violates local gauge i
variance. The conclusion is that local gauge invariance is impossible unless the photon is massles

It is supererogatory to observe that the photon was not discovered by requiring local gauge ir
variance. Rather, gauge transformations were discovered as a useful property of Maxwell’s equa-
tions. However, in quantum electrodynamics, gauge invariance ailows one to derive the Ward—
Takahashi identities which in turn allow one to prove many theorems, including, most importar
as we shall sce, the theory’s renormalizability.

The generalization of local gauge invariance to non-Abelian groups was first studied by Yang
and Mills, for the case of isotopic spin. SU(2). It is elementary to generalize their idea to any in
ternal symmetry group.

Let the group have gencrators 7, as before:

[Ty T;1 =icy T - (1.2
A collection of lields transforms according to
Slx) > ¢'(x) = exp {-iL-0} ¢(x) = U(0)d(x) (1.c

where ¢(x} is a column vector and L’ is a matrix representation of the generators of the group.
The Lagrangian £is assumed to be invariant under transformation with constant ¢/. The probl
is to construct a theory which is invariant under local gauge transformations Gi(x) as well, by ir
troducing vector fields A/(x} in analogy with clectrodynamics.

Under a local gauge transformation

¢lx) ~ UlD)o(x) (1.




g

3)

E.8. Abers and B.W. Lee, Gauge theories 11

and therefore

3,9(x) = U(0)2,6(x} + (2,U(6))p(x). (1.30)
The idea is to introduce a covariant derivative D, ¢(x) which transforms like ¢(x):
D, é(x) = U(0)D,¢(x). (1.31)

Then, if 3,¢(x) appears in 2 only as a part of D, ¢(x), £ will be invariant under local gauge
transformations.

The covariant derivative D ¢(x) is constructed by introducing a vector field Af_,(x) for each di-
mension of the Lie algebra, and defining

D, ¢(x) = (3, —igL- A (x))$(x). (1.32)

'he coupling constant g, analogous to e, is arbitrary.
How do the AL transform in order to ensure (1.31)? That is, A;{ must be defined so that the

* quantity

D, =2,¢" —igA]Li¢' _
= (@, U(0))8(x) + U(0)2,,9 — igA), - LU(0)9, (1.33)
is equal to
Ug)a, —igA, -L)o. (134)
The solution is
- —igA, -LUB)¢ = —igU(6)A, - Lo — (3, U6)) ¢, (1.35)
or, since (1.35) must hold for all ¢,

AL -L=U@®)A, LU (6)—31(8“ UO)U0)
=U@)I[A, ~L—‘:; U-1(8)a, U@ U \(8). (1.36)
We leave it as an exercise to show that the transformations form a group: in particular, if
L-A, = UO)A, "L —— U-(0)a, U0)] U-'(8)
£
and
L-A" = U@)[A, - L —= U-'(8"2,U(6")] U-(6"),
g

then

L-A, =U@")[A, L ~v 0”8, UM U-(0")
g

A T, T S W
o -.I L J ‘_ ‘.'\- L - o r -3

v hode Ny e e iy



12 E.S. Abersand B.W. Lee, Gauge theories
where
o'y = 00" (o).

This transformation rule appears to depend on the representation, but in fact depends only on
the commutators [Lf, L/] whose form is representation-independent. This fact becomes apparent
from the infinitesimal transformation:

LIbA}, = =~ 173,00 +iLL6ILI — /LA, L

| : . Lo
= _Eua,ﬂr +i0/AL (L] LI = — ELfBMGI — Pidlc,, LF. (1.37)
Since the L/ are lincarly independent,
. 1 .
84l = anﬂf + ¢ 0IAE . (1.38)

The transformation properties of 44 do not depend on the representation /.

Next we must construct the analog of the kinetic energy term, i.e. the term £, which contains
only the fields Af and their derivatives. Because these fields do not all carry zero quantum num-
bers under all the T, (unlike the photon, which is electrically neutral), 2, cannot have the simple
form it has in electrodynamics. In fact, from (1.38), it is easy to see that

63,4}, —3,AL) = ¢;;, 8(3,A% 3,48 + ¢ (o, 001 4% — (3,0M)A4k]. (1.39)
£, will be invariant if it is constructed out of a tensors F, according to

. &
L, = =LF! Furi (1.40)

provided the F}, transform covariantly like a set of fields in the regular (adjoint) representation
of G. Therefore we must add something to 3,4}, — 8,4} to cancel the unwanted terms in (1.39).

Now from (1.38)
Ciin

CidlAL AT = — p;

[3,6047 — (3,0N45] + ¢y 0'AT AL + cyjpciyn 0'AT AL (1.41)
The first terms (times g) can just cancel the unwanted piece of (1.39). The last two terms can be
rewritten, using the antisymmetry of the structure constants, as

[Cimkckﬂ - cljkckml] OIALAvm ’ (1.42)

Let 7" stand also for the regular representation matrices. Then (T = —i Cjix- and the bracket in
(1.42) is

I ky =
CimiCiij = CrmaCing = [T T Vg = 1T Imj CetkCajm -

Therefore,
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CidlA,A ) = ;" [3,0NA% — (3,6VAX] + ¢, 8", A 1A

So define

Fl,=0,A -3 Al v+gec A, A, (1.43)
then

§FL, = ¢y F, ' (1.44)

and £, = —‘F',,F’“" is invariant. Under finite gauge transformations, U(8) = exp(—iL¥9"), F],
transforms as Fw L— U(B)F#IJ LU"(H) so that Tr(F,, - L)* ~ F,, - F* is invariant.

Again, a mass-term of the form 3 m? A, A* would VlOlal’e the local gauge invariance.

We conclude by summarizing the constructlon of local gauge theories with non-Abelian sym-
metries. Start with a Lagrangian __,{(¢,, 9,9;) invariant under a Lie group G with generators T
and structure constants Cijk The fields transform according to some representation exp(—iL - 8)
of the group, with constant 8" Add to the theory a set of vector ficlds A" one for each T¢. The
full Lagrangian is

L2=L2, % £21(9;, (3, —igA, -L)¢;). ) (1.45)
The {irst term is

B, =—;F,, "F® (1.46)
where .

Faw = 3,45 = AL + g i LAy (1.47)

The transformation rule for the gauge bosons is
1
L'-A, =U@O)L-A U6} —E(auU(B))U 9). (1.48)

~here here 6/ is a function of x.
One final note. If G is a direct product of two or more subgroups, the coupling constants g
associated with each subgroup need not be the same.
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We shall discuss the use of these identities in gauge theories extensively in Part I1. In the generalized sense, these identities are
™~ precise mathematical statements about the effects of gauge invariance (or other symmetries) of the Lagrangian on Green’s func-
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2. Spontaneoulsly broken symmetries

If my view is correct, the universe may have a kind of
domain structure. In one part of the universe you may
have onc preferred direction of the axis; in another part,
the direction of the axis may be different.

Y. Nambu

Nature scems to possess useful symmetries which, unlike electric charge conservation, are not
exact symmetries of the S-matrix. Familiar examples are isospin, strangeness and SU(3). A tradi-
tional way of thinking about them is to imagine that the Lagrangian possesses a part which is
exactly symmetric and another, in some sense “small”, term which violates the symmetries. This
idea is behind our conventional picture of a “hierarchy” of interactions — strong, electromag-
netics and weak — in which the stronger interactions possess more symmetry than the weaker
ones. Another type of symmetry is PCAC, which even in the exact symmetry limit is not a sym-
metry of the physical spectrum, that is, particles do not occur in equal-mass multiplets which
can be assigned to a representation of the group (in this case SU(2) X SU(2)). Nevertheless the
Ward—Takahashi identities and current-algebra predictions of SU(2) X SU(2) symmetry are physi-
cally useful.

By now it is well-known that the second kind of symmetry can be obtained from an exactly
symmetric Lagrangian, provided that the physical vacuum is not invariant under the symmetry
group. Such a symmetry is popularly called a “spontaneously broken symmetry”. The mechanics
of how this works is the subject of this section. Then we will go on to see what wonderful things
happen when the symmetry of the Lagrangian is made into a local gayge symmetry of the kind
described in the first lecture. R

[t is instructive to begin by understanding how a field theory is like a collection of anharmonic
oscillators. A simple Lagrangian density with only a single scalar field is

= 5(@460,0) —1u* 9" — NG 20

For simplicity, let there be only one space dimension. Then the Lagrangian is

L fw Llx, Hdx

ol s e ne]

We may think of ¢(x, 7) as being a canonical coordinate at each x. Divide space into unit cells of
length € labeled by the coordinate x;: x;—x,_, = €. Then we may replace the integral defining
L by a discrete sum. The discrete coordinates are q,(1) = ¢(x, ¢), and L becomes

1= 3 [%(dﬁi)z—j—l?(fn‘--- Qi Y =18 4} - %?\?]- (2.3)

d¢ 2e
‘ = e
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The second term represents a coupling between coordinates at adjacent points, and the last term
makes the potential anharmonic. The canonical momentum is

p; = dq;/dt
and if we define
V(@) =jutz2+ A 2

the Hamiltonian is

= 1
H=}, [i— P} +§E—2(q,- —g;_ )+ V(q,,)] . (2.4)

=— a0

Field oscillations are bounded only if A > 0, which we therefore require. In the usual case

#2> 0 also. To do any kind of perturbation calculation, we must find the minimum of the po-
tential,

I
5 [ @ = a0+ viap)]

and start with the unperturbed harmonic oscillator solutions as the zeroth approximation (these
are the “free field” solutions of field theory). Whatever ¥ is, we must have g, = q;.., at the mini-

n of the potential;i.e., all the g; are equal. If p? > 0, the function ¥ looks like fig. 2.1 and
the minimum occurs at ¢, = 0. On the other hand, if p? < 0, the potential looks like fig. 2.2. Now
q = 0 is not a minimum. There are two symmetric minima at g =x[—u?/A]r2.

In field theory, the ground state is the vacuum. What we have shown in an admittedly heuristic
manher is that if u> < 0 the vacuum expectation value of the field is not zero; rather, it is inde-
pendent of x (g; = q,_,) and has the value £ [—u?/A] 2 to zeroth order in perturbation theory.

Let.w be the vacuuni expectation value of the field:

(), =v=x[—pu?fA]1", {2.5)
-her value of v may be chosen, but not both. We may by convention choose the plus sign, since

L is invariant under ¢ > —¢.

The only symmetry this simple Lagrangian possesses is reflection invariance: ¢ > —¢. Clearly

the new vacuum is not an eigenstate of this operation, since v # —v. In this way the symmetry is
“spontaneously” broken. Define a new field @' by

Fig. 2.1. The potential function for positive 2.

Fig. 2.2, The potential function for negative ,uz.
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¢ =¢-v
then
(¢, =0
so we can do ordinary perturbation theory in ¢'. In terms of ¢* (up to a constant)
£=3 (049’0, ¢') + p?¢" — Avg? Tho't, {2.6)

The bare states have (positive) mass —2p?, but do not exhibit the symmetry of the Lagrangian in
an obvious way. '
A slightly more complicated model has two fields, which we may call ¢ and 7:

£=5[3,00%0 + 3, m34n] — V(6® +u?) 2.7
where -

V=1p¥o® + %)+ 1 h(a® + 7?)2 (2.8)

L2 is obviously invariant under O(2)[=U(1)}:

o cos sind\ o '

(w') =(—sin0 cosO) (ﬂ') . : (2.9)
The minimum occurs when

aV/30 =0 =a[u? +Ma? + 7%)] ' (2.10a)

aViemr =0 =w[u® + A(6? + 7?)]. (2.10b)

Clearly when p* < 0, the absolute minimum occurs on the circle +/a? + 72 = [—u2/A] . We can
always define the axes in the o—m plane so that '

(@), = [—u*/A]"72, (m, =0.

fAnother approach is to add explicitly a small symmetry-breaking term c¢ to V, as in the
o-model of Gell-Mann and Levy. Then the minimum occurs when

olu? + Mo? +71)) =c, w[u® + Xo? +7%)] = 0.

The term co picks out the particular direction in (o, m) space. There is no solution to these equa-
tions except = 0, and o[u? + Ao?] = ¢; in the limit ¢ = 0, either o = 0 or o = [—p*/A]1 V2. The
first solution is & minimum when u? > 0. the second when p? < 0.]

As before, when p < 0, define

s=0 -0},

and rewrite £2in terms of § and 7 instead of o and n:

L= {9,505+ maw ] + us? - N0, (5™ + 72) — {N(s? + 70)2 (2.11)
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Evidently, s is the ficld of a particle with positive mass — 2u?* while the 7-ficld is massless. This is
our first example of Goldstone’s theorem. If a theory has a symmetry of the Lagrangian which is
not a syinmetry of the vacuum, there must be a massless boson.

Here is a more general example. Let ¢ be an n-component real field, with Lagrange density

£=3(2,9'04¢") — 74 99" — I M99, e
£ is obviously invariant under the orthogonal group in # dimensions, O(xn). If 4? < 0, the poten-
tial has a ring of minima at v = [—u?/A]'? i.e. there is a minimum whenever ¢f¢! = ~u?/A. Let us
choose the nth component of ¢ to be the one which develops a vacuum expectation value. That
is to say, considering ¢ as an s-component column vector,

0
0

0
@), =

v

¢ original symmetry group, O(n), has 3n(1—1) generators. The new feature in this example is
that there is still a non-trivial group which leaves the vacuum invariant. This is the subgroup of
O(n) which does not mix up the nth component with the others; it is O(n—1), with -;(u 1{n-2)
generators.

Let L,.j be t'l,le 3n(n—1) independent matrices generating O(n). Let lii be the subset which form
the surviving symmetry O(n—1) [/;; = L; for i, j # n}. Then call the rest k; [k, = L,,). These are
i—1 independent k,. Instead of simply subtracting the vacuum-expectation value of the field to
define new fields as before, we can parametize the » ficld in a way which will be more useful
later, Definenand &, 1 <i<n-1, by

0 |
0
0
¢ = exp(it;k;/v) |

vtun

Since, in general, (L;;),, = —il8,,8;, — §,,8;;1, the k; have matrix elements
iy = (L = =188, — 8,18,

and so k; operating on the column vector v; = v§,,, is the vector

"

ey b g

v ey e

v

g
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(kv); = v(k;); 8, = v(K;),;, = —ivd;.

in if

Thus, in lowest order this definition is equivalent to our previous procedure; up to terms quadratic
in the fields. ¢; = §,(i < »n) and ¢, = v + 1. [We will show in Part 1l that such a redefinition of the
fields leaves the renormalized S-matrix invariant, but not the Green’s functions.]

In terms of the new fields £; and n, the Lagrangian is

£=1 {o#nd,m + 94§98, ;1 + higher order terms with derivative couplings "
FW D) AN+ )t (2.13)

The 7 field has bare mass —2p*(> 0), and the n—1 ¢, fields are massless. Thus to each generator ]
of the original group which leaves the vacuum invariant, there corresponds a massless Goldstone
boson.

The fact that the nuunber of massless bosons is the same as the number of broken generators
seems to be an accident of our examptle, the n-dimensional representation of O(n). But it is in
fact general. Write any Lagrangian in terms of the » real scalar fields ¢;, which form an #-compo-
nent vector ¢ (a complex representation can always be turned into a real one by doubling the
number of basis vectors) o

L=33,¢ 3%¢ — V($). (2.14)

Of course, .2 may contain other ficlds (e.g. spinor fields) which couple to each other and to ¢,
but these terms are not relevant here. V{¢) is a polynomial in ¢ which is invariant under some
group G (and not under a larger group containing G). G has N generators 7', and ¢ transforms
according to an n-dimensional (in general reducible) representation LY: §¢ = —if*L%¢.

Because the representation is real, iL* must be a real matrix; so L* is an imaginary matrix, and
because it is Hermitean it is antisymmetric. Because V is invariant under G, its response to an in-
finitesimal group transformation (specified by 8%) is

S ——————— R TS R e i

1% av
0=08V= 8¢, = —i-—0Ly ¢ (2.15)
¢, 3ot
Since 0% are arbitrary, we obtain N equations
oV ,
7 'é; Lig;=0 (2.16) |
i : for all o. Differentiating again, we get '
| a*v av
E 1 ——L%¢, +— L, = 0. (2.17)

3,00, 71 a¢,
Now evaluate (2.17) at ¢ = v, the value of ¢ which minimizes V:
(aV/acb,.)O:v =0.

The result is
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t ]f/a¢ia¢k)¢=u L‘,-’,.uj = Q. (2.18)

e If Vis cxi)andcd about v, there are no linear terms, and the constant term is irrelevant:
v =—3M}(¢ — v)(¢ — v); + higher order terms. (2.19)

Therclore an/aga,.a:f;,. evaluated at ¢ = v is just M,?J,. where M}f is the muss matrix, and so
MILjve =0 (2.20)

for each a.

I Let$ be the M-dimensional subgroup of G which remains a symmetry of the vacuum. If L% is a
generator of S, L% = 0, and so (2.20) contains no information about M. For each of the V — M
vectors Lf, v, which are not zero, (2.20) says that M? has a zcro eigenvalue. 1f the vectors L% in
fact span an N — M dimensional space, we have demonstrated that there are N — M massless
(Goldstone) bosons in the theory.

This fact is almost obvious from our examples. To construct a formal proof, define

A%F = (L%, LPv). [(a, b) means I, afb,, even though we have a real vector space.] Since L® is '
Hermitean, A% = (v, L*LPv). Then
) ASP AP = (v, [L% LO]0) = iceg, (v, L70) = 0, (2.21)

the last equality follo“;ing again because L is antisyminetric. Thereflore et A be the
N — M) X (N — M) matrix obtained by restricting & and 8 to those values for which L% # 0.

is symmetric, and can be diagonalized. Then let O be the (V — M) X (N — M) orthogonal matrix | t

which diagonalizes A: !

Ared = (0A0T)F = (0%TLYv, 0% LPv). (2.22)

Now O%YLY cannot annihilate v, since then it would be in S, which it manifestly isn’t. Thus

OV LY # 0, and the diagonal'elements of 4" are all positive, and the space spanned by the O%7LY, -

) or equivalently the L?, is N — M dimensional. The L* which do not annihilate v are independent, !
which completes the prool that M? has N — M non-zero eigenvalues. The matrix A*® will play a ;
fundamental role in the next section. -
I"_‘
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3. The Higgs mechanism

In this section we shall discuss Lagrangians with spontaneously broken symmetries which also
possess the kind of local gauge invariance which we described in the first section. The combina-
tion leads to an exception to Goldstone’s theorem which provides the basis for a class of renor-
malizable models of the weak and electromagnetic interactions.

The simplest example is constructed from a single self-interacting charged field ¢ with
Lagrangian

L£=(8,0%0,8) — u0*¢ — N¢*¢)”. 3.1
This Lagrangian is invariant under a U(1) group of transformations:
@' =e-ilg : (3.2)

Next we introduce a gauge field A, and construct a Lagrangian invariant under local gauge
transformations. Following the prescription derived in the first section, we obtain

L= {3, +ie A, ) (o — ie A*)P] ~ uP*¢ — N(d*¢)* — .iF,,.rF”‘” (3.3)
where F, = 9,4, — 8,4,. Under local gauge transformations,

$(x) = ¢'(x) = exp{—if(x)} $(x)

$*(x) > ¢*'(x) = exp{i0(x)}$(x)

v o_ 1 N

A,~A,=4, —anﬂ(.\) (3.4)
and £ is invariant under the transformations (3.4).

If 4 > 0, (3.3) is just the Lagrangian for charged scalar clectrodynamics. If u? < 0, we must
shift the fields to write £ in terms of those with vanishing vacuum expectation values.

The Lagrangian (3.3) possesses the same O(2) symmetry as the (o, 7) model discussed in eq.
(2.7}, transforming according to (2.9). The correspondence is o//Z+ Re¢, n/v/Z+ Im¢. Just

as o could always be chosen to develop a vacuum expectation value, we can assume, without loss
of generality, that

(), =v/\/2

where v is real.
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Instead of shifting ¢ by subtracting {9}, from it, we will parametrize ¢ exponentially, as we did
with the real n-vectors in section 2: The new real fields are £ and 7, defined by

¢ = exp(if/v)(v + P2

1
=——{v +n +i§ + quadratic and higher order terms]. (3.5)

vZ

The field £ is associated with the spontaneously broken U(1) symmetry. In the absence of the
gauge field A ,, we could conclude that the £ field was massless, because when (3.3) is written in
terms of £ and n there 1s no term quadratic in £. This argument no longer works. Let us write
(3.3) in terms of 4,, ¢ and n:

=-3F, Mtz na, n+ia, Eor g
+%e’v’A“A“ —-+Zev A, 3 £+ p*4* + cubic and higher order terms (3.6)

where we have the relation v? = —p2/A. The 7 field has mass —2u?, but the fields A p and & have
gotten mixed up in a way whose inferpretation is not immediately apparent. Without the term
-vZTevA x 9* £ in (3.6), we could have concluded that the vector ficld has mass p? = e’v? and
that the £ field is massless. A correct procedure would be to compute the combined propagator
for the 4  and & fields, find the Feynman rules, and examine the poles of the S-matrix. We'll do
some of this in later lectures, but there is an easier way to discover the particle spectrum. Recall

tha  ): Lagrangian (3.3) is invariant under local gauge transformations (3.4). Choose the gauge
function to be &(x)/v. Then

¢ > ¢' = exp{-it(x)/v}¢ = (v + n)A/Z (3.72)
I
Au™> A=A, ~—3,% (3.7b)

Since £ is invariant under these transformations,
“pd ((d, + ieA;)(u + ) {(am — ieAL)(v +71) —p*(v +n)? —aMu+9)* — %F;v F'ev (3.8)

where F,, = 3,4, —3,4,,.
Eq. (3.8) can be expanded as follows:

L= Fy F™ + 15 maun +eh? AL A"
+3e? AM(20 + 1) — 192Gt + u?) — Avp® — 1A 9. (3.9)

In this gauge there are no terms coupling different particles, so that the (bare) spectrum can be
simply read off the quadratic terms. There is a scalar n-meson, with mass 3A*v? + u? (which in
zeroth order is ~2u?), a massive vector meson A, with mass ev, and no particle corresponding to
£. In fact, the £-field has disappeared altogether! It has been “gauged away”’.

Where has it gone? From eq. (3.7b), we can see that jf is responsible for the longitudinal com-
ponent of the vector ficld in the new gauge. It’s clear that there are the same number of actual
particle states as there were before we redefined the fields in €q. (3.5). Originally, there were two
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real scalar fields and a massless photon with two possible polarizations. For positive u?, this is th
correct collection of particles. When g < 0. we have just seen that the theory describes one
scalar particle (! helicity state) and one massive vector particle (3 helicity states) so the total nur
ber of degrees of freedom — in the sense of particles with fixed polarizations - is the same in euc
case.

In the gauge (3.9) 2 looks like an ordinary field theory of particles, each decoupled from eacl
other in second order, and therefore is manifestly unitary order by order in pertulbatlon theory.
This gauge is fr cquently called the unitary gauge, or U-gauge. {The U-gauge is “manifestly unitar
in the sense that the fictitious particles, whose Green’s functions have singularities that apparent
violate unitarity, are manifestly absent. We do not mean to imply that the unitarity of the
S-matrix, or even the correct Feynman rules., are obvious in this gauge.) However since it contair
a mussive vector meson, whose propagator tor large & grows as kK JSmEk? instead of
(g, — Kk, [KDK? characteristic of massless vector fields, this model is not obviously renor-
malizablc in the U-gauge.

In the original Lagrangian (3.3), the fields admit gauge transformations (3.4) and it is necessar
to choose a condition, such as A = 0, which fixes the gauges. In Part 11, we will show that the
theory is renormalizable in such a gauge, which we shall call a renormalizable gauge, or R-gauge.
In R-gauges, there are spurious poles in the vector and ¢ propagators, which must cancel in all
S-matrix clements since they are absent in the U-gauge. The R-gauge formulation is not manifest
unitary.

For a2 non-Abelian example, we let the symmetry group be SU(2), and put the scalar mesons i
the triplet representation. The fields transform according to

8¢, = —ielLi ¢, = elelikg, .
The part of the Lagrangian containing ¢ is
L=3(0,8, +ge™ Alp ) (340, + ge"F 4 ¢ ) — V(4?) (3.1¢

where I is an SU(2) invariant quartic polynomial in ¢.

When ¢ = 0 is a minimum of ¥, (3.10) is an ordinary, isospin conserving gauge invariant,
Yang-Mills type theory. Our interest is in the spontaneous symmetry-breaking case: If ¥ has a
non-zero minimum, we can always perform an isospin rotation so that it is the third component
which acquires a vacuum-expectation value:

0
(@) = 0\

o

The vacuum is no longer invariant under 7, and T,, but T4 remains a good symmetry: there is on
conserved quantum number, T, or electric charge.
We parametrize ¢ as in the previous lecture:

. [0 | 2%
o= cxp{tl)(E,L‘ +£,L0) 0 : = (é)o + 1 &, . + higher orders. (3.11
ot ! I| n
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The fields £ and &, are the would-be Goldstone bosons associated with the two broken degrees
of freedom. Since the Lagrangian (3.10) is invariant under local SU(2) transformations, we may
make the following gauge transformation:

¢ = expl- L (5L + LI}

LAy = expl—g (BL'+ BLIIL A cxplL (BiL 4 6L} — L (3, expl— g (5L + L))
X exp{ﬁ (EiL"+ £,L7) ] (3.12)

Again, since ¢' = [u(é ] , the fields &, and &, completely disappears when the Lagrangian is
wr on in the new gaug'é:
L= %aﬁnaun + lzgzuz eli? eifaA:"A.uF Vi(w+n)?]
+ higher order terms + terms independent of ¢. (3.13)

The term in {3.13) quadratic in the vector fields is

TMALAZAM + AL AR ] (3.14)

-
']

whe M2 =g%?. The vector mesons corresponding to the broken symmetry generators have ac-
quiteu a mass M = gu. Since the T3 symmetry survives, there remains one massless vector meson,
A3

3

The general features of a spontaneously-broken gauge model should now be clear. We start out
with a Lagrangian .2 invariant under local gauge transformations of some group G. There are n

scalar fields which transform under an s-dimensional representation. There are N gauge mesons,
Aj. The Lagrangian is given by

= Fp F* + 5103, — g* LA+ — igPLPA)p)
— V(¢) + terms with other fields. (3.15)

Here, Fj,, is given by (1.44); the g* are independent of a within any simple subgroup of G; and
V(¢) is a fourth-order G-invariant polynomial in ¢ which is minimized by setting ¢ = v.

Now we suppose the symmetry-breaking leaves the vacuum invariant under an M-dimensional
subgroup S of G. There are M generators L® satisfying L% = 0. There remain (N — M)L® for
which L%v # 0. We showed in section 2 that the L% span an N — M dimensional space, and that
in the absence of the gauge mesons there would be N — Af massless scalar particles.

We can parametrize ¢ by

¢ = exp(ZiE, L*/v)(v + 7). (3.16)

The sum is over those (N — M)L® which do not annihilate v. The vector 7 represents as many in-
dependent fields as there are dimensions in the part of the n-dimensional representation space
orthogonal to all L%. (=n - N +M)

Next we make the gauge transformation defined by
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@' =exp(—it*L*/v) ¢,

and

. = oy __ian- _,.-i_Bﬂl (_i_ﬁﬂ) (i_ora)
AJLY mp( UL!;‘)[A:L" up(vLE)ga“exp ULE exp ULE . (3.17)

In the new gauge, 2 depends only on the 1, and the gauge fields A;f’, N — M of which are now
massive.
The term in 2 responsible for the vector meson masses is

He Lo, g LA A AP, ‘ (3.18)

Since we may always restrict ourselves to real representations of G, so that L, being Hermitean,
Is antisymmetric, the vector meson mass matrix,

(M*Y*P = g%gf(y, 151 Py) (no sum over a, ) (3.19)

is symmetric and positive definite. with «. f restricted to vatues for which L%y # Q. Except for
the coupling constants g%, (M*)*? is just the matrix 4% we defined in section 2.

Thus, the N — M Goldstone bosons are not physical massless particles, but are absorbed into
the longitudinal components of the A’ - A massive vector bosons: as can be seen from eq. (3.17),

"y o— ] 5
AF=AL a5+ 00,

The number of the independent degrees of freedom for a given momentum remains the same. The
masses of the physical vector mesons are the eigenvalues of (M?). The remaining M vector mesons
remain massless, corresponding to the surviving M-dimensional symmetry subgroup S.

Weinberg has discovered an elegant proof that the unitary gauge always exists, In that gauge,
¢'(x) has no components in the subspace spanned by the Goldstone bosons, which we know is the
space spanned by L%v. Therefore

(L%, ¢'(x) =0 (3.20)

defines the unitary gauge. (This definition is just as good as the more familiar definition of a
gauge by imposing a condition on the vector ficlds.) Therefore, if ¢(x) is the scalar field in any
gauge, there is a unitary gauge provided there exists a local gauge transformation

O(x) = exp{—i£*(x)L*} such that

(L%, O(x)$(x)) =0 (3.21)

for all « and all x. For any x, O may be any element of the representation of G defined at x. We
have chosen only real representations, so O is orthogonal. Consider the scalar product

v, 09). (3.22)

For fixed ¢, the scalar product (3.22) is a real number which depends on 0. As long as (he Lie
group (of which O in an n-dimensional real representation) is compact, (3.22) maps the group
into a compact portion of the real line. and therefore has 2 maximum and a minimum. Let 0, be
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amatrix O which is an extremum of (3.22). For any O, if we vary O slightly
80 =0 — exp{—ie*(x)L*}0 = —ie*(x)L°0.
Since O, makes (3.22) take on an extreme value,

0= 6(v. 0¢)p-0, = (v, 80¢), 0
= —1e%v, L*0y9) = ~ie*(L*, O ,9). (3.23)
Since €% is arbitrary,
(L%, Ox¢)=0

for all @, 50 ¢ = O,¢ satisfies the unitary gauge condition. Therefore the unitary gauge always
exists: it can be obtained by making a gauge transformation O from an arbitrary ¢ which ex-
remizes (v, O¢) at each point x. If G is simply connected. the real numbers {v, O¢) form a com-
pact segiment of the real line, and therefore have two extrema, a maximum and a minimum. Gen-
erally, if (¢, v) is one extremum, (—¢', v) is the other, and the physics of the two gauges are the
same. )

In nature, M is apparently 1; the only conservation law associated with a massless vector meson
is charge conservation. Nevertheless, it is instructive to consider the more general case.

In the next sections we will consider the application of these ideas to models of wesk and elec-
tromagnetic interaction.
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4. Review of weak interaction phenomenology

In later sections we will discuss a class of models for weak and electromagnetic interactions
which utilize the idea of spontaneously broken gauge symmetry. One constraint on these models

is that they reproduce the known phenomenology of weak interaction. We will review some im-
portant features in this section.

Qur notation will be that of the textbook by Bjorken and Drell. The Dirac y-matrices are

L
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which leads to the equation of motion [see (1.3)]

which the energies and momenta transferred are small compared to the high energies available to
study strong and electromagnetic interactions in particle accelerators. Therefore there is no rea-

SO

gics, but nevertheless a more complete theory must agree with what we know at low energies.

are consistent with lepton number conservation if we assign “lepton number” +1 to g, e, and v,
and —1 to u*, e*, and 7. Furthermore, the decaysp™~ € +yorpu — e +e +e* are not seen, even

th
fo

ciated with the electron. Experimentally, neutrinos produced in the decay #~ - u~ + b are not seen

to

doublets of leptons, (i, vplancl (¢”, v.), which are distinguished by a quantum number. It is pos-
sible that the muon quantum number is multiplicative (like parity), but there is at present no par-
ticular evidence for this unattractive idea.

seconds, decaying almost always into e™ + v, T 7,. Other modes, if they exist, are very rare. The
electron mass is (0.511004 = 0.000002) MeV and it has a lifetime of at least 6 X 10?8 seconds.
As far as is known, the muon and the clectron are identical in all properties except for their
masses, the large difference between which is a major puzzle. Perhaps the empirical relation

which is accurate to better than one-percent, provides a clue.

fantastic upper limits on their masses as are known for the photon. The electron-neutrino cer-

tai

more. Nevertheless it is attractive — and consistent with experiment — to assume both are exactly
massless, as we shall see below.

| earth’s magnetic field has been detected tens of thousands of miles away, one concludes that the
I’ Compton wavclength of the photon must be of this order at least, corresponding to a mass less

th:

state can be transformed into a negative one by Lorentz transformation. If the neutrino is exactly

The v anticommute according to {7, v} =2k, and {y~, s} = 0. The spin matrix iz o = (g 0)

ot ST L L ot B ML o T, T T o 0 T, T
LELCTEE) AR SRR
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I 0 0 -g 0 7/
0 = = = jy0mila,2,,3 —
iV (o —1) g 4 (a 0)" Ts STy (1 0)‘

- > . i 3 . - . - - * ‘
i1s casy to see that of = }i elfky/yk The Lagrangian for a free Dirac spinor with mass is

L= )iy -a — mip(x) 4.1

fty-o - mix,’x=0. (4.2) }

Most of our information about weak interactions comes from spontaneous decay processes, in

n to expect that a phenomenological description of known decays will be correct at higher ener-

The only known leptons are the muon, the electron and the neutrinos. All known experiments

ough they conserve lepton number. Apparently there is also a conserved “muon number” which
rbids these processes. The neutrino associated with the muon is different from the neutrino asso-

produce electrons by inverse beta decayv+n->p+e. Therefore, we believe there are two,
‘The mass of the muon is 105.6594 + 0.0004 MeV. It has a life;time of (2.994 + 0.0006) X 10°¢

m,=jam, (4.3)

The neutrinos appear to be massless although experimentally it is not possible to puf such

nly weighs less than 6 x 105 MeV, but the muon neutrino may have a mass of an MeV or

It is important in gauge theories that the photon be exactly massless. From the fact that the

i 10721 MeV,
If the neutrino has a tinite mass, it must occur in both helicity states, since a positive helicity

TR AR TP WA B o 1y Zaer TR Srad et N pRTIT gy s
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massless, ¢ither helicity state provides a complete representation of the Poincaré group, and only
parity conservation would require both to occuy. Formally. it is easy to see that under the trans-
formationy = —ys\, the kinetic energy term in (4.1) is invariant while the mass term is not. If
the mass is zero, the free Lagrangian is invariant under this transformation. The interaction part
of the Lagrangian will be invariant provided the neutrino field occurs only in the combination
(b= ys)W-

Let us introduce here a notation which will be useful later. On any spinor field, let P; = {-(1 ~s},
and P, = 3(1 +7v5). P, and Py are projection operators, in the sense that P2 =P, P4 = P,
P Py =PgP =0, and P, +Pp = 1. Any spinor field ¢ can be broken up usmgP and Pp:

=P PR FPLY Py =5 (1 — )y +3 (1 + ). (4.4)
The free Lagrangian becomes
P=iypy- Yy +ilpy-ag - mlP e + Y] (4.5)
If m # 0, the breakup (4.4) has no Lorentz invariant meaning. If m = 0, ¥ is a solution to e

{4.2) with spin analog the direction of the momentum, V, a solution with spin in the opposite
direction. They have positive and negative helicities, respectively. These facts are easily obtained
from the massless Dirac equation,

(707ﬁ)¢201

w! 2 71 isa unit vector in the direction of the neutrino’s momentum, and from the definition of i
7vs woid the spin operator o.

The decay spectra in those weak decays for which there are the most data, namely n—»> p+e +7,, |
we +p +py ,and 7" — u” + 7, plus a large collection of nuclear decays, show no sign of right- '
handed (posxtwe helicity) neutrmos or left-handed (negative helicity)} anti-neutrinos. We will as- ]2
sume that there exist only left-handed neutrinos, which is possible only if the neutrinos are exactly
massless. )

Finally, it is easy to show that if only the left-handed neutrino field, y (v), appears in the
Lagrangian, the neutrino remains massless to all orders in perturbation theory. Under the operation

E) = — g P, YT (x) = — T (x) s, and therefore ¥(x) > W(x)vys. These rules hold for the inter- &=
acung fields. Theretfore the neutrino propagator (including interactions) is _
S'p)= [d*x explip- x)X I T(W(x)FONDH 4
=~ [d*x explip- Xyys(T(WEPONDs. (4.6)
Therefore
Spyys = —7sS(p) exarafuty
and
YsSTHp) = —S (p)ys. (4.7)

In general, S~Yp) =v- p + &m + O(y- p)*. From (4. 7}, the term in &m is forbidden, and
$7110) = 0; the full propagator S(p) hasa role at y-p = 0.

Fas g ptiete B et R .wa_;- T : s R L n:_uw:rr‘mmww
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5. Weak interaction phenomenology {continued)

The idea that all known weak decays can be described by a local four-point interaction is due t
Fermi, and suclr interactions are called Fermi couplings. Following the discovery that weak decay:
violate parity conservation, Feynman and Gell-Mann proposed that the correct form for the
Fermi interaction is

G, ()T () V2. (5.1)
Here Jp(x) is a charged current, which has a lepton part and a hadron part:
J=1)+ b (x). (5.2)

The lepton part of the current is
1L,y = T le)y, (1 = ys)y, () + (1 - Y)Y, (). (5.3)

From (5.2) and (5.3) the u-decay spectrum can be calculated, and seems to be in agreement
with experiment. The rate for u-decay comes out to be

Mu >e +5,+ v,)= G’m;/l921r3. (5.4)

From (5.4) and the known rate of u-decay, the Fermi coupling constant G which appears in
(5.1) can be evaluated. An easy formula to remember is

G=1.01%X% IO"‘m;,2 (5.5)

where m  is the proton mass.
The lepton current can be written

B =20 )y () + 20 ()yR (v,). (5.6)

[t is entirely a left-handed current. We define a leptonic left-handed isospin by grouping ( :e) .
into a doublet x; (¢7), and ( z“) . into a doublet x,; (¢). Then

#=2[xf (eyyrr7x, (@) + X (1)y#17x, (1)) (5.7

where 7 =3 [r' —ir?] = (¢9).

s ¥ .__. L P R bk R Lt o o R 1 s Tl o
.W' ‘1‘ e P g h P .r-.rc'l?'!_'-:-W_ BT R




R O Gt LR S SA

£S5 Abers and B.W. Lee, Gauge theorics 29

We define a “left-handed isospin® current for leptons by

it (0 = 3 [xf ey, (@) + xf (whyHrix, ()] (5.8)
and the corresponding charges by

1, = [l ,(o)dx - (5.9)
The 7} generate an SU(2), algebra:

[Ti, T{) =iel*T}. (5.10)
It is convenient to introduce
TE=[Ty 2T V2. (5.1D
hen
B (7, T =27, (T}, TL1 =73 (5.12)

ys
and there is an analogous definition for j4'*.
Evidently, .

) ¥ =0T

The ]eptomc part of the weak interactions in (5.1) is not invariant under SU(’J),_, since there is
iterm ]Ln”t there. The existence and magnitude of a neutral leptonic current is an open experi-
) mental question.

The decay of the neutronn—> p+e + v, is well described by assuming that the hadronic current f
h, in (5.2) has a term

A

) -
, y(n)y,(gy — gA7s)¥(p). (5.13)
The vector coupling constant is strikingly close to 1, while £, is about 1.24. An explanation of the
. fact that g\, ~ 1 was first suggested by Feynman and Gell-Mann, and by Gerschtein and Zel'dovich. ]
) Their hypothesis is that the strangeness conserving part of the A . has the form Py ¥
(V'ﬁin)—(A’—iAz) (5.14) ;
where Vf‘ is a vector current and A' is an axial vector current; and further that V) and V;i are the #i
) first and second components of the isospin current. That is, that
T'= [Vigodx
) are the isospin generators, conserved by the strong interactions. This rule is called the conserved

vector current (CVC) hypothesis. Since the T7 form a Lie group, of which the proton and neutron
form the basis of an irreducible representation, their matrix elements are fixed to be the
Clebsch-Gordan coefficients, and gy is predicted to be 1.

It is important to know whether gy is really exactly one. The measured decay rates, both of
) the neutron and the muon, include electromagnetic corrections to the term obtained simply by
replacing the fields in (5.13) with free wave functions. The radiative corrections to i decay were

.1*
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calculated long ago, and turn out to be finite. The decay rate is corrected by about 4%. The radia-
tive corrections to f-decay are logarithmically divergent. Putting in a cutoff of a few GeV, one
can conclude that, even taking these corrections into account, there remains a discrepancy with
the simple CVC prediction g, = 1.

The calculation is unsatisfactory because the radiative corrections to neutron decay involve
strong inferaction corrections, and because of the difficulty in distinguishing the vector from the
axial-vector part, The latter difficulty is overcome by considering -decays of spin-zero particles,
to which only the vector current contributes. The rate predicted for 7% - #° + ¢* + v is in good
agreement with CVC, but since the branching ratic of this mode to the principal mode,

7 =~ ut + v is 1078, the uncertainty is about 7%, which is too large for us to start worrying about
radiative corrections. Decays of spin-zero heavy nuclei provide the best tests, because their rates
can be accurately measured; but these calculations are plagued with nuclear physics complications
These have been estimated carefully for nine low-mass, spin zero nuclei, The result depends only
on two parameters, the cutoff A and a model dependent number Q which depends on the under-
lying field theory. (In the quark model, @ ={.) For a wide range of A and Q. gy is the same with-
in experimental uncertainty for all nine nuclei. For §=% and A = 30 GeV, comparison with
p-decay gives

gy =0.976 = cos(0.22). (5.15)

No reasonable values of the parameters give gy = 1.
Thus, all our knowledge of non-strange B-decays is consistent with h, containing a term

gy (V) —iV2) — (4] — i42)] (5.16)

with 1 — gy, ~ 0.02. Since gy, # 1, these vector currents alone do not generate a SU(2) group as
the lepton currents do.

The decays of strange hadrons are consistent with the idea that /1, contains a strangeness-chang-
ing vector and axial current term. From the observed absence of decays like =° > p + e + 7, we
conclude that this term changes hypercharze by no more than one unit. From the absence of de-
cays like Z* > n+ e’ +vorZ° > ™+ ¢* + ». one concludes that the strangeness-changing current
changes the hyperchange (strangeness) and the electric charge by the same sign. This is known as
the AS = AQ rule. As a consequence, the change in T is always *; , suggesting that this current
has 7= 3.

Let us write /1, as a sum of a AS =0 and a AS = | part

I, =gy h® + g M. (5.17)

hfj’) has the form (5.14), and is the third component of an isotopic triplet. It is natural to extend
this idea to SU(3), and assume that I:L” is the charged AS=AQ, T= ; , member of an octet of
currents (i.e., the onc that transforms like K7). By comparing a large number of decays, there is
rather striking evidence that this is indeed the case. Therefore we can assume — since it is not in
contradiction with experiment — that

"L')z(V:" V5 — (AL~ iA%) (5.18)

where [
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Fi= [vigodix (5.19)

are the generators of SU(3) and the /Ii(x) are an octet of axial currents.

Although SU(3) is not an exact symmetry, the matrix elements can still be estimated. The con-
clusion is that (5.18) does not disagree with experiment, but that g5 is nowherc near 1. The best
fit is

gs/gy ~ 0.25. (5.20)

In 1963 Cabibbo observed that within experimental error,

gitey = 1. (5.21)
Therefore

i, = cosf h®) + sind B
= exp(2i0F 7 i{exp(-2i0F ), (5.22)

where F7 is the 7th generator of SU(3).

In this way universality can be recovered, and the discrepancy between g, and 1 understood.
That is, if (5.22) is correct hM is a correctly normalized component of a multiplet of currents
which generate an SU(2) group. The angle @ is called the Cabibbo angle, and is somewhere around
077~ 0.25. Its origin is unknown, and a plausible explanation would be very interesting,

zire there any neutral currents? We discussed leptonic neutral currents in the last section. The
cexistence of the charged strangeness-conserving currents in (5.22) naturally suggests also neutral
strangeness-conserving currents. Experimentally the existence of such currents js at this time an
open question, which we shall return to in section 8.

By commuting h{') with T} (which is the charge associated with h{7), one obtains a neutral,
strangeness-changing current, transforming under SU(3) like K°. Experimentally, these currents
do not seem to mediate leptonic weak interactions. Decays like Z* -+ p + e* + e~ are never seen.
Furthermore, the upper limits for branching ratios of K° = u* + u~ or K* > #* + v + 7 are of the
o~der 107%, Any model for weak decays must account for the absence or suppression of those
voaents.

Note that in writing (5.18) we tacitly assumed that 1 is a left-handed current like AP IE, in
fact, it were right-handed —V + A instead of ¥ — 4—it would commute with T, and no
Strangeness-changing neutral current would exist. This idea has been occasionally suggested, but
seems contradicted by experiments.
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6. Unitarity bounds, W-mesons, PCAC

We conclude our tour of the weak interactions with these topics: unitarity bounds, W-mesons,
and PCAC,

Although equation (5.1) adequately describes decays, it cannot be a complete theory. When
the interaction (5.1) is used to describe scattering, the Born approximation must fail at some
energy, since the amplitude cannot be strictly real. Unlike electrodynamics, the Fermi coupling
(5.1) does not lead to a renormalizable theory, so it is not possible to make these higher-order
corrections.

For any leptonic scattering, the cross sections are not proportional to the lepton mass. The
only other dimensional parameter available is G. Since the cross-sections are proportional to G2,
they are dimensionally constrained to grow like

g~ G 6.1)

neglecting the lepton masses. Because of the tocal form of (5.1), the cross-sections are restricted
to a single partial wave, so there is a unitarity bound

o~ 1/s (6.2)

which is violated by (6.1) when Gs is of the order 1.
For example, consider », + ¢” - v, + ¢”. Ignoring the electron mass, the spin-averaged cross-sec-
tion is

i o = Gs/3m. ®XQIC\ g (6.3)

Since the electron which interacts with the neutrino is left-handed in this limit, and i, is right-
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handed, the total angular momentum along the direction of motion in the center of mass is 1,s0
the spin must be 1, not 0. Therefore scattering takes place in the spin-one state, if the electron
mass, #2,, can be neglected. From the Jacob-Wick expansion for the scattering amplitude in the
helicity represcntation, we have

T

Hat3.Ma iy

I« . o
s 0)=— ?(2f+ D (O RPN (1) | (6.4)

Hap3,HaH

where g, are the helicities of the four particles, &/ are the j-dimensional representations of rota-
tions about the y axis, and # is the partial wave, normalized so that Im j = (g/W)I#/ |12, {gand IV &
are the c.m. momentum and /s, respectively; W =~ 2g.) Since (6.1) isa point interaction, there is i

no orbital angular momentum, and the spin is one, so only j = | contributes to the sum in (6.4).
There is only one helicity state for cach particle, so

] 3
Tia_ "z -1 =; tnlfz— 123102 — mdl(o) = 5’; t:m— 1sin— il cosf).

From unitarity, 1#1% is bounded by 2. So in the forward direction

Hm (s, O)I < 6/7
and {rom the optical theorem i3
= (4nfgW) Im T(s, 0) < 487/s. i L
The spin averaged cross-section includes both electron helicity states, so ' i
g=Lo< 24n/s. (6.5) T
Comparing (6.3) with (6.5), we learn that (6.3) violates the unitarity bound when !
Gt = 7272 or s={a/GWNT2=2.7TX lO"’mp =2.5% 10% GeV2. {(6.6) 7
The smallest such bound is obtained for the inelastic process v,te > v, +p . The ¥V — A spin £ b
v vefunction is antisymmetric, so that this process has only j = 0. Since ° for this amplitude is an )
thi-diagonal matrix element of (W/qg) {exp(2i8) — 1}/2i, | £°1 € 1. The total v,te > p +pu cross I
section is :
w? 4 e
o=—[ITPde <= (6.7)
5 5

and this spin-averaged cross-section is @ = 2#/s. By direct calculation, @ is G3s/w so that the Born
approximation equals the unitarity bound when s = #/2/G = 4.2 X 10° GeV?,
The upshot of all this is that the form (5.1) for leptonic weak decays violates the unitarity
bound at about 700 GeV total center-of-mass energy. i\
A popular modification of (5.1) is obtained by recognizing the analogy between (5.1) and second
order electromagnetic interactions. The amplitude for electron-electron scattering can be calcu-
lated from the Feynman graph of fig. 6.1.
The contribution of fig. 6.1 to the amplitude T is




e e e o g i i ,.y..;r,,ag,.‘iw

o B e 1 T g N i T

o “‘n i,

34 E.8. Abersand B.W. Lee, Gauge theories
e(ps) elp,) e"{p,} ¥(p,)
A w*
-----)----
elp,) elp,) vip) e7(p;)

Fig. 6.1. Photon exchange graph in electron-electron scattering. Fig. 6.2. W exchange graph in e™v elastic scattering.

Y4

ie? _ ]
o W(pay*ulp))g, i(pa vy u(py) (6-8)
211.2 1 k2
where the spinors arc normalized so that n*uw = E, and & is the momentum transfer. The numera-
tor has a current-current form, just like (5.1). We introduce a charged vector meson Wu, interact-
ing with the weak current (5.2) according to

Ly=gy W +hel: (6.9)
W* is negatively charged. Then v + e - v + ¢” is described by the graph in fig. 6.2

igw kk 1

3 w(psy*(1 = ysdu(pIn(payy (1 ~ 75)u(p2)|:gm, T ] [y (6.10)

in the Fermi theory (5.1), the amplitude forv+ e = v+ ¢ is

iGC

th(ps)v"(l ¥ )PPy (1 — ys)u(p2lg,,- (6.11)
For low £, (6.11) and (6.10) are indistinguishable provided

gWIMy = GN2. (6.12)

From the Dirac equation, y- k can be replaced by m, in (6.10), so that the second term in the
propagator does not grow faster than the first. The amplitude is damped by a factor 1/£? com-
pared to Fermi point interaction, and doesn’t come into glaring conflict with unitarity. Neverthe-
less, the theory is not renormalizable, as can easily be seen by calculating the amplitude for
v+v—- W'+ W In fact, if a renormalizable theory is constructed using W mesons coupled to
charged currents, the theory must contain additional particles to cancel thc divergences in graphs
with W* mesons alone.

Al the models we are about to describe contain charged W mesons to moderate the weak inter-
actions. From (6.12), the sign of & is determined to be positive. In principle, this sign can be
measured by looking for the parity-viclating interference between 4 weak and electromagnetic or
strong termine.g,ptp—-ntnore +e > u" +u.

The radiative corrections to both g and 8 decays in W-meson theories are ambiguous and depend
on the method of computation. If one adopts the £-limiting procedure of Lee and Yang, the ratio
of the rates for p and § decays is finite. For a W mass > 2 GeV, one obtains 1 — g, > 0.024.

Finally we mention the success ol the idea that the strong interactions are approximately in-
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variant under SU(2); X SU(2),, . The generators are the 71 discussed above, whose charged com-
ponents are the weak currents, and the T%, constructed like T\ .replacing ¥V — A by ¥V + 4. Thus
for nucleons,

) T (1 — ),
1) = fax g0 : 2"—"‘) W(x)

. T (Lt
i = [@x G0 g 27-) Y(x). (6.13)

From 7 and T we may construct

Tf=T£ +T; 6.14)
which are just the isotopic spin generators, and the axial charges

Ti=Th ~Ti. (6.15)
The group algebra is

[T} o, T g1 = ie*Tf o

(1, {1 =0 (6.16)
or

L1 ':', 1 = ie*T*%

[T, T{) = ie?/* T¥

[TL Ti] =il T*, (6.17)

The charge T? is the space integral of the time component of the axial current.

The idea of PCAC (partially conserved axial current) is that SU(2), @ SU(2), is an approxi-
inate symmetry of the strong interactions, realized in the Goldstone mode and that the pions
2 he Goldstone bosons in the symmetry limit, their mass being a measure of the symmetry
breaking. Thus the Lagrangian has the form

L= Py +EL (6.18)

where € is “small”” of the order Mf,/m; and Lgyy, is invariant under the group.
The matrix element of the axial vector current AL(‘—‘j;,\H - j'i_#) between the vacuum and a one-
Pion state with momentum p is

. i, p,oexp(~ip- x)
47 ¥ - L i e i
R

Except for the normalization constant F,, the form of (6.19) is dicated by Lorentz invariance.
The value of I can be determined from the decay m~ = yu~ + ,. From equations (5.1), (5.14)
and (6.19) we calculate the total rate for 7 decay to be

(6.19)
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P(a > g +v) = GPM2FHim? — m? P l4mdl. (6.20;

From the measured pion life time 2.60 x 1078 sec, and from the value of G obtained from
r—e+v+7, the value of F_ is determined to be

F, =93 MeV. (6.21)
As a consequence of (6.19)
) iF,m?
(oA m (p)) = QnyJIE, 8y exp(—ip- x) = FomX¢i(x)mi (p)) (6.22)

where ¢/(x) is the renormalized pion field. In the symmetry limit (e » 0), m* =0 and 3#*4 = 0. In
this limit, any matrix element ot‘AL(.\‘),

M, = (bIALO) Iy - (6.23)
has a pole at ¢* = 0 (¢ = p,, — p,) of the form
iF q )
My === (bl (0) 12} (6.24)
q

where j (x) = 0¢i(x) is the source of the pion field.

Low energy theorems in the unphysical world with an exactly conserved axial current can be
obtained from (6.25) and its generalizations. The content of the PCAC assumption is that these
are approximately true in the real world. Here are some examples.

Let a and b be nucleons. Then the most general form of (6.23) is

i i
(2 TPOEAGIYs -~ ay7ahg)] Tulp,). . (6.25)

From the conservation of the axial current, we know that (6.25) multiplied by g* is zero,
therefore

2Mg (g% = ¢*h(g?). (6.26)
From (6.24) and the fact that

~r _ .8 ==
(N I (0)IN) = (_277)3 i, Yrlysu(p,) (6.27)

(wherc g is the pion-nucleon coupling) we obtain the Goldberger-Treiman relation
F, = Mg, (0)g (6.28)

where g ,(0) =g, .

Experimentally, g?f4n? ~ 14.6, so Mg, /g =~ 83 MeV; comparing with the value 93 MeV ob-
tained from w-decay, one gets an idea of the accuracy of PCAC.

Many other soft-pion theorems can be obtained from (6.24). The full power of the method be-
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comes apparent when two or more soft pions are considered simultaneously, for then the commu-
tators (6.17) of the SU(2) X SU(2) group enter the calculation.
For example, let

TH{(q) = f(bl T(AF(x)A7(0))1a)exp(—ig - x)d"x (6.29)

where a and b are nucleon states with momentum p and isospin indices a and b. T has a double
pole at ¢* = 0, whose residue is proportional to the forward 7N scattering amplitude T.n(g):

Ut
THY = F,‘,q—zq';f(bIT(jf,(.\')jf(O))la)exp(—-iq- x)d%x + less singular terms
(q%) "

F: q‘lql’
2ripe (g?)?

T,n(q) + less singular terms at ¢ ~ 0 (6.30)
where T, is normalized as in (6.4). Next we contract (6.30) by multiplying T#* with Qs

F:_ 7
2wip° q?

q, 7%= T,n,» asq—~> 0. _ (6.31)

On the other hand, from (6.29)
¢ = 1f[—a— (bIT(A¥(x)A?(0)) )| explig - x)d*x
; " K(x)A: xplig - x)d*x.

Because 3,4} = 0, only the equal time commutator remains.
q, "= if(bIT(A?(x), AF(O)Hayd(x®)exp(—ig- x) d*x
= _ier’fkf(b| V;’(O) iaYexp(—ig- x)8%(x)d*x

3
where we have used the local form of the second of equations (6.17), 1
R, A2(0)) 5(x°) = i€li* ¥, (0)5%(x). . (6.32) g
Since the vector currents are conserved, i
£
(bIV2(O)Ia) = (7:53%: (T—"z)f’b. | (6.33) y
Combining (6.33) with (6.31), we obtain
1
. :_SWZF: parT, 1, (6.34)

where (T7),, = —ie,, are the pion isospin matrices. Equation (6.34) is a threshold theorem for
7N scattering in the symmetry limit. We can apply eq. (6.34) to the real world at the real thresh-
old (v = p- ¢ = Mm_}, since the nucleon pole terms. being P-wave. do not contribute there. Im-
portant corrections to eq. (6.34) for the real world are symmetric in  and 7, so we shall deal only
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with the antisymmetric part. The result is a formula for the difference between the 1'=% and
=% scattering lengths. Using the Goldberger-Treiman relation (6.28) for F_, this difference is
predicted to be

3¢ 1 Mm,

cayy — Uy = . 6.35
al—3[2 I=1f2 87 M?'ngM‘i‘”‘l_" ( )

This is an equation for G, in terms of measurable scattering lengths, as well as a relation be-
tweena,,, and a,,. Both are well-satisfied experimentally.

Assuming that T (g) satisfies an unsubtracted dispersion relation, one obtains a sum rule for
g4, ignoring terms of order m3/M:

s L AG a0 (6.36)

2 2

gn & 7 M mp? S
which is the original form obtained by Adler and Weisberger. In eq. (6.36),5 = (p + g)?, and ¢*
is the total 7* p cross section.

Many other soft-pion theorems can be found using similar methods. The reader is referred to
the book by Adler and Dashen for a more complete treatment.
Finally we mention an example of a class of theorems which aren’t true. Let

MDD TH = ¢y, Ky yy(e®), k)IAMOND (6.37)

be the matiix clement of the neutral axial current between two photons and the vacuum. Eq.
(6.37) should contain a pole of the form

F q*
2 vyl oD g (6.38)
q
where ¢ = k, + k; and (yy|j2(0)1) is proportional to the #° » 9y amplitude:
T(moyy) = —QuY* kS (yyljg(0h. (6.39)
Kinematically, T(w° — -yy) must have the form
T = eMePe P kagflg?). (6.40)

Physically, f(n}) determines the #° lifetime. We assume fim?) = f(0) to relate physical quantities
to the predictions of PCAC.

The non-pole term in T7#** must be a three-index pseudotensor. The only term first order in the
momenta one can construct which is symmetric in the two photons is

Mk, — k).

But this term violates electromagnetic gauge invariance, which requires ku,T‘“’" = Jop TH =

We conclude that i

ir gt 0 o5 oy
o T(T( ')”Y) +E(I)E£2)?ﬂl.uph (64])

(1)@ evh =
etlg 2}y =— —
. a’ QmPtVETRS
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when T"#** is at Jeast second order in the momenta. We multiply (6.41) by ¢* and use the con-
servation of A* to obtain

-iF,
0= ey kiekaaflgh) + g T, (6.42)
- 172

Since g, T#** is at least third order in the momenta, it follows that f/{0) = 0.

It has been shown that f(0) = 0 cannot in general be maintained in perturbation theory because
of the singularities of the theory invalidate the formal arguments. Experimentally, f(m2) = O(m2/M?)
predicts far too small a pion decay rate. Correct expressions in perturbation theory can be obtained
if we set

2 A* =2—ff FL(F"(x) (6.43)

where F' is the electromagnetic field tensor and @ is usually the same model-dependent number

which entered our discussion of radiative corrections to B-decay. The value § = %, characteristic of

a simple theory with one elementary charged fermion, like the proton, is in good agreement with
experiment. The original Ward identity 9,4* = 0, is recovered in models with an equal number of
positive and negative fermion fields. Identities based on (6.43), which are correct in perturbation
theory, are called anomalous Ward identities.
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7. The Weinberg-Salam model

In this section we will describe the lirst model. which was proposed about five years ago by
Weinberg and Salam and which combines the weak and electromagnetic interaction through the
use of the Higgs mechanism.

The idea is to put the SU(2) group discussed in section § together with electromagnetic gauge
group into a larger gauge symmetry. The charged gauge mesons become the W* intermediate vec-
tor bosons. There remains a heavy neutral vector meson, the photon, and one Higgs scalar. When
no confusion can arise, we will use the name of a particle to stand for its field. In general, we fol-
low Weinberg’s notation.

In the simplest version, the only leptons are the electron e and its neutrino v (we omit the sub-
script in », for the moment). These may be grouped into a left-handed SU(2), doublet

v
L= ( _L) (7.1
‘L
where e, =3(1 — vs)e, and an SU(2), singlet, R = e, = 1(1 +;)e. We assign to the doublet a
“hypercharge” ¥ = —1 and to the singlet e, a “hypercharge” Y = —2, so that the rule
Q=T +iY (12

holds for all particles. Since all members of each irreducible multiplet of SU(2), have the same
hypercharge,

(T, Y] =0 (7.3

The group generated by T{ and Y is SU(2) ® U(1). We make this into the gauge symmetry of the
model, introducing three gauge mesons Ai associated with SU(2); and a fourth B, associated
with the U(1) subgroup. So far the mode! contains two pieces:

£= Bgauge s 'e]eptons (7-4

where, according to the prescription of the first lecture,

Egauge = _;:-F:;VFMU - %B,uVB,‘w‘ (75
in (7.5)

Fi, =08,4] - 3,4, +gelT* 4l A¥

B, =08, aVBF. (7.6
The lepton part ot £2is

5 o . 1, i

Blepluns - R"Yp(a,u tig B,_,)R +Il’¥"(3y +-§g B,_; — g Q‘AL)L 1.7

Recall that if the symmetry group is a direct product, the coupling constants may differ for each

factor. We take g to be associated with SU2),, and 1o’ with U(1). Notice that the SU(2), in-
variance prohibits an electron mass term from appearing in (7.7).
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We want to end up with threc of the four vector mesons acquiring masses, since the final
iheory should have only one conserved quantity, the electric charge Q, and one massless meson,
the photon.

To this end we introduce a doublet of (complex) Higgs scalars

¢+
o= (¢0) . {7.8)
The doublet ¢ transforms like L of eq. (7.1) under SU(2),, and has ¥ = +1 in order to maintain
(7.2). It contributes a term to the Lagrangian

L oe= (a#gb’f + —l';r B¢t + i% 7‘AL¢*) (a#¢ _%' B,¢ _f TiAiF¢) — V(ote). (7.9)
Tl host general form for V is ¥
V=ul¢+ Mot (7.10) | i
There may also be an interaction term
Lintes = G, [RotL + L¢R) (7.11)

which is symmetric under the whole group as well as being Lorentz invariant. [
Next we let u? be negative so that one component, which we choose to be the neutral compo- i |
nei. ¢, develops a vacuum-expectation value, L

<¢>=(3)/\/2". (7.12)

Notice that this breaks both the SU( 2), and the hypercharge U(1) symmetry. The surviving sym-
metry operator is the combination Q [eq. (7.2)]. We choose v to be real, as in the example in
section 3. From (7.10),

v= [~ 2, (7.13)

Next, we redefine the scalar fields, associating a new field with each broken generator. Ac-
tually, it is not necessary to find the generators orthogonal to @; any three independent ones
satisfying

0

7(°) =0

v

will do. Therefore, we define
U(E) = exp(—-ik-7/2v)

and write

- 0
¢=U (5)((U+n)/\/7) (7.14)

reple g the four real components of ¢ by n and &,
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Next we make a gauge transformation to the U-gauge, so that the particle content of the model
becomes manifest:

0
+7

¢~ ¢ = U(§)¢=(u )/\/'2'

L- L =U)L

where
T A, = U(E) [r-A# —;-U '(g)ayU(:}} U™'(E) (7.16)

and B, and R are-unchanged. We will drop the primes on L' and A,. The new ficlds are just as
good as the old ones, since the gauge transformation is not singular

Now there are new terms quadratic in the new fields in both Lipperand L2, Eq. (7.11) be-
comes )

Gy _ G
Lier = — o3 [RL + LR] + cubic and higher order terms = —— - ge + ... (7.17)

The electron has acquired a mass:
m, = G ul\/2. (7.18)

The neutrino remains massless because there still are no right-handed neutrino fields. The part of
the Lagrangian describing the ¢ field. eq. (7.9), has become

' 2
+7)? . , +
Ly = 3 o nd,m +_(y_8n)_ X [g'B, +gr' AL Xg'B* + griasly x_ — V[( Y 7 1 ) ] (7.19)

where x. = (7).
The remaining scalar field n has a mass —2u*. The quadratic term in the vector meson fields is

sV @B, ~ gA])g'BY — gAM3) + g2((A* ') + (42)?)]. (7.20)
Define
Wi=)5iA2/N2. (7.21)

Evidently the charged fields W, have mass
M =igu. (7.22)
Define two neutral ficlds
gA+g'B gn +g'al
Z ==ttt A ==t (7.23)
N Ve
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iz and A are cigenstates of the mass matrix, with masses
M, =tun/g?+g7, My =0. (7.24)

The single massless vector meson is the photon, corresponding to the surviving U(2) symmetry
exp(—if Q).

It's instructive to rewrite Lieptons — €q- (7.7) — in terms of the Wt, Z, and photon. From (7.21)
A =W, + WHNT, AP =W, - wHivZ. (7.21')

Therefore the term in (7.7) containing W*is

£+ =2 = Wt Wp i Wy Wi
3 LA¥(r'A, +T°A2)L =3 (VLy"eL + & v"v)) Y £ - — i(D y*e, eLryny)_‘_—-i\/T
== =l ye W+ e, yru W1 (7.25)
fz L7 L L'y L%ul- .

Comparing with eq. (6.12) we obtain

GAT= g/8M3, = 1/20%, | (7.26)
Next we examine the terms in (7.7) containing A} and B,,. Define an angle &, by

g tan 0,,. (7.27)
Then from (7.23)

A, =cos0B, +sin 0y, 43, Z,=sinf B —cosf A°. (7.28)
Inverting, we get

B,=cosbyA, +sin0,Z,, A =sin8yA, ~ cos O0wZ,. (7.29)

The terms in Lyepion coupling 42 and B, to the leptons are

[

—-% (28, e te, vhe, +u v#v, | [cos OwA, +sin 6,7, +§—{EL7#3L—17L7“VL] [sin0A, ~cos8y,Z, ]

. . = : _ 88 _ _
= _—“2\/?-1-_3"7 [g Z(ZeR'y“eR+eL'y”eL+VL'y"vL)—-g2(eL'yPeL—-VL'y”v,_)I +\/.___—th£;—; A eyt +E e, ).

' - {(7.30)

Thus the massless vector meson A, does couple to the electric current eyte, and we can identify
the electron’s charge —e:

e=gg WETFE. sy

Finally, we verify that local gauge invariance still holds for the local U(1) group corresponding
to (, with the photon field A, being the gauge meson. Under an infinitesimal transformation
generated by Q =Y + T3,

e TR a ey oy e e b e e
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542 =- 3,€(x)

2 1
—_ i 1 b el R
8B, —g' d,7€e(x) _g' 2,€(x)

so, lrom {7.28)

. ! :
8Z, = ( g5 Oy = cos 0“') 0,6(x) =0

cosf,. sin@
6‘4“ = [ ; E f "_W]a‘lf(,\')
g g
\/ng +g'2

] |
=—lgcos by +g'sin Oy ]a,e(v) = o 0,e(x) =—2,€(x). (7.32)
g8 8 e
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8. Phenomenology of the model. Incorporation of hadrons

Since both g/[g* +¢"*]" and g'/[g* + g'?) '* are less than 1, we can conclude from (7.31) that
gsin@ =e, g cos@=e, (8.1)

$0 both g and g’ are greater than e.
From (7.22), the mass of the W is given by M}, = 1g%? From (7.26), v* = 1/G/2. Therefore

AJZ —'3.2.9.2—_ ez ] - (8 2)
Yo 4 singy, 426 )
The W mass must be quite large,
1z
o 1 38
My =2 = GeV. 8.3
A [\QG] sinfy, sin @y, ¢ 8.3)

Evidently, in this model, the minimum value of M, is too large to be produced in present-day
accclerators; nevertheless, it is not nearly as large as the unitarity bound, which is of the order of
hundreds of GeV.

The Z meson is even heavier. From eq. (7.24)
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” vg My 38 Gev 6
] = — —_— = — = e ,
2 2cos0y cosfy Lsin 20,

Since &' = 0 is not allowed, cos 8, < 1, and
My > My, My > 76 GeV. (8.5)

The value of the dimensionless e—e—7n coupling constant G, can be obtained from (7.18) and
(7.26)

Ge=vV2Zmv=/Tm, Y IJGC~2x 10 (8.6)

which is small, indicating that graphs with nee vertices can often be ignored compared to graphs
with photon or Z vertices.

What is the effect of the W on the spectrum for g™ » e +p, + v, ? The (u, v,) doublet s easily

itl_ porated into the model in exact analogy to the (e", v} doublet, and the u-mass generated by
the p—v, —¢ coupling. The coupling constant G » Must have the value

G,=(m,m)G,
which is larger than (8.6) but stiil very small. The amplitude for 4 -decay is

_ig2 [gyu A k,ukv/jwe\']

Ton e P (1 — y)u(ieh(1 — you(@,) Py (8.7)

whe Sk = p(u) — p(v,) = p(e) +pw,). In (8.7), the 8, term reproduces the point interaction spec-

trum up to terms of the order k*/M3,. The second term is of the order mm, /M3, . So the effect on
the spectrum is very small.

The most accessible test of the model seems to be v — ¢ elastic scattering. The W contribution
comes from fig. 8.1(a).

At low energies, the contribution of fig. 8.1(a) is indistinguishable from the Fermi theory:
i

TG = W o (1 — ys)u()ule )y, (1 — ysule) (8.8)

where we have applied a Fierz transformation to the (V — A}V — A) coupling. The sign in (8.8)
is the product of a minus sign from Fermi statistics and a minus sign from the Fierz transforma-
tion. The Z-exchange contribution can be obtained from (7.30). At low encrgies it is

{a) {b)

Fig. 8.1. Graphs for ve elastic scattering in the Weinberg—Satam model.
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ﬁ\/_, - v yR(l s it(e)y, [2 sin’d,, —5 +3yslue). 8.9
In general, we may write the amplitude forv+e— p + e” as
N \/;—2 V(I (1 = ys)w)i(e " Yy, (Cy

Then W exchange alone (or Fermi coupling) predicts

—sCy lu(e). (8.10)

Cy=C,=1 (8.11)
while the present model predicts

Cy =2sin%d, +1, C,=17. (8.12)
From (8.10), the spin-averaged differential cross section can be calculated. The cross section in-
to solid angle dS2 (in the center of mass frame) is

do &7
T = L [(Cy ~ C - @ +(Cy +C O ¢ = mHCY — C)(p- p')] (8.13)

as 42

where pr and p’ are the inijtial and final neutrino momenta, q and ¢’ the initial and final electron

momenta, and s = (p + ¢)%. In terms of the lab-frame electron recoil energy, T, we obtain from
(8.13)

o _6*
£ - [(c\, Co P+ (Cy +C, ) [1

2
T m.T
_ £ 8.14
df 211' w] - ] ( :

2
where w is the neutrino energy in the initial electron’s rest frame (the lab frame). The last term is
small for w > m,. In the V — A model (Cy =C, = 1), do/dT decreases, for fixed T, like 1/w.
Otherwise, there is a constant term. If C,, = —-C {not possible in the W.-S. model), do/dT would
be entirely independent of .

Gurr, Reines and Sobel have looked for ve events from anti-neutrinos produced by a Savannah
River Plant reactor. What they measure is the rate given by (8.14) integrated from a minimum to
a maximum value of 7', folded into the neutrino spectrum. T ..« 1S just the neutrino energy w,

20 Excluded
Ca
F1.5 ~Allowed Feynman and Gell-Mann

(v-A) Theory

05 [0 05 10 15 20 25
CV

10
- Weinberg
Theory

Fig. 8.2. Region of values of Cy and €4 in agreement with the experiment of Gurr, Reines and Sobel.
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<l

6,_,_ e
Fig. 8.3. Z-cxchange graph for vue” scattering.

and T,;, is determinea by the experimental conditions. They have established that the cross sec-
tion is less than twice that predicted by Cy =C, =1.Fig. 8.2 is from their paper. It is a map of
the Gy, — C space, the shaded region being the value allowed by their experiment. The V — A
theory is not excluded, and the W.-S. model is acceptable for sin® 8, < 0.35, corresponding to a
W mass greater than 60 GeV.
re amplitude for v, *e—> v, +ecan be parametrized in a similar way. It is a particularly in-

teresting process because it is forbidden if only charged currents exist, since v, — e does not
couple to W. If there is a neutral Z, elastic v,€ scattering will be mediated by Z exchange, as in
fig. 8.3.

The effective interaction is

G _ ) ,
_i—\/_ii}-(.u)'y”(l - TS)Vp [e'Yp(Cv - CA vs)el. (8.17)

n W.-5. model,
Cy =1, Cy =7~ 2sin?0,,. (8.18)

In pure V - A theory, C,=Cy=0.

Recent experiments at CERN have put bounds on both the v, e and v e clastic cross sections.
Like v, + e, both grow linearly with the (anti) neutrino energy w for w < M, . If w is measured
in GeV, the cross sections are less than 0.7 X 1074 ¢ em? and 1.1 X 107*" w cm?, respectively. A
formula like (8.15) describes these cross sections also in terms of 0y, . The experimental bounds
restrict sin® 8y, to be less than about 0.6, which so far is less restrictive than the bounds obtained
froelastic e”v, scattering.

There have been many aftempts to include hadrons in a W.-S. type model. One of the principal
difficulties is that a realistic theory must have AS =1, AQ =1 currents, but no necutral strange-
ness-changing currents. The question of hadronic neutral non-strange currents is still open experi-
mentally. ,

A straightforward way to add hadrons to the model without changing its basic structure is to
add three fundamental “quark” fields, which we shall call p, 1, A. We will not worry about ap-
proximate SU(3) symmetry here, but assume that the Lagrangian contains some very strong,
symmetric term, like a vector gluon interaction, which does not affect the rest of the discussion.

Next we group the left-handed quarks into an SU(2), doublet

N, | . [P
- ny cosf + A sin @ _\nq_

where 0 js the Cabibbo angle introduced in the eq. (5.22). The remaining singlets are the right-

(8.19)

m-g-"#:'-'-’}‘!a'_f'ﬁi._é'a. e
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handed quarks, iy, py, and Ay, and the combination orthogonal to the bottom line in (8.19),
namely

A= (A cos® — i sinf). (8.20)

Since we are not interested here in SU{(3) transformations, we assigh ¥ = 1 to n, Y=2top,,
and Y = 0 to the rest. Thenp has unit positive charge. and A and n are neutral. (The conventional
quark charges can be obtained by shifting the Y assighments.)

The Lagrangian 2 must be symmetric under SU(2) X U(1). The lepton and gauge field picces

already are, and so can be the very strong vector gluon coupling term. A quark mass term, of the
form

m, WPwr + 0y

is forbidden by the symmetry, so cannot appear in £. The quark masses arise from interaction
with the scalar doublet ¢.

To write the most general interaction, we need

S=io, %= (:) (8.21)

which also transforms like a doublet under SU(2), but has ¥ = —1. The general quark-scalar inter-
action has the form

GiIN @py +hc] + G, [N gy +h.c.] + G, [N ghy + hoc.] + Galng A ] + G5 ). (8.22)
The quark mass matrix is obtained by replacing ¢ by its vacuum expectation value:
(" =0, (9™ =u/\/2.
The term quadratic in the fermion ficlds in eq. (8.22) becomes
] - -
7_2'. [G\pp + Ga(7T cos 8 + X sin @)1 + G3(7F cos & + X sin §)A
+ Gan(h cos 0 — n sin 0) + GA(A cos @ — n sin 6)]. (8.23)

Evidently, G|, ... G5 must be adjusted so that the mass of the p-quark is m,, etc., and the physi-
cal n- and A-quarks are mass eigenstates. This determines the couplings Gy, ... G5 completely.
In terms of the quark masses and the Cabibbo angle, (8.22) may be written

3 ~ ot s v,
) (N ¢py +he)+m, [:1,{ (é Ny cos @ - ‘_\/’2’)\‘ sin 0) + h.c.]
+m, [?_\R (q&"NL sin ¢ +';/l')-j7\c cos 0) + h.c.j”. (8.24)

Since v is determined by eq. (7.26) in terms of the Fermi constant G, we conclude that the

coupling constants G; in (8.23) arc quite small, of the order 1%, and therefore the Higgs scalar
couples to the quarks weakly.

o |
(S

B ARl
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Let us examine the neutral quark currents. The coupling to B, and A:: is

&'B,[Pry*py + 3 yn cos?0 + ALY*N, sin?0 + cosf SHAGIL LD WD WMELTAN] +gAL P (8.25)

where
JOM ="Ip y4p, — i yEn, cos?@ — ALY*Asin?@ — cosd sind (s y* A + X y#n, ). ~ (8.20)

The terms proportional to cosf sin@ are the strangeness-changing neutral currents. In terms of 4 u
and Zu’ the ncutral vector eigenstates given by (7.23) in terms oi'/lﬁ and B#, the interaction (8.25)
can be written
—*&g:——A -p(em)_,_\/"iT' 7z su(3) in? o s i (em) 8.27
gz+g"§.11] g tg  Z,* —sin® 0y, j ] (8.27)

wi[ /% is given by (8.26) and
§™ = gy

For other charge assignments eq. (8.27) still holds, with appropriate j¢™), Since j,ﬁ“'“) contains no
terms with X or », Z, does couple to a strangeness-changing neutral current.

This result is impossible to avoid with only those quarks, whatever their charge assignments.
Because of the limits placed experimentally on such currents by the absence of K* — 7+ + et +e”
or K} - u" + u7, it is desirable to eliminate them. A model which does this has been suggested by
Gla  w, Hiopoulos and Maiani. They add a fourth quark, q*, and group the quarks into two
SU(2), doublets:

(p) o (") . (8.28)
nJt A,
L L

If the mass of the " is very high, no unwanted effects will appear. Instead of (8.26), the neutral
current is now

j'(:!) = % [ﬁL7"pL - ﬁcL'Y,u”cL + (—1L7pqL - Xc7n7\cL ] - (829)

Because (n_, A ) is obtained from (n, A) by making a unitary transformation (5.22), the combina-
tion 71y yHn g + X v*h, in (8.29) is just Ay*u + Ny The cross terms proportional to cosf X
sin@ cancel, and the unwanted currents are eliminated.

In this model, the Z-hadron coupling is still given by (8.27), with i‘(f’ given by (8.29), and the
Z-lepton coupling is unchanged [see eq. (7.30) or (8.9)]. Specifically, the Z coupling to hadrons
and neutrinos takes the form

Vg + g7 ZHD — sin? 0, j¢™ +15y, 11 - youl.

For low energies, the amplitude forv +a - o' + b, where a and b are hadron states, is propor-
tional to

‘2+ 2 =
(—‘g—“M‘g——)(b‘.jf) - sin* @, j‘£°m)la)v"yﬂ(l — Y. (8.3
z
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Using (7.24) for M, we obtain
(@2 +g'aM, = 1Jv*=VIG. (8.31)

The rates arc therefore independent of the Z mass at low energies, when the Z-propagator can be
approximated by —g, /M3 .

For example, the amplitude for elastic vp scattering has been measured to be (0.12 £ 0.06)
times the rate for v + n > /" + p. To make a theoretical prediction, the matrix element from
(8.30) can be obtained as follows: The matrix elements of /™ are well known from clectromag-
netic form factors. The current jff) is the neutral component of a triplet whose charged member
is just what is measured in » + n > p” + p. Thus the amplitude from (8.30) is known experimentally.
Pais and Treiman predict the branching ratio to be

0.15< a(v+p—v+p)o(v+n~ p" +p)< 0.25 (8.32) |

provided 8y, < 0.35, as required by the ¢"» elastic scattering experiments.

Even more stringent bounds can be obtained from experiments looking for weak pion produc- .
tion. We will say only a few words and refer you to the literature for details. Consider the process |
vtp-=>v+p+a° Wenced the matrix element

{pme ij) —sin® 8, jff'“’lp). (8.33)

The electromagnetic current can be measured in 7° electroproduction. The charged version of
fff), {pr® Ij’;‘ln) can be mcasured in v + n- p+7° + x~ experiments. Actually this matrix element |
is not simply related to {pw® Ij}f)lp) by isospin, because pa® can have either /= s orf= -;— How-

ever, inequalities can be deduced, #* and #~ amplitudes may be averaged, isospin zero nuclei may

i be used for targets, or events may be selected where the 3—3 resonance is known to dominate.
There are experimental bounds on many branching ratios for neutral-to-charged neutrino-in-
; 3 duced pion production processes. One of the most stringent is
] . ovt+tp>v+p+a°)to(v+n—~vr+n+awo)
1;; R:- ( P R p ——— i R <0|4.
i (vt n—-pu +p+a9)
q ' Theoretical arguments, with inputs from other experiments, predict R > 0.2. Although these num-

B bers are subject to considerable theoretical and experimental uncertainties, it is beginning to look
L as if there may not be any neutral hadron currents which couple to neutrinos. However, only
more detailed measurements can settle this point.
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9. Models with heavy leptons

In this section we shall describe models without neutral vector mesons coupling to neutrinos.
In-these models, the rates for all neutrino processes described in the last section vanish to order
(N
All these sections involve heavy leptons. The reason s simply that the graph in fig. 9.1 for
p+7-> W'+ W exists in all models.

The amplitude calculated from this graph grows linearly with s, and therefore violates the uni-
tarity bound. This behavior leads to a non-renormalizable theory, because the box graph occur-
ring in the fourth order v + ¥ elastic amplitude is quadratically divergent. In the Weinberg—Salam
theory, the leading asymptotic behavior of the graph in fig. 9.1 is cancelled by the graph in fig,
9.2. The skeptical reader should calculate the ZWW vertex and verify this cancellation.

wZ vertices arc to be banned, the linear growth of the graph in fig. 9.1 must be cancelled
somehow. The only other alternative is more leptons, as in fig. 9.3.

The linear term in fig. 9.3 has the opposite sign to the linear term in fig. 9.1, and thercfore
they can cancel with appropriate coupling constants, leading to a theory which may be renormal-
izable. The hypothetical E* is a “heavy” lepton, because if it were lighter than the K* meson, it
would already have been seen in K* = E* + 7.

Heavy leptons can be introduced in the context of an SU(2) X U(1) model, where one of their
functions is to eliminate the Zpy coupling. For example, we may introduce a left-handed triplet

.l,—.,+

v | . (9.1)

.eL

In addition the model contains right-handed SU(2), singlets, e, and l:';. The triplet can be as-
signed ¥ = 0. The electron and E* have Y = —2 and ¥ = +2 respectively. Then tlie neutral current
is

j;(:s) = E‘}"Yg‘E‘;. — &8, (9.2)

Fig. 9.1. Electron exchange graph for v + p— W* + W~
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Fig. 9.2, Z annihilation graph for v + v — W=~ + W". Fig. 9.3. Heavy lepton exchange graph for v + v — W* + W~

which contains no Py#y term. Neither AL” nor B, couple to the neutrinos, so neither do the linear
combinations A, or Z,.

Another possibility is to add a neutral E° to the scheme just described, and group the leptons
into two doublets

(v + EO)Z )
) L

e

Er |
(v - EYNVZ],

with ¥ = —1 and Y = +1 respectively. E3 has Y = 0. The hypercharge current

(9.3)

1L+ EQyoy + D) — (5, — S yym(v, — EP)

contains no term in Py*p and neither doesjff). In such a model one would expect v + e > E° + ¢
at sufficiently high energy, but no elastic v + e scattering. The former model is known as the LPZ
model; the latter as the PZ II model.
B, i A rather different idea has been suggested by Georgi and Glashow. Instead of SU(2) x U(1), let
the basic gauge group be O(3). Then there will be only one neutral current, and it must be just
JE™, In this modet there is no other neutral current at all, so that there is no parity violation pre-
dicted in electromagnetic processes like e” + e - e~ + eore+p->e +p.
The simplest way to realize this idea is to add a neutral lepton E° and group it together with E*,
v, and ¢ into a triplet;

E#
L=l vsinf+E°cosf |. (9.49)

e
L

E® must have a mass, so we can form a right-handed triplet also
E+
R=|E°|. : (9.5)

R

There remains a left-handed singlet:
(£° sin 8 — v cos B),.

The interaction of the leptons with the gauge fields AL is, according to the general prescription
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Fotd o T -
gA:: H —AL°)1"(°)+A#1‘” + A7 j# (9.6)
where
1) = -
A =fﬂ)+ IA‘(‘Z)
I vz
. ]'lal)t i]‘f‘?) (9 o)
£ - B L7)
]ﬁ \/j

and therefore

je =Lgv, Tiglg + Jf?‘,;yni:,ff,R,s

s =L T L, + R oy TR, ' (9.8)
In the spherical representation
/ 0 -1 0 0 0 o 1 0 0
=10 0 1|, I'={-1 0 0] =10 o0 0
0 0 o o 1 0 ¢ 0 -1

[The ~hase is chosen so that for a neutral triplet (¢*, ¢°, ¢} we have ¢* = (¢)]
V. dentify A* with W, and 4©? with the photon, A,
The neutral term in eq. (9.6) is

gA#[‘é"y#e"—ET*'y*‘E*] (9.10)
and does not violate parity. Therefore we can identify

g=e 9.11)
The charged term is

e, [, sin -+ ES cos fyys e, — £F TH(vy sin B+ £} cos B) + E3 yhe, — EfyREQ] +HC. (9.12)

The term in (9.12) which couples electrons to neutrinos is

esin W' vt e +H.C. =1esin g W+ PyE(l —y5)e” + H.C. (9.13)
Therefore |

GNZ = e*sin? Blapmz,. (9.14)

In the W.-S. model — compare eq. (8.2} — we had

G2 = e*[(8M2, sin? Oy). (9.15)

Che Georgi—Glashow model therefore has an upper bound for the W mass

My, <+/Z (38 GeV) = 53 GeV.
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Obviously, the muon and its neutrino can be introduced analogously, at the cost of two new
heavy muons.

The Higgs mechanism for this model can be constructed from a triplet of scalar fields ¢f. The
gauge invariant kinetic energy term for the ¢ is given by {3.10). and we saw in the third section
that if

(P} = (¢ = Q, (P2} =0, (9.16)

then the W meson acquires a mass ev.

It will be useful later to write the Lagrangian in terms of the charge ejgenstates ¢, = ¢, and
s* = (¢ 7 i)V 2. Then (5%, ¢,, s7) form a basis for the representation (9.9} of O(3). The
Lagrangian term for the Higgs scalars is

‘Gsualurs :;—(ap¢i —ie A.U : (T),'k ¢_g—)(a_u¢,- —ie A" - (T),-kﬁbk) (917)
which becomes, in terms of s* and ¢°,
Lytars =2 (8,00 Yie(Ws* — Wis)[a4° — i e(WH*s™ — W* %))
+(3,5" —iedA; s +ie ¢"IV*)(E)”S" +ieA*s —ie¢°IW ). (9.18)

Write ¢” = v + . Then it is evident from (9.18) that the photon remains massless, while W*
acquires a mass y:

M= eu (9.19)
We sce that there is a direet WA, coupling term
—e ugh? (9.20)

in addition to those explicit in (9.18). Of course, it is possible to eliminate the s*-ficlds by
writing

[\ 0 |
| 0° | = expli(T.8, + T£ )0} v+ v |
| s } 0

and performing the gauge transformation U = exp(~i)[T, &, + T_£_] on the scalar, vector and
fermion fields. This is the U-gange discussed previously. However in a later section we will need
the Feynman rules in other gauges, and for this reason we have written the Lagrangian in terms
of the (5%, ¢°, s7) fields, without eliminating the fictitious components.

Finally there may be fermion mass terms and fermion-scalar couplings. An invariant fermion
nass term has the form

Liass =~ [LR + RL]

mass

—m [ETE* + cos B ESEC + Lsin § (FU1 + v5)E® + EO(1 — yw) +ce]. (9.21)

There are two possible invariant coupling terms
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Leoupting = C1LL(T-$)R + H.C.] +G,[ET sin f— i, cos B} R + H.C, (9.22)

where ¢- R means step + S"ER + ¢°LY. Replacing ¢° with v, we see that (9.22) contributes another

fermion mass term to the Lagrangian. It is )
GwWI[ETE* — Re”] +sin 8 Gov E°E° — Lcos f Gou[i(] + Ys)E® + EO(1 — vy, (9.23)

From (9.21) and (9.23), we obtain a fermion mass matrix, which we should diagonalize, and
then impose the condition that the field we denoted by v is indeed massless. (Since there is one
more neutral left-handed fermion than right-handed fermion, there is bound to be a massless left-
handed field.) This condition gives, from eqs. {9.21) and (9.23)

mg, sin f+ GvcosB=0. (9.24)

1e heavy leptons which occur in the models we have discussed may actuaily be reasonably
light, and, if they exist, may be discovered long before the heavy vector mesons. All we really
know is that they are all heavier than the K meson. They can probably be produced most easily
in colliding ¢*e” beam, which can set lower limits on their masses close to the beam energy. Reac-
tions like » + p -» E* + hadrons have also been studied, and appear to be feasible experiments at
NAL energies. Decay modes like E* - ¢* + Ve tv B >y, +ut+ vy, E* > E® + hadrons, or
E" > v, + hadrons, should all be easy to identify because of the apparent violation of momentum
conservation. We have listed some recent references in the bibliography.

masses of the fermions can be expressed in terms of m,, ¢y, Gy and v:

Mgs =my - Go

mge=cosfm, —sinf G

Mg =m, + G (9.25)

From the first and third equations in (9.25), we obtain

My =3(mg. +m) (9.25)
an.rom the remaining relation and (9.24), we obtain

Mg + Mg =2 cos fMpo (9.27)

which is a general constraint on the masses of the leptons in this model. Then from (9.19), (9.25),
{(9.26) and (9.27),

e
Gr=——sinfM,o (9.28)
1
and
My — Mg
1 Lo F.¢ (Mg — cos f Mo). (9.29)
a2 [

Thus all the scalar-fermion couplings are fixed in terms of 8 and the e” and E° masses. Alternatively,

Bc. e expressed through (9.27) in terms of the three masses. We shall use these results in Part
Il to calculate the anomalous magnetic moment of the muon of this model.
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10. More on model building

A copy of the universe is not what is required of art;
one of the damned thing is ample.

Rebecca West

In this section we shall try to describe various ramifications of gauge models of weak and elec-
tromagnetic interactions based on O(3) or U(2), their defects, and possible other avenues in
model buitding. We will not dwell upon any one idea in detail, but rather try to present a
panoramic averview on thesc developments. Instead of presenting a long list of recent articles
and preprints exhaustively, we will cite representative works that have been at least partty
digested by us. .

We have seen a few examples of models based on SU(2) or U(2) gauge symmetries. The basic
strategy of mode! building may be stated as follows:

A. Choose a gauge group.

B. Choose the representation of the Higgs scalar fields and their charge assignments.

C. Choose the representations of the spin 3 chiral fermions.

D. Couple the gauge fields invariantly to the Higgs scalars and the fermions.

E. Couple the Higgs fields to themselves invariantly and renormalizably, so that the potential
of the Higgs fields attains the minimum when neutral Higgs fields acquire non-vanishing
vacuum-expected values.

F. Couple the Higgs fields invariantly to the fermions.

When these steps are taken,
a. Some gauge bosons acquire masses:

(0,0 + W 01~ 12 (@ V2.
b. Some fermions acquire masses:
f(.\y;{ \!/|0 + ]l.C.) e f(q}) ;.'J—l!’

¢. At least one vector boson remains massless, because electric charge conservation is unbroken
d. Some of the Higgs ficlds undergo a transmutation: they turn into the fongitudinal compo-
nents of the massive vector bosons,
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i this strategy, the left-handed lepton (e, or 4, ) and its neutrino are placed in a multiplet of
SU(2), the right-handed component to another multiplet, by inventing heavy leptons as they are
needed. If the multiplets chosen are such that @ = T3, a neutral massive vector boson is not needed,
and the unification can be achieved in an O(3) framework. Otherwise we need an SU(2) x U(1) {
scheme. Bjorken and Liewellyn-Smith have considered many schemes of this type:

1. 1.D. Bjorken and C.H. Liewellyn-Smith, Phys. Rev. D7 (1973) 887, Appendix A. So far, we [ *F

have closed our cyes to the CP-violation in weak interactions. [ ;4
There are a few attempts to incorporate it in a unified gauge model. See &
2. R.N. Mohapatra, Phys. Rev. D6 (1972) 2023.

W H

3. A. Pais, Phys. Rev. Letters 29 (1973) [ 712.
The latter scheme is based on the O(4) gauge group, which deserves attention on its own right.

Quite apart from this line of development, the Higgs mechanism provides us with a means of
canstructing renormalizable models of strong interactions based on the notion of “field algebra™; .
- /.D, Lee, S. Weinberg and B, Zumino, Phys. Rev. Letters 18 {1967) 1029. |
The field algebra is the field theoretic expression for vector dominance, by equating the i
hadronic currents with massive gauge bosons. In the past, the mass term for the gauge bosons was '
put in “by hand” — such a procedure breaks the renormalizability of the theory. The Higgs mech-
anism allows endowing the gauge bosons with masses. This was first noticed by 't Hooft; |
5. G. 't Hoott, Nucl. Phys. B35 (1971) 167. |
and has since been generalized and elaborated on:

|
6.B.W. Lec and J. Zinn-Justin, Phys. Rev. D5 (1972) 3137, Appendix. | i H
7. Bardakciand M.B. Halpern, Phys. Rev. D6 (1972) 696. tes
These are a number of applications of this idea to hadron physics. For example *t Hooft discussed ] 2}
the 7* — 7° mass difference from this point of view. For other applications, sec | | :
8. K. Bardakei, to be published. | [
9. H. Georgi and T. Goldman, Phys. Rev. Letters 30(1973) 514. | s
10. D.Z. Freedman and W. Kummer, Phys. Rev. D7 (1973) 1829. |
i1. A. Duncan and P. Schattner, Phys. Rev. D7 (1973) 1861. :
There have been many attempts to incorporate three triplets of hadronic building blocks .
(such as the Han-Nambu, or three-color-quark schemes} which seem better suited to correlate -
va. s facets of hadron physics. Sce :

12. H. Lipkin, Phys. Rev. Letters 28 (1972) 63.
13. H. Georgi and S.L. Glashow, Phys. Rev, DI (1973) 561. b}s
14. M. Tonin, preprint. |
15.Y. Achiman, Weinberg’s Gauge Model for Weak and Electromagnetic Interactions with Han- | !
Nambu Quarks, Heidelberg preprint. '
16. M.A.B. Beg and A. Zee, Phys. Rev. Letters 30 (1973) 675.
The defect of the models discussed in previous sections is their inability to accomodate
hadrons in a realistic, and “natural’” manner. Let us illustrate this remark in terms of the scheme
discussed in section 8, in which the quartet of spin 3 fundamental hadronic building blocks is
incorporated in the Weinberg-Salam model. The necessity of including four, rather than three,
such objects arose from the absence of the AS = *1 neutral current, and this fact should not be
considered as a defect. Rather, it must be considered as heralding. possibly, a new dimension in

-
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hadron spectroscopy, with a new quantum number associated with the “*fourth quark™. The de-
fect lies in that the approximate hadronic symmetries such as SU(2), SU(3) or chiral SU(2) X SU{Y
are purely accidental in this scheme. For example, the hadronic isospin symmetry SU(2) has to

be explained in this scheme as a consequence of an approximate equality of m, and m,,, which is
not demanded by the gauge or other symmetrics of the Lagrangian. It has long been the conviction
(prejudice?) of particle physicists that the proton-neutron mass difference is due to electromag-
netism and possibly also due to weak interaction, so that in an ultimate theory the mass difference
should be computable. In the model under discussion, this mass difference is not zero even in
lowest order, but is a free parameter.

The following papers discuss various conditions and circumstances under which intramultiplet
mass differences are computable, as well as the definition of computability:

17. 8. Weinberg, Phys. Rev. Letters 29 (1972) 388.

18. 11. Georgi and S.L. Glashow, Phys. Rev. D6 (1972) 2977,

19. T. Hagiwara and B.W. Lee, Phys. Rev. D7 (1973) 459,

20. H. Georgi and S.L. Glashow, Phys. Rev. D8 (1973) 2457.

The central idea underlying these discussions is that any relationship which is true in lowest order
in the presence of all gauge invariant, renormalization counterterms is also true in high orders
with a finite computable correction.

Thus, if the mass difference within a hadronic multiplet is to be computable, the underlying
hadron symmetry must not be broken by any renormalization counterterms in the Lagrangian.
Future developments in medel building ought to lie in the construction of models in which
badronic symmetries are accounted for naturally. There have been two important developments
in this direction.

The first is the works of Bars, Halpern and Yoshimura and of de Wit:

21. 1. Bars, M.B. Halpern and M. Yoshimura, Phys. Rev. Letters 29 (1972) 969.

22. B. de Wit, Nucl. Phys. B51 (§973) 237.

The models proposed by these authors treat the hadronic and leptonic worlds as separate up to a
point, each having its own set of gauge bosons; the two worlds communicate to one another
through the intermediary of a new kind of Higgs mesons which carry both leptonic and hadronic
quantum numbers and whose vacuum expectation values are responsible for the coupling of the
two kinds of gauge bosons, in much the same way as in the field algebra. The following work is
very similar to the above two in this respect:

23. J.C. Pati and A. Salam, Phys. Rev. D8 (1973) 1240.

The second is perhaps more profound in its concept. Weinberg notes that under certain cir-
cumstances the potential of the Higgs scalar fieids cannot help but having a symmetry G larger
than the gauge syminetry of weak and electromagnetic interaction). If the symmetry G is spon-
tanecusly broken so that the vacuum expectation value of the scalar fields, determined by mini-
mizing the pctential, leaves the subgroup S, S € G unbroken, then, in lowest order, there are
Goldstone bosons corresponding to the generators of the coscts G/S. Presumably in a realistic
theory, the intersection G N § is just the U(1) corresponding to the electric charge conservation.
The Goldstone bosons corresponding o the remaining generators of the gauge group G are the
unphysical Fliggs scalars which become the lengitudinal components of the massive vector bosons.
The remaining Goldstone bosons which do not correspond to any gencrators of the group G of



E.S. Abers and B.W. Lee. Gauge theories

massless
gougs boson
(photon)

Fig. 10.1. Diagrammatic representation of Lie algebras G, G and S, and their correspondence 1o massive and massless gauge bosons
and pseudo-Goldstone bosons.

the entire Lagrangian then acquire computable masses in higher crder due to the fact that the
pseudosymmetry G is broken down by weak and electromagnetic interactions, and are called
pseudo-Goldstone bosons. See fig. 10.1.

24y Weinberg, Phys. Rev. Letters 28 (1972) 1698.

25. 5. Weinberg, Phys. Rev. D7 (1973) 2887.

The idea here is that G includes some approximate hadronic symmetry, and the pseudo-Goldstone
bosons discussed here are the would-be Goldstone bosons (such as pions) seen in nature. This view
has many very profound implications on the nature of hadronic symmetries and their breaking.

So far no realistic model has been written down which realizes this view.




