

Advanced Quantum Field Theory Chapter 7 Renormalization Group

Jorge C. Romão Instituto Superior Técnico, Departamento de Física & CFTP A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

Fall 2013

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Lecture 12

ISBOA Renormalization scheme with momentum subtraction

Lecture 12

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

- Em teoria quântica dos campos um esquema de renormalização tem duas componentes. Primeiro há um processo de *regularização* que isola os infinitos que aparecem nos diagramas de Feynman. A regularização é arbitrária desde que mantenha as simetrias da teoria. Para teorias sem campos de gauge há muitos processos alternativos. Para teorias de gauge o melhor processo parece ser a regularização dimensional.
- Depois de regularizada a teoria teremos que especificar um método sistemático para remover as divergências e definir os parâmetros renormalizados de teoria. A este processo chamamos esquema de renormalização. Há uma grande arbitrariedade na escolha do processo de subtração. A física contudo não pode depender desta escolha. Este é o conteúdo do grupo de renormalização: O conteúdo físico de teoria deve ser invariante para transformações que apenas mudem as condições de normalização.
- Vamos começar por estudar os chamados esquemas com subtração de momento. Conforme o ponto no espaço dos momentos externos que serve de definição às funções de Green irredutíveis, podemos ter várias formas deste esquema. Vamos exemplificar com a teoria λφ⁴.

Renormalization

• Momentum sub.

On-Shell

- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

Esta definição corresponde a uma série de Taylor para os momentos exteriores on - shell. Para a self-energy isto dá

$$\Sigma(p^2) = \Sigma(m^2) + (p^2 - m^2)\Sigma'(m^2) + \widetilde{\Sigma}(p^2)$$

com as condições

- -

$$\begin{cases} \widetilde{\Sigma}(m^2) = 0 \\ \frac{\partial \widetilde{\Sigma}(p^2)}{\partial p^2} \Big|_{p^2 = m^2} = 0 \end{cases}$$

Em termos de $\Gamma^{(2)}_R(p^2)$ dado por

$$\Gamma_R^2(p) = p^2 - m^2 - \widetilde{\Sigma}(p^2)$$

Obtemos

Renormalization

• Momentum sub.

On-Shell

- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

$$\Gamma_R^{(2)}(m^2) = 0$$

$$\frac{\partial \Gamma_R^{(2)}}{\partial p^2} \bigg|_{p^2 = m^2} = 1$$

Para $\Gamma_R^{(4)}$ uma escolha conveniente é

$$\Gamma_R^{(4)}(p_1, p_2, p_3) = -\lambda$$
 para
$$\begin{cases} p_i^2 = m^2 \\ s = t = u = \frac{4m^2}{3} \end{cases}$$

Neste caso os parâmetros m^2 e λ são a massa física e, a menos de factores cinemáticos, a secção eficaz para $s = t = u = \frac{4}{3}m^2$ respectivamente.

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Este esquema corresponde a uma expansão de Taylor em torno de momentos nulos.

$$\Sigma(p^2) = \Sigma(0) + \Sigma'(0)p^2 + \widetilde{\Sigma}(p^2)$$

A parte finita $\widetilde{\Sigma}(p^2)$ obdece às condições

$$\Sigma(0) = 0$$
$$\frac{\partial \widetilde{\Sigma}}{\partial p^2} \bigg|_{p^2 = 0} = 0$$

que traduzidas em termos de $\Gamma_R^{(2)}$ se escrevem

$$\begin{cases} \Gamma_R^{(2)}(0) = m^2\\ \frac{\partial \Gamma_R^{(2)}}{\partial p^2} = 1 \end{cases}$$

$$\begin{array}{c|c} \hline \text{Renormalization} \end{array} \quad \text{Para } \Gamma_R^{(4)} \text{ a condição } \acute{e} \end{array}$$

• On-Shell

Lecture 12

Intermediate ren.

- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

$$\Gamma_R^{(4)}(p_1, p_2, p_3) = -\lambda$$
 para $p_1 = p_2 = p_3 = 0$

Neste esquema m^2 não é a massa física e λ não é nenhuma quantidade mensurável pois os pontos $p_i = 0$ não pertencem à região física. Podemos no entanto exprimir todas as quantidades mensuráveis em termos destes dois parâmetros, como veremos adiante

General case

Lecture 12

Renormalization

TÉCNICO

ISBOA

- Momentum sub.
- On-Shell
- Intermediate ren.

• General case

- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

Os dois exemplos anteriores são casos particulares do esquema geral onde as condições de normalização podem ser funções de vários *momentos de referência* $\xi_1, \xi_2...$ tais que

$$\begin{cases} \Gamma_R^{(2)}(\xi_1^2) = m^2 \\ \frac{\partial \Gamma_R^{(2)}}{\partial p^2} \bigg|_{p^2 = \xi_2^2} = 1 \end{cases}$$

$$\Gamma_{R}^{(4)}(\xi_{3},\xi_{4},\xi_{5}) = -\lambda$$

- Renormalization
- Momentum sub.
- On-Shell
- Intermediate ren.
- General case

• RG

- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Consideremos dois esquemas de renormalização R e R'. Como ambos partem do mesmo Lagrangeano não renormalizado

$$\mathcal{L} = \mathcal{L}_R + \Delta \mathcal{L}_R = \mathcal{L}_{R'} + \Delta \mathcal{L}_{R'}$$

devemos ter

$$\phi_R = Z_{\phi}^{-1/2}(R)\phi_0$$
 ; $\phi'_R = Z_{\phi}^{-1/2}(R')\phi_0$.

Logo

$$\phi_R' = Z_\phi^{-1/2}(R', R)\phi_R$$

onde

$$Z_{\phi}(R',R) = \frac{Z_{\phi}(R')}{Z_{\phi}(R)}$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case

• RG

- Callan Symanzik
- Weinberg's Th.

• Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Estas relações indicam que os campos renormalizados em diferentes esquemas estão relacionados por uma constante multiplicativa. Esta constante é finita pois tanto
$$\phi_{R'}$$
 como ϕ_R são finitos. De modo semelhante

$$\lambda_{R'} = Z_{\lambda}^{-1}(R',R)Z_{\phi}^{2}(R',R)\lambda_{R}$$

$$m_{R'}^2 = m_R^2 + \delta m^2(R', R)$$

onde

$$Z_{\lambda}(R',R) = \frac{Z_{\lambda}(R')}{Z_{\lambda}(R)}$$

$$\delta m^2(R',R) = \delta m^2(R') - \delta m^2(R)$$

são quantidades finitas. A operação que leva as quantidades num esquema de renormalização R para outro esquema R' pode ser vista como uma transformação de R em R'. O conjunto de todas estas transformações forma o *Grupo de Renormalização*.

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

- Vamos agora ver como dar uma expressão analítica à invariância para transformações do grupo de renormalização. A forma da equação do grupo de renormalização depende do esquema de renormalização utilizado. Vamos aqui obter as equações do GR para o esquema com substração de momento, a chamada equação de Callan - Symanzik.
- Notemos primeiro que

$$\frac{\partial}{\partial m_0^2} \left(\frac{i}{p^2 - m_0^2 + i\varepsilon} \right) = \frac{i}{p^2 - m_0^2 + i\varepsilon} (-i) \frac{i}{p^2 - m_0^2 + i\varepsilon}$$

isto é, a derivação duma função de Green não renormalizada em relação à massa despida é equivalente à inserção dum operador composto $\frac{1}{2}\phi^2$ levando momento zero, isto é

$$\frac{\partial \Gamma^{(n)}(p_i)}{\partial m_0^2} = -i\Gamma^{(n)}_{\phi^2}(0, p_i)$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution

```
Minimal subtraction
```

Lecture 13

Eff gauge couplings

Applications

As funções Green irredutíveis renormalizadas são dadas por

$$\Gamma_R^{(n)}(p_i;\lambda;m) = Z_{\phi}^{(n/2)}\Gamma^{(n)}(p_i;\lambda_0;m_0)$$

$$\Gamma^{(n)}_{\phi^2 R}(p; p_i; \lambda; m) = Z^{-1}_{\phi^2} Z^{n/2}_{\phi} \Gamma^{(n)}_{\phi^2}(p; p_i; \lambda_0; m_0)$$

Então a equação anterior escreve-se

$$\frac{\partial}{\partial m_0^2} \left[Z_{\phi}^{-n/2} \Gamma_R^{(n)}(p_i, \lambda, m) \right] = -i Z_{\phi^2} Z^{-n/2} \Gamma_{\phi^2 R}^{(n)}(0, p_i, \lambda, m)$$

e portanto

$$-\frac{n}{2}Z_{\phi}^{-1}\frac{\partial Z_{\phi}}{\partial m_{0}^{2}}Z_{\phi}^{-n/2}\Gamma_{R}^{(n)} + Z_{\phi}^{-n/2}\frac{\partial}{\partial m_{0}^{2}}\Gamma_{R}^{(n)} = -iZ_{\phi^{2}}Z_{\phi}^{-n/2}\Gamma_{\phi^{2}R}^{(n)}(0,p_{i},\lambda,m)$$

Obtemos portanto

Lecture 12

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

$$\left[\frac{\partial}{\partial m_0^2} - \frac{n}{2}\frac{\partial\ln Z_{\phi}}{\partial m_0^2}\right]\Gamma_R^{(n)} = -i\ Z_{\phi^2}\Gamma_{\phi^2 R}^{(n)}$$
$$\left[\frac{\partial m^2}{\partial m_0^2}\frac{\partial m}{\partial m^2}\frac{\partial}{\partial m} + \frac{\partial\lambda}{\partial m_0^2}\frac{\partial}{\partial\lambda} - \frac{n}{2}\frac{\partial\ln Z_{\phi}}{\partial m_0^2}\right]\Gamma_R^{(n)} = -iZ_{\phi^2}\Gamma_{\phi^2 R}^{(n)}$$

ou ainda

$$\left[m\frac{\partial}{\partial m} + \beta\frac{\partial}{\partial\lambda} - n\gamma\right]\Gamma_R^{(n)} = -im^2\alpha\Gamma_{\phi^2R}^{(n)}$$

que é a equação de Callan - Symanzik para a teoria ϕ^4 , onde α,β e γ são funções sem dimensões

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

$$\beta = 2m^2 \frac{\frac{\partial \lambda}{\partial m_0^2}}{\frac{\partial m_0^2}{\partial m_0^2}}$$
$$\frac{\partial \ln Z_{\phi}}{\partial m_0^2}$$

$$\gamma = m^2 \frac{\overline{\partial m_0^2}}{\frac{\partial m^2}{\partial m_0^2}}$$
$$\alpha = 2 \frac{Z_{\phi^2}}{\frac{\partial m}{\partial m_0^2}}$$

A função α está relacionada com $\gamma.$ De facto se escolhermos as condições de normalização a $p_i=0$

$$\left\{ \begin{array}{l} \Gamma_R^{(2)}(0,\lambda,m) = -m^2 \\ \\ \Gamma_{\phi^2 R}^{(2)}(0,0,\lambda,m) = i \end{array} \right.$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

• Weinberg's Th.

• Asymptotic solution

- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

$\alpha = 2(\gamma - 1)$

Obtemos

Como as quantidades $\Gamma_R^{(n)}$ e $\Gamma_{\phi^2 R}^{(n)}$ não dependem do cut - off, esperamos também que α,β e γ sejam independentes do cut - off. Para vermos isso pomos n=2 e diferenciamos em ordem a p^2

$$\left[m\frac{\partial}{\partial m} + \beta\frac{\partial}{\partial \lambda} - 2\gamma\right]\frac{\partial}{\partial p^2}\Gamma_R^{(2)}(p,\lambda,m) = -im^2\alpha\frac{\partial}{\partial p^2}\Gamma_{\phi^2 R}^{(2)}(0,p,\lambda,m)$$

Pondo $p^2 = 0$ e usando

$$\left. \frac{\partial \Gamma_R^{(2)}}{\partial p^2} \right|_{p^2 = 0} = 1$$

Obtemos

- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

• Weinberg's Th.

• Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

$$\gamma = im^2(\gamma-1) \left[\frac{\partial}{\partial p^2} \Gamma^{(2)}_{\phi^2 R}(0,p,\lambda,m) \right]_{p^2=0}$$

o que demonstra que γ é independente do cut - off. Então $\alpha = 2(\gamma - 1)$ também o é e todas as funções excepto β são agora independentes do cut - off. Portanto β também o é. Como α, β e γ são sem dimensões e não dependem do cut - off, então são somente funções da constante de acoplamento que também não tem dimensões, isto é

$$\alpha = \alpha(\lambda)$$

$$eta = eta(\lambda)$$

$$\gamma = \gamma(\lambda)$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings

Applications

Nós vamos sobretudo estar interessados no esquema de subtracção mínima, por isso não vamos agora calcular as funções $\alpha, \beta \in \gamma$ para todas as teorias, faremos isso adiante. Indicaremos no entanto um método expedito para o seu cálculo. Seja por exemplo a função $\beta(\lambda)$. Notando que

$$\frac{\partial \lambda}{\partial m_0^2}(\lambda_0, \Lambda/m) = \frac{\partial m^2}{\partial m_0^2} \frac{\partial}{\partial m^2} \lambda(\lambda_0, \Lambda/m)$$
$$= \frac{\partial m^2}{\partial m_0^2} \frac{1}{2m} \frac{\partial}{\partial m} \lambda(\lambda_0, \Lambda/m)$$

obtemos da definição 1

$$\beta = m \frac{\partial}{\partial m} \lambda(\lambda_0, \Lambda/m) = m \frac{\partial}{\partial m} [\overline{Z}(\lambda_0, \Lambda/m)\lambda_0] = -\lambda_0 \Lambda \frac{\partial}{\partial \Lambda} [\overline{Z}(\lambda_0, \Lambda/m)]$$

ou

$$\beta = -\lambda \frac{\partial}{\partial \ln \Lambda} [\ln \overline{Z}(\lambda_0, \Lambda/m)]$$

onde, por definição $\lambda = \overline{Z}\lambda_0$), e portanto $\overline{Z} = Z_\lambda^{-1}Z_\phi^2$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG

• Callan - Symanzik

- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

O resultado de 1 - loop dá

$$Z_{\lambda} = 1 + \frac{3\lambda_0}{32\pi^2} \ln \frac{\Lambda^2}{m^2} + O(\lambda_0^2)$$

• •

$$Z_{\phi} = 1 + O(\lambda_0^2)$$

$$\overline{Z} = 1 - \frac{3\lambda_0}{32\pi^2} \ln \frac{\Lambda^2}{m^2} + .$$

е

$$\ln \overline{Z} = \frac{3\lambda_0}{16\pi^2} \ln \frac{\Lambda}{m} + \cdots$$

Portanto para ϕ^4

$$\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + O(\lambda^3) \ .$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

O teorema de Weinberg diz respeito ao comportamento assimptótico das funções de Green 1PI na região Euclediana $(p_i^2 < 0)$ e para valores não excepcionais dos momentos (nenhuma soma parcial é nula).

Teorema

Se os momentos não forem excepcionais e se os parametrizarmos com $p_i = \sigma k_i$ as funções de Green irredutíveis de uma partícula $\Gamma_R^{(n)}$ comportam-se na região euclediana profunda ($\sigma \to \infty$ e k_i fixos, $p_i^2 < 0$) do modo seguinte

$$\lim_{\sigma \to \infty} \Gamma^{(n)}(\sigma k_i, \lambda, m) = \sigma^{4-n} [a_0(\ln \sigma)^{b_0} + a_1(\ln \sigma)^{b_1} + \cdots]$$

е

$$\lim_{\sigma \to \infty} \Gamma_{\phi^2}^{(n)}(\sigma k_i, \lambda, m) = \sigma^{2-n} [a'_0(\ln \sigma)^{b'_0} + a'_1(\ln \sigma)^{b'_1} + \cdots]$$

- Renormalization
- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

- Não faremos a demonstração (ver Bjorken and Drell) mas notemos que as potências de σ são as dimensões canónicas das funções de Green (em termos da massa).
- Se este comportamento é o verificado assimptoticamente depende da soma da série dos logaritmos.
- Se esta somar para uma potência de σ , por exemplo $\sigma^{-\gamma}$, então assimptóticamente o comportamento canónico σ^{4-n} é modificado para $\sigma^{4-n-\gamma} \cdot \gamma$ é chamada a *dimensão anómala*.
- Como vamos ver o GR vai efectuar esta soma de logaritmos e dar-nos qual a dimensão anómala.

TÉCNICO LISBOA Asymptotic solution of the RG equations

Lecture 12

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

Do teorema de Weinberg temos que $\Gamma_R^{(n)} \gg \Gamma_{\phi^2 R}^{(n)}$ para qualquer ordem (finita) em λ na região euclediana profunda ($\sigma \to \infty$). Se admitirmos que isto continua verdade mesmo depois de somar todas as ordens de teoria de perturbações, então podemos desprezar o segundo membro da equação de Callan-Symanzik e obtemos uma equação diferencial homogénea

$$\left[m\frac{\partial}{\partial m} + \beta(\lambda)\frac{\partial}{\partial \lambda} - n\gamma(\lambda)\right]\Gamma_{\rm asy}^{(n)}(p_i,\lambda,m) = 0$$

onde $\Gamma_{asy}^{(n)}$ é a forma assimptótica de $\Gamma_R^{(n)}$. O significado desta equação é que nesta região assimptótica, uma mudança no parâmetro de massa pode ser sempre compensada por mudanças apropriadas do acoplamento e da escala dos campos. Para resolver esta equação começamos por definir uma quantidade $\overline{\Gamma}_R^{(n)}$ sem dimensões, usando análise dimensional

$$\Gamma_{\rm asy}^{(n)}(p_i,\lambda,m) = m^{4-n} \overline{\Gamma}_R^{(n)}(p_i/m,\lambda) \;.$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.

```
• Asymptotic solution
```

- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

$$\overline{\Gamma}_R^{(n)}$$
 satisfaz

$$\left(m\frac{\partial}{\partial m} + \sigma\frac{\partial}{\partial \sigma}\right)\overline{\Gamma}_{R}^{(n)}\left(\sigma\frac{p_{i}}{m},\lambda\right) = 0.$$

$$\left(m\frac{\partial}{\partial m} + \sigma\frac{\partial}{\partial \sigma}\right)m^{n-4}\Gamma^{(n)}_{\rm asy}(\sigma p_i, \lambda, m) = 0$$

ou seja

$$\left[m\frac{\partial}{\partial m} + \sigma\frac{\partial}{\partial \sigma} + (n-4)\right]\Gamma_{\rm asy}^{(n)}(\sigma p_i, \lambda, m) = 0$$

Usando esta equação podemos trocar a derivação em ordem à massa pela derivação em ordem à escala na equação de Callan-Symanzik para obter

LISBOA Asymptotic solution of the RG equations ····

Lecture 12

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

$$\left[\sigma\frac{\partial}{\partial\sigma} - \beta(\lambda)\frac{\partial}{\partial\lambda} + n\gamma(\lambda) + (n-4)\right]\Gamma^{(n)}_{asy}(\sigma p_i, \lambda, m) = 0$$

Para resolver esta equação removemos os termos sem derivadas com a transformação

$$\Gamma_{\text{asy}}^{(n)}(\sigma p_i, \lambda, m) = \sigma^{4-n} e^{n \int_0^\lambda \frac{\gamma(x)}{\beta(x)} dx} F^{(n)}(\sigma p_i, \lambda, m) \ .$$

Substituindo na equação diferencial vemos que os termos sem derivadas desaparecem e obtemos uma equação diferencial para $F^{(n)}$

$$\left[\sigma\frac{\partial}{\partial\sigma} - \beta(\lambda)\frac{\partial}{\partial\lambda}\right]F^{(n)}(\sigma p, \lambda, m) = 0$$

Introduzindo $t = \ln \sigma$ podemos escrever

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Para resolver esta equação introduzimos a constante de acoplamento efectiva $\overline{\lambda}(t,\lambda)$ como solução da equação

$$\frac{\partial \lambda(t,\lambda)}{\partial t} = \beta(\overline{\lambda})$$

com a condição fronteira $\overline{\lambda}(0,\lambda) = \lambda$. Para vermos que esta definição nos vai dar a solução, escrevemos

 $t = \int_{\lambda}^{\overline{\lambda}(t,\lambda)} \frac{dx}{\beta(x)}$

e diferenciamos em ordem a λ

Jorge C. Romão

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.

Asymptotic solution

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

$$0 = \frac{1}{\beta(\overline{\lambda})} \frac{\partial \overline{\lambda}}{\partial \lambda} - \frac{1}{\beta(\lambda)}$$

ou ainda

$$\beta(\overline{\lambda}) - \beta(\lambda) \frac{\partial \overline{\lambda}}{\partial \lambda} = 0$$

Usando agora a definição de $\overline{\lambda}$ obtemos

$$\left[\frac{\partial}{\partial t} - \beta(\lambda)\frac{\partial}{\partial\lambda}\right]\overline{\lambda}(t,\lambda) = 0$$

O operador diferencial é exactamente o mesmo da equação para $F^{(n)}(e^t p, \lambda, m)$. Portanto $F^{(n)}$ satisfaz aquela equação se depender da $t \in \lambda$ através de $\overline{\lambda}(t, \lambda)$.

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

Portanto a solução geral de
$$\Gamma^{(n)}_{\mathrm{asy}}$$
 é

$$\Gamma_{\rm asy}^{(n)}(\sigma p_i, \lambda, m) = \sigma^{4-n} e^{n \int_0^\lambda \frac{\gamma(x)}{\beta(x)} dx} F^{(n)}(p_i, \overline{\lambda}(t, \lambda), m)$$

Para se obter uma interpretação física desta solução notemos que

$$e^{n\int_0^\lambda \frac{\gamma(x)}{\beta(x)}dx} = e^{n\int_0^{\overline{\lambda}} \frac{\gamma(x)}{\beta(x)}dx}e^{n\int_{\overline{\lambda}}^\lambda \frac{\gamma(x)}{\beta(x)}dx}$$

$$= e^{n \int_0^{\overline{\lambda}} \frac{\gamma(x)}{\beta(x)} dx} e^{-n \int_{\lambda}^{\overline{\lambda}} \frac{\gamma(x)}{\beta(x)} dx}$$

$$= e^{n \int_0^{\overline{\lambda}} \frac{\gamma(x)}{\beta(x)} dx} e^{-n \int_0^t \gamma(\overline{\lambda}(t',\lambda)) dt'}$$

Portanto

$$\Gamma_{\rm asy}^{(n)}(\sigma p_i,\lambda,m) = \sigma^{4-n} e^{-n \int_0^t \gamma(\overline{\lambda}(t',\lambda)) dt'} e^{-n \int_0^{\overline{\lambda}} \frac{\gamma(x)}{\beta(x)} dx} F^{(n)}(p_i,\overline{\lambda}(t,\lambda),m)$$

Renormalization

- Momentum sub.
- On-Shell
- Intermediate ren.
- General case
- RG
- Callan Symanzik
- Weinberg's Th.
- Asymptotic solution
- Minimal subtraction
- Lecture 13
- Eff gauge couplings
- Applications

Se pusermos $\sigma = 1(t = 0)$, vemos que $e^{n \int_0^{\overline{\lambda}} \frac{\gamma}{\beta} dx} F^{(n)}$ é $\Gamma_{asy}^{(n)}$. Então obtemos finalmente a solução da equação do GR.

$$\Gamma_{\rm asy}^{(n)}(\sigma p_i, \lambda, m) = \sigma^{4-n} e^{-n \int_0^t \gamma(\overline{\lambda}(t', \lambda)) dt'} \Gamma_{\rm asy}^{(n)}(p_i, \overline{\lambda}(t, \lambda), m)$$

- □ Nesta forma a solução tem uma interpretação simples. O efeito de efectuar uma mudança de escala nos momentos p_i nas funções de Green $\Gamma_R^{(n)}$ é equivalente a substituir a constante de acoplamento λ , pela constante de acoplamento efectiva $\overline{\lambda}$ à parte factores multiplicativos.
- O primeiro é simplesmente resultante do facto de $\Gamma_R^{(n)}$ ter dimensão canónica 4 n em unidades de massa.
- O factor exponencial é o termo da dimensão anómala que resultou de somar todos os logaritmos em teoria de perturbações.
- **\Box** Este factor é controlado por γ , a dimensão anómala. Veremos à frente como calcular a dimensão anómala, numa teoria qualquer.

Renormalization

Minimal subtraction

• RG Eq for MS

- Physical parameters
- \bullet Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

Vamos agora ver outras formas que pode tomar a equação do grupo de renormalização. A afirmação que a renormalização é multiplicativa pode ser escrita na forma

$$\Gamma^{(n)}(p_i,\lambda_0,m_0) = Z_{\phi}^{-n/2} \Gamma_R^{(n)}(p_i,\lambda,m,\mu)$$

onde μ é a escala usada para definir a normalização das funções de Green. O lado esquerdo da equação não depende de μ , mas o lado direito depende explicitamente e implicitamente através de λ e m. Então temos

$$\mu \frac{\partial}{\partial \mu} \left[Z_{\phi}^{-n/2} \Gamma_R^{(n)}(p_i, \lambda, m, \mu) \right] = 0$$

ou seja

$$\left(\mu\frac{\partial}{\partial\mu} + \beta\frac{\partial}{\partial\lambda} + \gamma_m m\frac{\partial}{\partial m} - n\gamma\right)\Gamma_R^{(n)} = 0$$

TÉCNICO LISBOA Renormalization group equations for MS ····

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

- Physical parameters
- \bullet Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

Onde

$$\beta \left(\lambda, \frac{m}{\mu} \right) = \mu \frac{\partial \lambda}{\partial \mu}$$
$$\gamma_m \left(\lambda, \frac{m}{\mu} \right) = \mu \frac{\partial \ln m}{\partial \mu}$$
$$\gamma \left(\lambda, \frac{m}{\mu} \right) = \frac{1}{2} \mu \frac{\partial \ln Z_{\phi}}{\partial \mu}$$

- Esta equação tem a vantagem sobre a equação de Callan Symanzik de ser homogénea. A dificuldade reside nas funções β e γ dependerem de duas variáveis λ e m/μ e portanto a equação ser de difícil resolução.
- Existe contudo um esquema de renormalização em que a dependência em m/µ desaparece e portanto a equação é simples de resolver. É o chamado esquema de subtracção mínima (MS) que passamos a expôr.

Renormalization

Minimal subtraction

- RG Eq for MS
- Physical parameters
- Calculate β . . .
- $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$
- Gauge independence

Lecture 13

- Eff gauge couplings
- Applications

- □ O esquema de subtracção mínima (MS) está relacionado com o método de regularização dimensional. As divergências dos integrais aparecem neste método como pólos em $\frac{1}{\varepsilon}$ onde $\varepsilon = 4 d$.
- O esquema de subtracção mínima consiste em escolher os contratermos para cancelar *somente* os pólos.
- Vamos exemplificar com a self-energy em $\lambda \phi^4$, a que corresponde o seguinte diagrama

ISBOA Minimal subtraction scheme: Example

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

- Physical parameters
- \bullet Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

 $-i\Sigma(p) = (-i\lambda)\mu^{\varepsilon} \frac{1}{2} \int \frac{d^d k}{(2\pi)^d} \frac{i}{p^2 - m^2 + i\varepsilon}$ $\therefore \quad 1 \quad \varepsilon \frac{\Gamma(1 - d/2)}{1 - \varepsilon} \frac{\Gamma(1 - d/2)}{1 - \varepsilon} \frac{1}{\varepsilon} \sum_{k=0}^{\infty} \frac{1}{2k} \frac{1}{k} \frac{1}{k$

$$= -i\lambda \frac{1}{32\pi^2} \mu^{\varepsilon} \frac{\Gamma(1-d/2)}{m^{2-d}} 2^{\varepsilon} \pi^{\varepsilon/2}$$

onde
$$\varepsilon = 4 - d$$
. Então

Temos

$$\Sigma(p^2) = \lambda \frac{1}{32\pi^2} \mu^{\varepsilon} \frac{\Gamma(-1+\varepsilon/2)}{m^{-2+\varepsilon}} (2\sqrt{\pi})^{\varepsilon}$$
$$= \lambda \frac{m^2}{32\pi^2} \left(\frac{\mu}{m}\right)^{\varepsilon} \Gamma(-1+\varepsilon/2) (2\sqrt{\pi})^{\varepsilon}$$

ISBOA Minimal subtraction scheme: Example ····

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

- Physical parameters
- Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

Usando (γ é a constante de Euler e $\psi(x)$ a derivada logaritmica da função Γ)

$$\Gamma\left(-1+\frac{\varepsilon}{2}\right) = -\left[\frac{2}{\varepsilon} + \overbrace{1-\gamma}^{\psi(2)} + O(\varepsilon)\right]$$

$$\left(\frac{\mu}{m}\right)^{\varepsilon} = 1 + \varepsilon \ln\left(\frac{\mu}{m}\right)$$

obtemos

е

$$\Sigma(p^2) = -\frac{\lambda m^2}{32\pi^2} \left[\frac{2}{\varepsilon} + \psi(2) + 2\ln(\mu/m) + 2\ln 2\sqrt{\pi} + O(\varepsilon) \right]$$

Portanto no esquema de subtracção mínima devemos adicionar um contratermo

$$\Delta \mathcal{L}_{\phi^2}^{MS} = -\frac{\lambda m^2}{32\pi^2} \frac{1}{\varepsilon} \phi^2$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

 \bullet Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Se tivéssemos feito subtracção de momento à escala μ , isto é $\Sigma_R(p^2=\mu^2)=0$ teríamos o contratermo

$$\Delta \mathcal{L}_{\phi^2}^{\text{MOM}} = -\frac{\lambda m^2}{32\pi^2} \left[\frac{1}{\varepsilon} + \frac{1}{2}\psi(2) + \ln(\mu/m) + \ln 2\sqrt{\pi} \right] \phi^2$$

Vemos assim que o Lagrangeano de contratermos no esquema de subtracção mínima quando expandido em série de Laurent em ε contém só termos divergentes. Portanto

$$\phi_0 = \sqrt{Z_\phi}\phi$$

$$m_0 = Z_m m$$

$$\lambda_0 = \mu^{\varepsilon} Z_{\lambda} \lambda$$

Renormalization

Minimal subtraction

• RG Eq for MS

- Physical parameters
- \bullet Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

As constantes de renormalização Z_{ϕ}, Z_m e Z_{λ} têm a forma

$$Z_{\lambda} = 1 + \sum_{r=1}^{\infty} a_r(\lambda) / \varepsilon^r$$

$$Z_m = 1 + \sum_{r=1}^{\infty} b_r(\lambda) / \varepsilon^r$$

$$Z_{\phi} = 1 + \sum_{r=1}^{\infty} c_r(\lambda) / \varepsilon^r$$

Assim os coeficientes da equação do grupo de renormalização são independentes de μ , e como são adimensionais, também são independentes de m dependendo somente da constante de acoplamento. Isto simplifica a solução da equação do grupo de renormalização

$$\left(\mu\frac{\partial}{\partial\mu} + \beta\frac{\partial}{\partial\lambda} + \gamma_m m\frac{\partial}{\partial m} - n\gamma\right)\Gamma_R^{(n)} = 0$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

 $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Usando análise dimensional

$$\left[m\frac{\partial}{\partial m} + (n-4) + \mu\frac{\partial}{\partial \mu} + \sigma\frac{\partial}{\partial \sigma}\right]\Gamma_R(\sigma p, m, \lambda, \mu) = 0$$

e podemos escrever

$$\left[\sigma\frac{\partial}{\partial\sigma} - \beta\frac{\partial}{\partial\lambda} - (\gamma_m - 1)m\frac{\partial}{\partial m} + n\gamma + (n - 4)\right]\Gamma_R(\sigma p, m, \lambda, \mu) = 0$$

que tem a solução

$$\Gamma_R(\sigma p_i, m, \lambda, \mu) = \sigma^{4-n} e^{-n \int_0^t \gamma(\overline{\lambda}(t')) dt'} \Gamma_R^{(n)}(p_i, \overline{m}(t), \overline{\lambda}(t), \mu)$$

onde se introduziram a massa efectiva $\overline{m}(t)$ e a constante de acoplamento efectiva $\overline{\lambda}(t)$ definidas por

TÉCNICO Minimal subtraction scheme ···

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

$$\begin{cases} \frac{d\overline{\lambda}}{dt} = \beta(\overline{\lambda}) & ; \quad \overline{\lambda}(t=0) = \lambda \\ \frac{d\overline{m}(t)}{dt} = \left[\gamma_m(\lambda) - 1\right]\overline{m}(t) & ; \quad \overline{m}(t=0) = m \end{cases}$$

A solução desta equação é

$$\overline{m}(t) = m e^{\int_0^t [\gamma_m(\overline{\lambda}(t')) - 1]dt'}$$

$$= m e^{-t} e^{\int_0^t \gamma_m(\overline{\lambda}(t'))dt'}$$

$$= m e^{-t} e^{\int_{\lambda}^{\overline{\lambda}(t)} dx \frac{\gamma_m(x)}{\beta(x)}}$$
Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

 \bullet Calculate β . . .

 $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Os parâmetros definidos pelo esquema de subtracção mínima não são parâmetros físicos. Os parâmetros físicos podem no entanto ser calculados em função deles. Por parâmetro físico entendemos um elemento de matriz S ou a posição do pólo no propagador. Para eles é válido o teorema seguinte,

Teorema

Qualquer parâmetro físico $P(\lambda, m, \mu)$ satisfaz a seguinte equação do grupo de renormalização

$$\mathcal{D}P(\lambda, m, \mu) \equiv \left[\mu \frac{\partial}{\partial \mu} + \beta(\lambda) \frac{\partial}{\partial \lambda} + \gamma_m m \frac{\partial}{\partial m}\right] P(\lambda, m, \mu) = 0$$

Dem: Consideremos primeiro o propagador escalar $\Delta(p^2)$ que satisfaz a equação do grupo de renormalização

$$[\mathcal{D}+2\gamma]\Delta(p^2,\lambda,m,\mu)=0$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Podemos escrever uma série de Laurent em volta do pólo em $p^2=m_p^2$

$$\Delta(p^2, \lambda, m, \mu) = \frac{R^2}{p^2 - m_p^2} + \widetilde{\Delta}$$

A posição do pólo $m_p(\lambda, m, \mu)$ e o resíduo $R^2(\lambda, m, \mu)$ satisfazem as equações do grupo de renormalização que podem ser obtidas por aplicação do operador $(\mathcal{D} + 2\gamma)$ à equação anterior. Igualando os resíduos dos pólos obtemos

 $\mathcal{D}m_p(\lambda, m, \mu) = 0$

 $[\mathcal{D} + \gamma(\lambda)]R(\lambda, m, \mu) = 0$

Renormalization

Minimal subtraction

• RG Eq for MS

Physical parameters
Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Demonstrámos portanto o teorema para a massa física. Para um elemento da matriz S temos $(S_R=R^n\Gamma^{(n)})$

$$\mathcal{D}\lim_{p_i^2 \to m_p^2} R^n \Gamma^{(n)} = \lim_{p_i^2 \to m_p^2} \mathcal{D}(R^n \Gamma^n)$$
$$= \lim_{p_i^2 \to m_p^2} [n \mathcal{D} R R^{n-1} \Gamma^n + R^n \mathcal{D} \Gamma^n]$$
$$= \lim_{p_i^2 \to m_p^2} [-n\gamma + n\gamma] R^n \Gamma^n = 0$$

o que completa a demonstração.

Veremos à frente como estes resultados podem ser usados para relacionar os parâmetros físicos com os parâmetros da teoria.

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Vimos anteriormente que

$$\begin{array}{ll}
\phi_0 &= \sqrt{Z_\phi \phi} \\
m_0 &= Z_m m \\
\lambda_0 &= \mu^{\varepsilon} Z_\lambda \lambda
\end{array}$$

e que as constantes de renormalização têm a forma.

$$\begin{aligned} Z_{\lambda} &= 1 + \sum_{r=1}^{\infty} a_r(\lambda) / \varepsilon^r \\ Z_m &= 1 + \sum_{r=1}^{\infty} b_r(\lambda) / \varepsilon^r \\ Z_{\phi} &= 1 + \sum_{r=1}^{\infty} c_r(\lambda) / \varepsilon^r . \end{aligned}$$

Vejamos como se calculam β, γ_m e γ .

Renormalization

Minimal subtraction

 \bullet RG Eq for MS

• Physical parameters

ullet Calculate eta . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

i) Cálculo de $\beta(\lambda)$

Por definição

 $\beta(\lambda) = \mu \frac{\partial \lambda}{\partial \mu}$

Esta quantidade é finita no limite $\varepsilon \to 0$. Isto quer dizer que antes de fazermos $\varepsilon \to 0$ deve ser uma função analítica em ε . É então conveniente definir

$$\beta(\lambda) = \hat{\beta}(\lambda, \varepsilon = 0) = d_0$$

onde

$$\hat{\beta}(\lambda,\varepsilon) = d_0 + d_1\varepsilon + d_2\varepsilon^2 + \cdots$$

com coeficientes d_r a determinar. Posto isto, usamos o facto de λ_0 não depender da escala $\mu.$ Então

TÉCNICO LISBOA **Renomalization group functions in minimal subtraction** ····

Lecture 12

Renormalization

- Minimal subtraction
- RG Eq for MS
- Physical parameters

• Calculate β . . .

- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

$$0 = \mu \frac{\partial}{\partial \mu} (\mu^{\varepsilon} Z_{\lambda} \lambda)$$

$$= \varepsilon \mu^{\varepsilon} Z_{\lambda} \lambda + \mu^{\varepsilon} \hat{\beta}(\lambda,\varepsilon) \lambda \frac{\partial Z_{\lambda}}{\partial \lambda} + \mu^{\varepsilon} Z_{\lambda} \hat{\beta}(\lambda,\varepsilon)$$

Então

$$\varepsilon \lambda Z_{\lambda} + \hat{\beta}(\lambda, \varepsilon) \left(Z_{\lambda} + \lambda \frac{\partial Z_{\lambda}}{\partial \lambda} \right) = 0$$

Usando as expressões de Z_{λ} e \hat{eta} obtemos

$$\varepsilon\lambda + a_1\lambda + \lambda\sum_{r=1}^{\infty}\frac{a_{r+1}}{\varepsilon^r} + (d_0 + d_1\varepsilon + d_2\varepsilon^2 + \cdots)\left[1 + \sum_{r=1}^{\infty}\frac{1}{\varepsilon^r}\left(a_r + \lambda\frac{da_r}{d\lambda}\right)\right] = 0$$

TÉCNICO LISBOA **Renomalization group functions in minimal subtraction** ····

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• β & γ properties • Gauge independence

• Calculate β . . .

$$\varepsilon(\lambda+d_1) + \left[a_1\lambda + d_0 + d_1\left(a_1 + \lambda\frac{da_1}{d\lambda}\right)\right] + \sum_r \frac{1}{\varepsilon^r} \left[a_{r+1}\lambda + d_0\left(a_r + \lambda\frac{da_r}{d\lambda}\right)\right]$$

Lecture 13

Eff gauge couplings

Applications

+ $d_1\left(a_{r+1} + \lambda \frac{da_{r+1}}{d\lambda}\right) = 0$

logo

Então $d_r = 0$ para r > 1 e

$$\lambda + d_1 = 0$$

$$a_1\lambda + d_0 + d_1\left(a_1 + \lambda \frac{da_1}{d\lambda}\right) = 0$$

$$a_{r+1}\lambda + d_0\left(a_r + \lambda \frac{da_r}{d\lambda}\right) + d_1\left(a_{r+1} + \lambda \frac{da_{r+1}}{d\lambda}\right) = 0$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

ullet Calculate eta . . .

- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

Estes cálculos dão

$$d_1 = -\lambda$$

$$\beta(\lambda) = d_0 = \lambda^2 \frac{da_1}{d\lambda}$$

$$\lambda^2 \frac{d}{d\lambda} (a_{r+1}) = \beta(\lambda) \frac{d}{d\lambda} (\lambda a_r)$$

Portanto a função $\beta(\lambda)$ depende somente do coeficiente em $\frac{1}{\varepsilon}$ de Z_{λ} que se calcula fácilmente em teoria de perturbações. Além disso vemos que os resíduos dos pólos de ordem superior se podem calcular em termos do resíduo do pólo simples. Para $\lambda \phi^4$ é fácil de ver que

$$Z_{\lambda} = 1 + \frac{3\lambda}{16\pi^2} \frac{1}{\varepsilon} + \cdots$$

TÉCNICO LISBOA **Renomalization group functions in minimal subtraction** ···

Lecture 12

Portanto

 \bullet RG Eq for MS

Renormalization

• Physical parameters

• Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

 $\beta(\lambda) = \lambda^2 \frac{da_1}{d\lambda} = \lambda^2 \frac{d}{d\lambda} \left(\frac{3\lambda}{16\pi^2}\right) = \frac{3\lambda^2}{16\pi^2}$

como tínhamos obtido anteriormente. Para teorias de gauge há uma pequena modificação pois $g_0 = \mu^{\varepsilon/2} Z_g g$. Um cálculo trivial dá neste caso

$$d_1 = -g/2$$

е

$$\beta(g) = \frac{1}{2}g^2 \frac{da_1}{dg}$$
$$\frac{1}{2}g^2 \frac{da_{r+1}}{dg} = \beta(g) \frac{d}{dg}(ga_r)$$

onde, como anteriormente

$$Z_g = 1 + \sum_{r=1}^{\infty} a_r(g) / \varepsilon^r$$

TÉCNICO LISBOA **Renomalization group functions in minimal subtraction** ····

ii) Cálculo de $\gamma_m(\lambda)$

Partimos de $m_0 = Z_m m$. Aplicando $\mu \frac{\partial}{\partial \mu}$ obtemos

 $0 = \mu \frac{\partial Z_m}{\partial \mu} m + Z_m \mu \frac{\partial m}{\partial \mu}$

$$= \hat{\beta}(\lambda,\varepsilon)\frac{\partial Z_m}{\partial \lambda}m + mZ_m\mu\frac{\partial \ln m}{\partial \mu}$$

Como
$$\mu \frac{\partial \ln m}{\partial \mu} = \gamma_m$$
, obtemos a equação

$$\left[\hat{\beta}(\lambda,\varepsilon)\frac{\partial}{\partial\lambda} + \gamma_m\right]Z_m = 0$$

ou seja

$$\left(\gamma_m + d_1 \frac{db_1}{d\lambda}\right) + \sum_{r=1}^{\infty} \frac{1}{\varepsilon_r} \left[d_0 \frac{db_r}{d\lambda} + \gamma_m b_r + d_1 \frac{db_{r+1}}{d\lambda} \right] = 0$$

Lecture 12

Lecture 13

Applications

Renormalization

Minimal subtraction • RG Eq for MS • Physical parameters

Calculate β...
β & γ properties
Gauge independence

Eff gauge couplings

TÉCNICO LISBOA **Renomalization group functions in minimal subtraction** ···

Lecture 12

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

Portanto

1

$$\gamma_m = -d_1 \frac{db_1}{d\lambda}$$

$$-d_1 \frac{db_{r+1}}{d\lambda} = \beta(\lambda) \frac{db_r}{d\lambda} + \gamma_m b_r$$

onde

$$d_1 = \left\{ \begin{array}{ll} -\lambda & {\rm teoria} & \lambda \phi^4 \\ \\ & \\ -g/2 & {\rm teorias} \ {\rm de} \ {\rm gauge} \end{array} \right.$$

Mais uma vez γ_m depende somente do resíduo do pólo simples.

iii) Cálculo de $\gamma(\lambda)$

Aqui é mais fácil partir da definição de $\gamma(\lambda)$

$$\gamma(\lambda) = \frac{1}{2}\mu \frac{\partial}{\partial \mu} \ln Z_{\phi} = \frac{1}{2}\mu \frac{\partial}{\partial \mu} Z_{\phi} \frac{1}{Z_{\phi}}$$

logo

Eff gauge couplings

Applications

Lecture 13

Lecture 12

Renormalization

Minimal subtraction• RG Eq for MS• Physical parameters• Calculate $\beta \dots$ • $\beta \& \gamma$ properties• Gauge independence

$$\left[\hat{\beta}(\lambda,\varepsilon)\frac{\partial}{\partial\lambda} - 2\gamma(\lambda)\right]Z_{\phi} = 0$$

o que dá

$$-2\gamma(\lambda) + d_1 \frac{dc_1}{d\lambda} + \sum_{r=1}^{\infty} \frac{1}{\varepsilon^r} \left[d_0 \frac{dc_r}{d\lambda} - 2\gamma c_r + d_1 \frac{dc_{r+1}}{d\lambda} \right] = 0$$

LISBOA Renomalization group functions in minimal subtraction ···

Lecture 12

Então

Renormalization

- Minimal subtraction
- \bullet RG Eq for MS
- Physical parameters

ullet Calculate eta . . .

- $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

$$\gamma(\lambda) = \frac{1}{2} d_1 \frac{dc_1}{d\lambda}$$

$$-d_1 \frac{dc_{r+1}}{d\lambda} = \beta(\lambda) \frac{dc_r}{d\lambda} - 2\gamma c_r$$

sendo o coeficiente d_1 dado anteriormente

Podemos concluir dizendo que o coeficiente do pólo simples nas constantes de renormalização, determina univocamente as funções β , γ_m e γ e também os valores dos pólos de ordem superior.

Renormalization

- Minimal subtraction
- RG Eq for MS
- Physical parameters
- Calculate β . . .
- β & γ properties
- Gauge independence
- Lecture 13
- Eff gauge couplings
- Applications

- Nós adoptamos um esquema particular de renormalização. Se tivéssemos adoptado outro esquema teríamos outra definição dos parâmetros da teoria e funções β, γ_m e γ diferentes. Vamos aqui discutir os aspectos do grupo de renormalização que são independentes do esquema usado.
- Consideremos então dois esquemas (ambos independentes da massa). Então
 - $g' = gF_g(g)$ $F_g(g) = 1 + O(g^2)$

$$Z'_m(g') = Z_m(g)F_m(g)$$
 $F_m(g) = 1 + O(g^2)$

- $Z'_{\phi}(g') = Z_{\phi}(g)F_{\phi}(g)$ $F_{\phi}(g) = 1 + O(g')$
- O 1 nas funções F expressa o facto que ao nível árvore não há ambiguidades. Usando as relações acima podemos ver como estão relacionadas as funções β, γ_m e γ em dois esquemas. Obtemos (estamos a considerar o caso duma teoria de gauge)

TÉCNICO LISBOA β and γ properties · · ·

Lecture 12

Renormalization

- Minimal subtraction
- RG Eq for MS
- Physical parameters
- Calculate β . . .
- eta & γ properties
- Gauge independence
- Lecture 13
- Eff gauge couplings
- Applications

$$\beta'(g') = \mu \frac{\partial}{\partial \mu} g' = \mu \frac{\partial}{\partial \mu} (gF_g(g)) = \beta(g) \left(F_g + g \frac{\partial F_g}{\partial g}\right)$$

$$\gamma'_m(g') = \mu \frac{\partial}{\partial \mu} \ln m' = \mu \frac{\partial \ln}{\partial \mu} (F_m^{-1}(g)m) = \gamma_m(g) - \beta(g) \frac{\partial}{\partial g} \ln F_m$$

$$\gamma'(g') = \frac{1}{2}\mu \frac{\partial}{\partial \mu} \ln Z'_{\phi}(g') = \gamma(g) + \frac{1}{2}\beta(g)\frac{\partial}{\partial g} \ln F_{\phi}$$

- □ As funções β , γ_m e γ só coincidirão se os esquemas forem o mesmo, isto é $F_g = F_m = F_\phi = 1$.
- Contudo as propriedades seguintes são ainda independentes do esquema.
 - i) A existência de um zero de $\beta(g)$.

Se $\beta(g_0) = 0$ então $\beta'(g'_0) = 0$ para $g'_0 = g_0 F_g(g_0)$. Notar que em geral g_0 depende do esquema, isto é $g_0 \neq g'_0$.

TÉCNICO β and γ properties \cdots

Lecture 12

Renormalization

Minimal subtraction

- RG Eq for MS
- Physical parameters
- \bullet Calculate β . . .
- β & γ properties
- Gauge independence

Lecture 13

Eff gauge couplings

Applications

□ ii) A primeira derivada de $\beta(g)$ no zero. Seja $\beta(g_0) = 0$. Então

$$\frac{\partial \beta'(g'_0)}{\partial g'} = \left\{ \frac{\partial g}{\partial g'} \frac{\partial}{\partial g} \left[\beta(g) \left(F_g + g \frac{\partial F_g}{\partial g} \right) \right] \right\}_{g_0} \\ = \left[F_g + g \frac{\partial F_g}{\partial g} + g \frac{\partial \beta}{\partial g} + \beta(g) \frac{1}{F_g + g \frac{\partial F_g}{\partial g}} \frac{\partial \left(F_g + g \frac{\partial F_g}{\partial g} \right)}{\partial g} \right]_{g_0} \\ = \frac{\partial \beta}{\partial g}(g_0) \cdot$$

iii) Os primeiros dois termos em $\beta(g)$.
Seja $\beta(g) = b_0 g^3 + b_1 g^5 + O(g^7)$, e $F_g(g) = 1 + ag^2 + O(g^4)$.

TÉCNICO LISBOA β and γ properties ···

Lecture 12

Renormalization

Minimal subtraction
RG Eq for MS
Physical parameters
Calculate β . . .

Então

 $g' = g + ag^3 + O(g^5)$

e

β & γ properties
Gauge independence

Lecture 13

Eff gauge couplings

Applications

$g = g' - ag'^3 + O(g^5)$

 β

$$\begin{aligned} & '(g') &= \beta(g) \frac{\partial}{\partial g} (gF_g) = (b_0 g^3 + b_1 g^5 + O(g^7))(1 + 3ag^2 + O(g^4)) \\ &= b_0 g^3 + (3ab_0 + b_1)g^5 + O(g^7) \\ &= b_0 (g'^3 - 3ag'^5 + O(g'^7) + (3ab_0 + b_1)(g'^5 + O(g'^7)) \\ &= b_0 g'^3 + b_1 g'^5 + O(g'^7) \end{aligned}$$

TÉCNICO β and γ properties \cdots

Lecture 12

Renormalization

- Minimal subtraction
- \bullet RG Eq for MS
- Physical parameters
- Calculate β . . .
- β & γ properties
- Gauge independence
- Lecture 13
- Eff gauge couplings
- Applications

iv) O primeiro termo em $\gamma(g)$ e $\gamma_m(g)$.
 Seja

 $\gamma(g) = cg^2 + O(g^4)$

$$\gamma_m(g) = dg^2 + O(g^4)$$

Então como $\beta(g) = O(g^3)$ é evidente que

$$\gamma'(g') = cg'^2 + O(g'^4)$$

$$\gamma'_m(g') = dg'^2 + O(g'^4)$$
.

¬ v) O valor de $\gamma(g_0)$ e $\gamma_m(g_0)$ se $\beta(g_0) = 0$.

Este resultado é imediato. Como veremos na secção seguinte todos estes resultados são necessários pois eles controlam resultados físicos e estes não podem depender do esquema de renormalização.

Renormalization

Minimal subtraction

- RG Eq for MS
- Physical parameters
- Calculate β . . .
- β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

A equação do grupo de renormalização em MS foi escrita para a teoria $\lambda \phi^4$. Vamos agora considerar teorias da gauge (abelianas ou não abelianas). Para a quantificação destas teorias é necessário introduzir um termo que fixe a gauge

$$\mathcal{L}_{GF} = -\frac{1}{2\xi} (\partial \cdot A)^2$$

onde escolhemos as gauges do tipo de Lorentz. Como não há correcções radiativas para a parte longitudinal do propagador, não é necessário nenhum contratermo para o termo que fixa a gauge. Portanto se pusermos, como habitualmente,

$$A^{\mu} = Z_A^{-1/2} A_0^{\mu}$$

obtemos

$$\frac{1}{2\xi} (\partial \cdot A)^2 = \frac{1}{2\xi Z_A} (\partial \cdot A_0)^2 = \frac{1}{2\xi_0} (\partial \cdot A_0)^2$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

 \bullet Calculate β . . .

• β & γ properties

• Gauge independence

Lecture 13 Eff gauge couplings

Applications

Isto quer dizer que o parâmetro de gauge é renormalização de acordo com

$$\xi_0 = Z_A \xi \ .$$

As funções de Green irredutíveis renormalizadas, dependem em geral de ξ , isto é

$$\Gamma_{R}^{(n)}(g, m, \xi, \mu) = Z_{A}^{n/2} \Gamma_{0}^{(n)}(g_{0}, m_{0}, \xi_{0}, \varepsilon)$$

A equação do grupo de renormalização é então

$$\left[\mu\frac{\partial}{\partial\mu} + \beta(g,\xi)\frac{\partial}{\partial g} + \gamma_m(g,\xi)m\frac{\partial}{\partial m} + \delta(g,\xi)\frac{\partial}{\partial\xi} - \gamma_A(g,\xi)\right]\Gamma_R^{(n)}(g,m,\xi,\mu) = 0$$

FECNICO Gauge independence of β and γ_m in MS \cdots

onde

Renormalization

Lecture 12

Minimal subtraction

 \bullet RG Eq for MS

• Physical parameters

 \bullet Calculate β . . .

 $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

$$\delta(g,\xi) = \mu \frac{\partial}{\partial \mu} \xi = \mu \frac{\partial}{\partial \mu} (Z_A^{-1}\xi_0) =$$

$$= -\xi_0 \frac{1}{Z_A^2} \frac{\partial}{\partial \mu} Z_A$$

 $= -2\xi\gamma_A(g,\xi)$

e se admitiu a possibilidade de β , γ_m e γ_A dependerem do parâmetro ξ . Contudo a dependência em ξ não é arbitrária, obedece a certos constrangimentos. Para vermos isso consideremos uma função de Green sem dimensões e correspondendo a operadores invariantes de gauge. Então

$$\frac{\partial}{\partial \xi_0} G_0(g_0, m_0, \xi_0, \varepsilon) = 0$$

(independente de gauge)

TÉCNICO LISBOA Gauge independence of β and γ_m in MS \cdots

Lecture 12

IJ

Renormalization

Minimal subtraction

- RG Eq for MS
- Physical parameters
- Calculate β . . .
- $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$

• Gauge independence Lecture 13

Eff gauge couplings

Applications

$$G_0(g_0, m_0, \xi_0, \varepsilon) = G(g, m, \xi, \mu)$$
 (sem dimensões)

e portanto

е

 $\frac{\partial}{\partial\xi}G=0$

ou seja

$$\mathcal{D}_G G \equiv \left[\frac{\partial}{\partial \xi} + \rho(g,\xi)\frac{\partial}{\partial g} + \sigma(g,\xi)m\frac{\partial}{\partial m}\right]G(g,m,\xi,\mu) = 0$$

onde

$$\rho(g,\xi) = \frac{\partial g}{\partial \xi} \qquad ; \qquad \sigma(g,\xi) = \frac{\partial}{\partial \xi} \ln m$$

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

 \bullet Calculate β . . .

• β & γ properties • Gauge independence

Lecture 13

Eff gauge couplings

Applications

Mas G obedece à equação do grupo de renormalização

$$\mathcal{D}G \equiv \left[\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g} + \gamma_m m \frac{\partial}{\partial m} + \delta \frac{\partial}{\partial \xi}\right] G = 0$$

Usando a equação para $\mathcal{D}_G G = 0$ podemos substituir a derivada em ordem a ξ por derivadas em ordem aos outros parâmetros, obtendo uma equação do grupo de renormalização semelhante à das teorias que não têm campos de gauge, isto é

$$\left[\mu\frac{\partial}{\partial\mu} + \overline{\beta}\frac{\partial}{\partial g} + \overline{\gamma}_m m\frac{\partial}{\partial m}\right]G = 0$$

onde

$$\overline{\beta} \equiv \beta - \rho \delta$$
 $\overline{\gamma}_m = \gamma_m - \sigma \delta$

TÉCNICO LISBOA Gauge independence of β and γ_m in MS \cdots

Calculemos agora o comutador $[\mathcal{D}_G, \mathcal{D}]G = 0$. Obtemos

Lecture 12

Renormalization

Minimal subtraction

- RG Eq for MS
- Physical parameters
- \bullet Calculate β . . .
- $\bullet \ \beta \ \& \ \gamma \ {\rm properties}$

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

$$\left\{ \left[\frac{\partial \beta}{\partial \xi} + \beta \frac{\partial \beta}{\partial g} - \beta \frac{\partial \rho}{\partial g} - \delta \frac{\partial \rho}{\partial \xi} \right] \frac{\partial}{\partial g} + \left[\frac{\partial \delta}{\partial \xi} + \rho \frac{\partial \delta}{\partial g} \right] \frac{\partial}{\partial \xi} \right. \\ \left. + \left[\frac{\partial \gamma_m}{\partial \xi} + \rho \frac{\partial \gamma_m}{\partial g} - \beta \frac{\partial \sigma}{\partial g} - \delta \frac{\partial \sigma}{\partial \xi} \right] m \frac{\partial}{\partial m} \right\} G = 0$$

Introduzindo as funções $\overline{\beta}$ e $\overline{\gamma}_m$ e o operador

$$\overline{\mathcal{D}} \equiv \frac{\partial}{\partial \xi} + \rho \frac{\partial}{\partial g}$$

a equação anterior escreve-se

$$\begin{bmatrix} (\overline{\mathcal{D}}\delta)\frac{\partial}{\partial\xi} + \left(\overline{\mathcal{D}}\ \overline{\beta} + \overline{\mathcal{D}}(\rho\delta) - \overline{\beta}\frac{\partial\rho}{\partial g} - \delta\overline{\mathcal{D}}\rho\right)\frac{\partial}{\partial g} \\ + \left(\overline{\mathcal{D}}\overline{\gamma}_m + \overline{\mathcal{D}}(\sigma\delta) - \overline{\beta} - \frac{\partial\sigma}{\partial g} - \delta\overline{\mathcal{D}}\sigma\right)m\frac{\partial}{\partial m}\end{bmatrix}G = 0$$

TÉCNICO LISBOA Gauge independence of β and γ_m in MS \cdots

Lecture 12

${\sf Renormalization}$

- Minimal subtraction
- RG Eq for MS
- Physical parameters
- \bullet Calculate β . . .
- β & γ properties

• Gauge independence

Lecture 13

Eff gauge couplings

Applications

Multiplicando a equação
$$\mathcal{D}_G G = 0$$
 por $(\overline{\mathcal{D}}\delta)$ obtemos

$$\left[(\overline{\mathcal{D}}\delta)\frac{\partial}{\partial\xi} + \rho(\overline{\mathcal{D}}\delta)\frac{\partial}{\partial g} + \sigma(\overline{\mathcal{D}}\delta)m\frac{\partial}{\partial m} \right] G = 0$$

Comparando as duas equações vemos que

 $\overline{\mathcal{D}} \ \overline{\beta} = \overline{\beta} \frac{\partial \rho}{\partial g} \qquad \qquad \mathbf{e} \qquad \qquad \overline{\mathcal{D}} \ \overline{\gamma}_m = \overline{\beta} \frac{\partial \sigma}{\partial g}$

Estas equações asseguram que resultados físicos sejam independentes de gauge. Assim $\overline{\beta} = 0$ tem consequências físicas. Então $\overline{\mathcal{D}} \ \overline{\beta} = 0$ e $\overline{\mathcal{D}} \ \overline{\gamma}_m = 0$ dizendo que a existência dos zeros de $\overline{\beta}$ e a dimensão anómala da massa $\overline{\gamma}_m$ são independentes de gauge. Também se $\overline{\beta} = 0$ obtemos

$$\overline{\mathcal{D}}\left(\frac{\partial\overline{\beta}}{\partial g}\right) = \frac{\partial}{\partial g}\overline{\mathcal{D}}\ \overline{\beta} + \left[\overline{\mathcal{D}}, \frac{\partial}{\partial g}\right]\overline{\beta}$$
$$= \frac{\partial}{\partial g}\overline{\mathcal{D}}\ \overline{\beta} - \frac{\partial\rho}{\partial g}\frac{\partial\overline{\beta}}{\partial g} = 0$$

Renormalization

Minimal subtraction

- \bullet RG Eq for MS
- Physical parameters
- Calculate β . . .

β & γ properties
Gauge independence

Lecture 13

Eff gauge couplings

Applications

e portanto a primeira derivada de $\overline{\beta}$ no zero é independente da gauge. Finalmente como $\rho = O(g^3)$ e $\delta = O(g^2)$ temos então

 $\overline{\beta} = \beta + O(g^5)$.

Estes resultados não dependem de se ter adoptado subtracção miníma ou não. Se adoptarmos subtracção mínima temos então

Teorema

No esquema de subtracção mínima temos $\rho = \sigma = 0$ e portanto

$$\overline{\mathcal{D}} = rac{\partial}{\partial \xi}$$
 ; $\overline{\beta} = \beta$ e $\overline{\gamma}_m = \gamma_m$

e β e γ_m são independentes da gauge em todas as ordens.

Renormalization

Minimal subtraction

• RG Eq for MS

• Physical parameters

• Calculate β . . .

• β & γ properties

• Gauge independence Lecture 13

Eff gauge couplings

Applications

Dem: Demonstramos só para ρ , para σ é igual.

$$\rho = g \frac{\partial}{\partial \xi} \ln g = -\frac{g}{Z_g} \frac{\partial Z_g}{\partial \xi}$$

$$0 = Z_a \rho + q \frac{\partial}{\partial r} \left(1 \right)$$

$$= Z_g \rho + g \frac{\partial}{\partial \xi} \left(1 + \frac{a_1}{\varepsilon} + \frac{a_2}{\varepsilon^2} + \cdots \right)$$
$$= \rho + \frac{1}{\varepsilon} \left(\rho a_1 + g \frac{\partial a_1}{\partial \xi} \right) + O(1/\varepsilon^2)$$

obtemos portanto

Então

$$\rho = 0$$
 .

	-	0
l ecture	- 1	٠,
Lecture		

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

Lecture 13

Fixed points

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings • Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Como vimos na secção anterior, o comportamento assimptótico das funções de Green irredutíveis depende do comportamento assimptótico das soluções das equações para a constante de acoplamento efectivo $\overline{\lambda}(t)$ e para a massa efectiva, que como vimos são

 $\begin{cases} \frac{d\overline{\lambda}}{dt} = \beta(\overline{\lambda}) ; \quad \overline{\lambda}(0) = \lambda \\ \frac{d\overline{m}}{dt} = [\gamma_m(\overline{\lambda}) - 1] \overline{m}(t) ; \quad \overline{m}(0) = m \end{cases}$

- Destas equações resulta que as variações da constante de acoplamento efectiva e da massa efectiva com uma variação de escala de energia são controladas pelas funções β e γ_m, respectivamente.
- Para estudar o comportamento assimptótico de λ vamos admitir que $\beta(\lambda)$ tem a forma da figura seguinte

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings • Fixed points

- β functions
- QCD

• Paramagnetic

Applications

Os pontos, $0, \lambda_1 \in \lambda_2$ onde $\beta(\lambda)$ se anula são chamadas *pontos fixos*, pois se $\overline{\lambda}$ se encontra num desses pontos em t = 0 então ficará aí para todos os valores do momento $\left(\frac{d\overline{\lambda}}{dt} = 0\right)$. Os pontos fixos podem ser de dois tipos:

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings • Fixed points

• β functions

• QCD

• Paramagnetic

Applications

i) Ponto fixo estável ultravioleta(UV)

São aqueles em que $\beta'(\lambda) < 0$. É o caso do ponto λ_1 na figura. Neste caso $\beta(\lambda) > 0$ para $\lambda < \lambda_1$ e $\beta(\lambda) < 0$ para $\lambda > \lambda_1$. Então se para t = 0 $0 < \lambda < \lambda_1$ então quando $t \to \infty$ $\overline{\lambda} \to \lambda_1$. Por outro lado se $\lambda_1 < \lambda < \lambda_2$ quando $t \to \infty$ também $\overline{\lambda} \to \lambda_1$. Portanto no intervalo $0 < \lambda < \lambda_2$ a constante de acoplamento é sempre conduzida para λ_1 quanto $t \to \infty$, isto é, para momentos grandes.

ii) Ponto fixo estável infravermelho(IR)

São aqueles em que $\beta'(\lambda) > 0$. É o caso dos pontos 0 e λ_2 da figura. É fácil de ver que quando $t \to \infty$ a constante de acoplamento se afasta de 0 e λ_2 , mas que no limite $t \to 0$ se aproxima deles.

Podemos agora estudar o comportamento assimptótico das soluções do grupo de renormalização. Supomos, por exemplo $0 < \lambda < \lambda_2$. Então

 $\lim_{t \to 0} \overline{\lambda}(t, \lambda) = \lambda_1$

A maneira como tende para λ_1 depende da primeira derivada de $\beta(\lambda)$.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Suponhamos que na vizinhança de λ_1 temos

 $\beta(\lambda) = a(\lambda_1 - \lambda) \quad ; \quad a > 0$

 $\beta'(\lambda_1) = -a < 0$

Então

$$\overline{\lambda}(t,\lambda) = \lambda_1 + (\lambda - \lambda_1)e^{-at}$$

isto é, a aproximação do ponto fixo é exponencial na variável t. Será tanto maior quanto maior for $|\beta'(\lambda_1)| = a$. Vimos anteriormente que a solução da equação da massa efectiva era

$$\overline{m}(t) = m e^{-t} e^{\int_0^t \gamma_m(\overline{\lambda}) dt'}$$

Fixed points ····

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

$$\overline{m} = m e^{-t(1 - \gamma_m(\lambda_1))}$$

o que mostra que se $\gamma_m(\lambda_1) < 1$ então $m(t) \to 0$ quando $t \to \infty.$ Na mesma aproximação

$$\int_0^t \gamma(\overline{\lambda}(t')) dt' \simeq \gamma(\lambda_1) t$$

e portanto a solução assimptótica é

$$\lim_{\sigma \to \infty} \Gamma^n(\sigma p_i, m, \lambda, \mu) = \sigma^{4-n[1+\gamma(\lambda_1)]} \Gamma^{(n)}(p_i, \overline{m}, \lambda_1, \mu)$$

o que mostra que a dimensão dos campos não é 1 mas $1 + \gamma(\lambda_1)$. Daí o nome de dimensão anómala para $\gamma(\lambda)$.

Fixed points ····

Lecture 12

- Renormalization
- Minimal subtraction

Lecture 13

- Eff gauge couplings • Fixed points
- β functions
- QCD
- Paramagnetic

Applications

- Em geral é difícil calcular os zeros da função β, pois requere normalmente resultados para além da teoria de perturbações.
- Contudo $\beta(\lambda), \gamma_m(\lambda)$ e $\gamma(\lambda)$ têm um zero trivial na origem. Se acontecer que a origem seja um ponto fixo estável UV então quer dizer que quando a escala da energia aumenta a constante de acoplamento diminui. No limite $t \to \infty, \overline{\lambda} \to 0$ e por isso se diz destas teorias que são *assimptoticamente livres*. É fácil de ver que isso acontece se $\beta'(0) < 0$.
- □ Na secção seguinte vamos ver quais as teorias em que isso pode acontecer.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Vamos nesta secção mostrar que só as teorias de gauge não abelianas podem ser assimptoticamente livres, isto é, só estas verificam a propriedade $\beta'(0) < 0$.

i) Teorias com escalares

Já vimos anteriormente que para a teoria escalar mais simples, $\lambda \phi^4$, temos

 $\beta(\lambda) = \frac{3\lambda^2}{16\pi^2} + O(\lambda^4)$

e portanto não é assimptoticamente livre. Consideramos agora a teoria escalar mais geral com campos ϕ_i e acoplamento

 $\mathcal{L}_I = -\lambda_{ijk\ell} \phi_i \phi_j \phi_k \phi_\ell$

onde se somam os índices repetidos. Então

$$\beta_{ijk\ell} = \frac{d\overline{\lambda}_{ijk\ell}(t)}{dt} = A(\overline{\lambda}_{i\ell mn}\overline{\lambda}_{kjmn} + \overline{\lambda}_{ijmn}\overline{\lambda}_{k\ell mn} + \overline{\lambda}_{ikmn}\overline{\lambda}_{j\ell mn})$$

com A>0. A teoria não é assimptoticamente livre pois há sempre funções β com derivadas positivas. Por exemplo

TECNICO LISBOA β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

$$\frac{d\lambda_{1111}}{dt} = \beta_{1111} = 3A|\overline{\lambda}_{11mn}|^2 > 0 \qquad ; \qquad \forall t$$

ii) Teorias com escalares + fermiões + acoplamentos de Yukawa O termo da interacção mais geral para uma teoria com escalares e fermiões é

$$\mathcal{L}_{I} = -\sum_{i,j,k,\ell} \lambda_{ijk\ell} \phi_{i} \phi_{j} \phi_{k} \phi_{\ell} + \sum_{a,b,k} \overline{\psi}^{a} (A^{k}_{ab} + iB^{k}_{ab} \gamma_{5}) \overline{\psi}^{b} \phi_{k}$$

onde $A \in B$ são matrizes reais. Agora já não é possível mostrar que $\frac{d\lambda_{iiii}}{dt} > 0$ por causa do loop de fermiões de ordem A^2 ou B^2 com um sinal negativo. Se definirmos $(g^i)_{ab} \equiv A^i_{ab} + iB^i_{ab}$, obtemos

$$16\pi^2 \frac{dg^i}{dt} = (\operatorname{Tr} g^i g^{j\dagger}) g^j + \operatorname{Tr} (g^{i\dagger} g^j) g^j + M^{ij} g^j$$
$$+ \frac{1}{2} g^i g^{\dagger j} g^j + \frac{1}{2} g^j g^{\dagger j} g^i + 2g^j g^{\dagger i} g^j$$
FECNICO β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points • β functions

• QCD

Paramagnetic

Applications

onde $M^{ij} \equiv \frac{1}{4} \lambda_{ik\ell m} \lambda_{jk\ell m}$. Usando este resultado é possível demonstrar o teorema seguinte: **Teorema**

A teoria mais geral com escalares e fermiões não é assimptoticamente livre pois $\frac{d}{dt} \operatorname{Tr}(g^{i\dagger}g^i) > 0$ e portanto não é possivel $g_i \to 0$ quando $t \to \infty$.

Dem:

$$\begin{split} 8\pi^2 \frac{d}{dt} \mathrm{Tr}(g^{i\dagger}g^i) &= 8\pi^2 \frac{d}{dt} \sum_{a,b,i} |g^i_{ab}|^2 \\ &= \mathrm{Tr}(g^i g^{j\dagger}) \mathrm{Tr}(g^{i\dagger}g^j) + \mathrm{Tr}(g^i g^{j\dagger})(\mathrm{Tr}g^i g^{j\dagger}) \\ &+ \frac{1}{2} \mathrm{Tr}(g^i g^{i\dagger}g^j g^{j\dagger}) + \frac{1}{2} \mathrm{Tr}(g^{i\dagger}g^i g^{j\dagger}g^j) \\ &+ 2 \mathrm{Tr}(g^i g^{j\dagger}g^j g^{j\dagger}) + M^{ij} \mathrm{Tr}(g^{i\dagger}g^j) \end{split}$$

TÉCNICO β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Agora o último termo é positivo, assim como o terceiro e o quarto. O primeiro é maior que o segundo e portanto

$$8\pi^2 \frac{d}{dt} \operatorname{Tr}(g^{i\dagger}g^i) \ge 2 \Big[\operatorname{Tr}(g^i g^{j\dagger}) \operatorname{Tr}(g^i g^{j\dagger}) + \operatorname{Tr}(g^i g^{j\dagger} g^i g^{j\dagger}) \Big]$$

e o segundo membro é positivo pois pode ser escrito

$$8\pi^2 \frac{d}{dt} \mathrm{Tr}(g^{i\dagger}g^i) \ge (g^i_{ab}g^i_{cd} + g^i_{ad}g^i_{cd})(g^{j\dagger}_{ba}g^{j\dagger}_{dc} + g^{j\dagger}_{da}g^{j\dagger}_{bc}) \ge 0$$

como queríamos demonstrar.

iii) Teorias gauge abelianas Consideremos o caso de QED. Temos

$$Z_e = Z_1 Z_2^{-1} Z_3^{-1/2} = Z_3^{-1/2}$$

TÉCNICO LISBOA β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

 Z_3 pode ser calculado do diagrama de polarização do vácuo representado na figura

e o resultado é

$$Z_3^{-1/2} = 1 + \frac{e^2}{12\pi^2} \frac{1}{\varepsilon} + \cdots$$

logo

$$\beta(e) = \frac{1}{2}e^2 \frac{da_1}{de} = \frac{e^3}{12\pi^2} > 0$$

TECNICO β function for theories with scalars, fermions and gauge fields

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

iv) Teorias de gauge não abelianas

Comecemos pela teoria de gauge pura. A renormalização da função de onda para os campos de gauge é obtida a partir dos diagramas da figura.

Em subtracção mínima obtemos

$$Z_A = 1 + \frac{g^2}{16\pi^2} \left(\frac{13}{3} - \xi\right) C_2(V) \frac{1}{\varepsilon}$$

onde $C_2(V)$ é o operador de Casimir definido no capítulo 2 para a representação adjunta, a que pertencem os campos da gauge (vectores).

TÉCNICO LISBOA β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

A constante de renormalização do vértice triplo, Z_1 , é obtida a partir dos diagramas da figura

Obtemos

$$Z_1 = 1 + \frac{g^2}{16\pi^2} \left(\frac{17}{6} - \frac{3\xi}{2}\right) C_2(V) \frac{1}{\varepsilon} + \cdots$$

TÉCNICO LISBOA β function for theories with scalars, fermions and gauge fields

Então

Renormalization

Minimal subtraction

Lecture 13

Lecture 12

Eff gauge couplings

• Fixed points

• β functions

• QCD

Paramagnetic

Applications

$$Z_g \equiv Z_1 Z_A^{-3/2} = 1 - \frac{g^2}{16\pi^2} \left(\frac{11}{3}C_2(V)\right) \frac{1}{\varepsilon} + \cdots$$

Usando Z_A e Z_g e as definições de β e γ obtemos

$$\beta = -\frac{g^3}{16\pi^2} \frac{11}{3} C_2(V) < 0$$

е

$$\gamma_A = -\frac{g^2}{16\pi^2} \frac{1}{2} \left(\frac{13}{3} - \xi\right) C_2(V)$$

Portanto as teorias de gauge não abelianas sem campos de matéria são assimptoticamente livres. Notar que a dependência da gauge (em ξ) desapareceu de β de acordo com o resultado demonstrado anteriormente.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

A inclusão de fermiões e escalares acoplados mínimamente é agora trivial. O lagrangeano de interacção é

 $\mathcal{L}_{int} = g\overline{\psi}_i \gamma^{\mu} \psi_j T^a_{Fij} A^a_{\mu} + ig\phi_i^* \overleftrightarrow{\partial}_{\mu} \phi_j T^a_{Sij} A^{\mu a}$

 $+g^2\phi_i^*T^a_{Sij}T^b_{Sjk}\phi_kA^a_\mu A^{\mu b}$

onde T_F^a e T_S^a são os geradores na representação em que se encontram os fermiões e os escalares respectivamente. Para se encontrar a contribuição destas partículas para a função β temos que calcular a contribuição delas para Z_g . O mais fácil é usar os resultados de QED e electrodinâmica escalar que dizem que

$$Z_g = Z_A^{-1/2}$$

e calcular a contribuição para Z_A dos fermiões e escalares devido aos diagramas

TÉCNICO LISBOA β function for theories with scalars, fermions and gauge fields

TECNICO LISBOA β function for theories with scalars, fermions and gauge fields

Lecture 12

Renormalization

Minimal subtraction

е

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

 $\beta(\text{escalares}) = \frac{g^3}{16\pi^2} \frac{1}{3} T(R_S)$

Pondo tudo junto obtemos

$$\beta = \frac{g^3}{16\pi^2} \left[-\frac{11}{3}C_2(V) + \frac{4}{3}T(R_F) + \frac{1}{3}T(R_s) \right]$$

onde as quantidades T(R) são definidas para uma dada representação por

 $\mathrm{Tr}(T^aT^b) = T(R)\delta^{ab}$

Se a teoria contém fermiões de Majorana (ou spinores de Weyl) ou campos escalares reais, os coeficientes em frente de $T(R_F)$ e $T(R_S)$ são multiplicados por um factor adicional de 1/2.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

 \bullet Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Consideremos agora um exemplo simples, QCD (SU(3)) com as três familias de quarks. Para SU(N) temos

 $C_2(V) = N$

e como os quarks se encontram na representação fundamental

$$T(R_F) = \frac{1}{2}$$

Então

$$\beta = \frac{g}{16\pi^2} \left[-\frac{33}{3} + \frac{4}{3} \times \frac{1}{2} \times 2N_g \right]$$

ou seja $(N_g = n \text{ úmero de gerações ou famílias})$

Jorge C. Romão

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Fixed points
β functions

• QCD

• Paramagnetic

Applications

$$\beta = \frac{g^3}{16\pi^2} \left[-\frac{33-4N_g}{3} \right]$$

Portanto SU(3) será assimptoticamente livre se

 $33 - 4N_g > 0$

ou ainda

$$N_g < \frac{33}{4} \to N_g \le 8$$

São portanto permitidas 8 famílias ou seja 16 tripletos de SU(3).

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

• Paramagnetic

Applications

Um argumento recente (Nielsen 1981, Hughs 1981) permite compreender melhor o que se passa de diferente nas teorias de gauge não abelianas para que elas tenham liberdade assimptotica. Primeiro o facto de a carga diminuir a curta distância pode ser interpretado como um *anti - shielding* do vácuo, isto é

 $\varepsilon < 1$

O problema em compreender o que se passa resulta do facto de não conhecermos substância com $\varepsilon < 1$ (Em QED a carga aumenta a curta distância e portanto o vácuo é um dieléctrico normal $\varepsilon > 1$). Contudo o vácuo deve ser invariante relativista e portanto deve ter uma permeabilidade μ tal que (estamos a fazer c = 1)

$$\mu \varepsilon = 1$$

Assim o *antiscreening* corresponde a $\mu > 1$. Portanto o vácuo duma teoria de gauge não abeliana é um *paramagnético* e este conceito pode ser compreendido mais facilmente.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

Paramagnetic

Applications

A permeabilidade magnética pode ser calculada calculando a densidade de energia do vácuo num campo exterior

$$u_0 = \frac{1}{2\mu} B_{ext}^2$$

Nielsen e Hughes mostraram que $\mu = 1 + \chi$ onde a susceptibilidade χ é dada por

$$\chi \sim (-1)^{2s} q^2 \sum_{s_3} \left(-\frac{1}{3} + \gamma^2 s_3^2 \right)$$

onde s é o spin, q a carga, γ a razão giromagnética e s_3 a projecção de spin na direcção do campo magnético externo. Assim para escalares, fermiões e campos de gauge obtemos

Escalares

$$\chi_S \sim -\frac{1}{3}q_S^2 < 0 \qquad ({\rm diamagn\acute{e}tico})$$

TÉCNICO LISBOA The vacuum of a NAGT as a paramagnetic medium $(\mu>1)$

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

 $\bullet \ \beta \ {\rm functions}$

• QCD

• Paramagnetic

Applications

Fermiões $(\gamma_F = 2)$

$$\chi_F \sim (-1)q_F^2 2\left(-\frac{1}{3}+1\right) = -\frac{4}{3}q_F^2 \qquad (\text{diamagnético})$$

Bosões de gauge $(\gamma_V = 2)$

$$\chi_V \sim q_V^2 2\left(-\frac{1}{3}+4\right) = \frac{22}{3}q_V^2 \qquad \text{(paramagnético)}$$

e portanto

$$\chi_{\text{Total}} \sim \frac{22}{3}q_V^2 - \frac{4}{3}q_F^2 - \frac{1}{3}q_S^2$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

• Fixed points

• β functions

• QCD

Paramagnetic

Applications

Comparando com a função β podemos fazer a correspondência

 $q_V^2 \to \frac{1}{2}C_2(V)$

 $q_F^2 \to T(R_F)$

 $q_S^2 \to T(R_S)$

o que permite compreender o vácuo das teorias de gauge não abelianas como um meio paramagnético.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

• Scale M_X

Scale M_Z
Standard Model

MSSM

We consider the Grand Unified Theory (GUT) with the gauge group SU(5), that is $SU(5) \supset SU_c(3) \times SU_L(2) \times U_Y(1)$.

The unification takes place at the GUT scale M_X . Using the renormalization group equations and the low energy data on the coupling constants, it is possible to determine the scale M_X as well as other predictions for the theory at the low scale, which we take to be the scale M_Z . For this we need to know how the different coupling constants evolve with the scale.

Scale M_X

We start by writing the covariant derivatives for the unified theory and for the theory with the broken symmetry.

Minimal subtraction

Eff gauge couplings

Applications

Lecture 12

Renormalization

ullet Scale M_X

ullet Scale M_Z

• Standard Model

MSSM

$$\begin{split} SU(5): D_{\mu} &= \partial_{\mu} + ig_5 \sum_{a=0}^{23} A^a_{\mu} \frac{\lambda^a}{2} \\ SU(3) \times SU(2) \times U(1): D_{\mu} &= \partial_{\mu} + ig_3 \sum_{\alpha}^8 G^a_{\mu} \frac{\lambda^a}{2}_2 \\ &+ ig_2 \sum_{\alpha}^3 A^a_{\mu} \frac{\sigma}{2}_2^a + ig' \frac{Y}{2} B_{\mu} \end{split}$$

At the scale M_X where the unification takes place we have

 $g_5 = g_3 = g_2 = g_1$

where g_1 is the coupling constant of the abelian subgroup of SU(5). However for the abelian groups there are no constraints in the normalization of the generators, and therefore the the generator λ^0 of that U(1) can be normalized in a different way from the hypercharge.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

• Scale M_X

• Scale M_Z

• Standard Model

MSSM

We must have

$$g_1\lambda^0 = g'Y$$

As λ^0 is a generator of SU(5) it is normalized according to

$$T_F(\lambda^a \lambda^b) = 2\delta^{ab}$$

that is, for the fundamental representation we must have

$$\lambda^{0} = \frac{1}{\sqrt{15}} \begin{bmatrix} 2 & & & \\ & 2 & & \\ & & 2 & & \\ & & -3 & \\ & & & -3 \end{bmatrix}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

• Scale M_X

• Scale M_Z

• Standard Model

• MSSM

Now, for the fundamental representation, we have

 $5 = \begin{pmatrix} d_1 \\ d_2 \\ d_3 \\ e^+ \\ \nu_e^c \end{pmatrix}_R$

and the hypercharge (remember that $Q = T_3 + \frac{Y}{2}$) can be read directly. We obtain,

 $Y = \begin{bmatrix} -2/3 & & & \\ & -2/3 & & \\ & & -2/3 & & \\ & & & 1 & \\ & & & & 1 \end{bmatrix}$

TÉCNICO Scale $M_X \cdots$

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

• Scale M_X

ullet Scale M_Z

• Standard Model

MSSM

Therefore $Y = -\sqrt{\frac{5}{3}}\lambda^0$ and $g' = -\sqrt{\frac{3}{5}}g_1$. This allows to determine $\sin^2\theta_W$ at the GUT scale M_X ,

$$\sin^2 \theta_W(M_X) = \frac{g'^2}{g^2 + g'^2} = \frac{\frac{3}{5}g_1}{g_2 + \frac{3}{5}g_1} = \frac{3}{8}$$

Also, for future reference, we note that

$$g'^2 = \frac{3}{5} g_1^2 \; .$$

Renormalization

TECNICO

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

ullet Scale M_X

ullet Scale M_Z

Standard Model

MSSM

Let us look now at what happens at the scale M_Z . The evolution of the coupling constants is governed by the RGE equations for the three gauge groups in the broken phase

$$\frac{dg_i}{dt} = \beta_i$$

Scale M_Z

These β functions are given by

$$\beta_i = \frac{g_i^3}{16\pi^2} \left[-\frac{11}{3} C_2(V) + \sum_j \frac{4}{3} T(R_{F_j}) + \sum_k \frac{1}{3} T(R_{S_k}) \right]$$

where the sums are over all the fermion and scalar physical states of the theory at a given scale. Given the form of the last equation it is usual to define

$$\beta_i \equiv \frac{1}{16\pi^2} \, b_i g_i^3$$

and therefore the b_i are defined by the bracket of the equation above.

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

ullet Scale M_Z

Standard Model

MSSM

We get

 $\frac{dg_i}{dt} = \frac{b_i}{16\pi^2} g_i^3$

Let us solve this equations before we evaluate the beta function coefficients b_i . For that it is usual to introduce the generalization of the fine structure constant, that is, we define

$$\alpha_i \equiv \frac{g_i^2}{4\pi}$$

Multiplying both sides by g_i and doing some trivial algebra we get,

$$\frac{d\alpha_i}{dt} = \frac{b_i}{2\pi} \,\alpha_i^2$$

Rearranging and integrating between some initial (μ_i) , and final scale (μ_f) , we get

$$\int_{i}^{f} \frac{d\alpha_{i}}{\alpha_{i}^{2}} = \frac{b_{i}}{2\pi} \int_{i}^{f} dt$$

Jorge C. Romão

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

ullet Scale M_Z

Standard Model

MSSM

or (remember that $t = \ln(\mu)$)

$$\left[-\frac{1}{\alpha_i}\right]_i^f = \frac{b_i}{2\pi} \left(t_f - t_i\right) = \frac{b_i}{2\pi} \ln\left(\frac{\mu_f}{\mu_i}\right)$$

and finally

$$\alpha_i^{-1}(\mu_f) = \alpha_i^{-1}(\mu_i) - \frac{b_i}{4\pi} \ln\left(\frac{\mu_f^2}{\mu_i^2}\right)$$

As at the unification scale M_X we have, by definition that

 $\alpha_1 = \alpha_2 = \alpha_2 = \alpha_5$

where α_5 is the SU(5) unified value, and we can write the final solution

$$\alpha_i^{-1}(\mu) = \alpha_5^{-1} + \frac{b_i}{4\pi} \ln\left(\frac{M_X^2}{\mu^2}\right), \quad i = 1, 2, 3$$

Scale $M_Z \cdots$

Lecture 12

Renormalization

TÉCNICO

ISROA

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

ullet Scale M_X

ullet Scale M_Z

• Standard Model

MSSM

We can rewrite these equations in terms of electromagnetic fine structure constant $\alpha(\mu)$ and of the strong coupling equivalent $\alpha_s \mu$), that are measured at the weak scale, to obtain

$$\begin{cases} \alpha_s^{-1}(\mu) = \alpha_5^{-1} + \frac{b_3}{4\pi} \ln\left(\frac{M_X^2}{\mu^2}\right) \\ \alpha^{-1}(\mu) \sin^2 \theta_W(\mu) = \alpha_5^{-1} + \frac{b_2}{4\pi} \ln\left(\frac{M_X^2}{\mu^2}\right) \\ \frac{3}{5} \cos^2 \theta_W(\mu) \alpha^{-1}(\mu) = \alpha_5^{-1} + \frac{b_1}{4\pi} \ln\left(\frac{M_X^2}{\mu^2}\right) \end{cases}$$

From these equations we obtain,

$$\ln \frac{M_X^2}{\mu^2} = \frac{12\pi}{-8b_3 + 3b_2 + 5b_1} \left[\frac{1}{\alpha(\mu)} - \frac{8}{3} \frac{1}{\alpha_s(\mu)} \right]$$

Scale $M_Z \cdots$

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

Scale M_Z
Standard Model

MSSM

That allows to determine M_X , once $\alpha(\mu)$ and $\alpha_s(\mu)$ are known, at a given scale μ , and

$$\sin^2 \theta_W(\mu) = \frac{3(b_2 - b_3)}{5b_1 + 3b_2 - 8b_3} + \frac{5(b_1 - b_2)}{5b_1 + 3b_2 - 8b_3} \frac{\alpha(\mu)}{\alpha_S(\mu)}$$

which allows to determine $\sin^2 \theta_W$ at the scale $\mu = M_Z$, once $\alpha(M_Z)$ and $\alpha_s(M_Z)$ are known. Finally we can also solve for the value of α_5^{-1} . We get

$$\alpha_5^{-1} = \alpha^{-1}(\mu) \frac{1}{5b_1 + 3b_2 - 8b_3} \left[-3b_3 + (5b_1 + 3b_2) \frac{\alpha(\mu)}{\alpha_S(\mu)} \right]$$

Now we turn to the evaluation of the coefficients b_i first in the Standard Model (SM) and the in the Minimal Supersymmetric Standard Model (MSSM).

- Renormalization
- Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

ullet Scale M_Z

• Standard Model

• MSSM

In the SM we have the gauge fields, $N_g = 3$ families of leptons, $N_F = 2N_g = 6$ quark flavours and one Higgs. With this information we can find the coefficients b_i for the SM using the definition

$$b_i = -\frac{11}{3}C_2(V_i) + \sum_j \frac{2}{3}T(R_{F_j}) + \sum_k \frac{1}{3}T(R_{S_k})$$

where we have separated the sum in the fermions for each quirality. This is important for the SM as the model is described in terms of left and right-handed fermions.

• *SU*(3)

For SU(3), we have $C_2(V_3) = 3$ and the quarks are in the fundamental representation, therefore $T(R_{F_i}) = 1/2$. Then the counting goes as follows,

$$b_{3} = \underbrace{-\frac{11}{3} \times 3}_{\text{Gauge}} + N_{g} \times \left[\underbrace{\frac{2}{3} \times \frac{1}{2} \times (2+1+1)}_{\text{quarks}}\right] = -7$$

Jorge C. Romão

TÉCNICO LISBOA **Standard Model** ····

Lecture 12

- Renormalization
- Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

• Scale M_Z

• Standard Model

• MSSM

where the meaning of (2 + 1 + 1) is that we count the up and down components of each $(SU(2)_L)$ doublet and then the corresponding right-handed quarks for each generation.

• SU(2)

For the SU(2) we get

$$b_{2} = \underbrace{-\frac{11}{3} \times 2}_{\text{Gauge}} + N_{g} \times \left(\underbrace{N_{c} \times \frac{2}{3} \times \frac{1}{2}}_{\text{quarks}_{\text{L}}} + \underbrace{\frac{2}{3} \times \frac{1}{2}}_{\text{leptons}}\right) + \underbrace{\frac{1}{3} \times \frac{1}{2}}_{\text{Higgs}} = -\frac{19}{6}$$

where $N_c = 3$ is the number of colours.

Standard Model ····

• U(1)

Lecture 12

Renormalization

Minimal subtraction

FÉCNICO

SROA

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

 $\bullet \, {\rm Scale} \, \, M_Z$

Standard ModelMSSM

Finally for the U(1) part, with the correct normalization, we have

$$b_1 = \frac{3}{5} \times \left[\frac{2}{3} \times \sum_{f_L, f_R} \left(\frac{Y}{2} \right)^2 + \frac{1}{3} \times \sum_{\text{scalars}} \left(\frac{Y}{2} \right)^2 \right]$$

and therefore,

TÉCNICO LISBOA **Standard Model** ····

□ So, in summary we have for the SM,

Lecture 12

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

 $\bullet \ {\rm Scale} \ M_Z$

• Standard Model

• MSSM

 $b_1 = \frac{41}{10}, \quad b_2 = -\frac{19}{6}, \quad b_3 = -7$ Now let us look to see what are the results for M_X , $\sin^2 \theta_W(M_Z)$ and α_5^{-1} . We will use the current values from the Particle Data Group. These are

$$\alpha^{-1}(M_Z) = 127.916, \quad \alpha_s(M_Z) = 0.118, \quad M_Z = 91.1896 \text{ GeV}$$

we get

 $M_X = 6.7 \times 10^{14} \text{ GeV}, \quad \sin^2 \theta_W(M_Z) = 0.208, \quad \alpha_5^{-1} = 41.48$

- At the time that this GUT model was proposed it was completely consistent. However after many years of dedicated experiments for find the decay of the proton, the lower limit was substantially improved and also after LEP the coupling constants are known with greater precision.
- □ Today the value for M_X is too low, the same being true for the value of $\sin^2 \theta_W(M_Z)$ (the best value today is around $\sin^2 \theta_W(M_Z) = 0.230$).

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

ullet Scale M_Z

Standard ModelMSSM

This can be seen very clearly if we plot the α_i^{-1} as a function of $\ln(\mu^2/M_Z^2)$. This is shown in the figure

We clearly see that the agreement is quite poor with today's values.

ITÉCNICO LISBOA Minimal Supersymmetric Standard Model

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \ {\rm Scale} \ M_X$

 $\bullet \ {\rm Scale} \ M_Z$

• Standard Model

MSSM

Let us now turn to the MSSM. Below the GUT scale the gauge group is the same as in the SM, but the particle content is larger, more than duplicated in relation to the SM. We summarize in the following the particle content and their quantum numbers under $G = SU_c(3) \otimes SU_L(2) \otimes U_Y(1)$.

Supermultiplet	$SU_c(3)\otimes SU_L(2)\otimes U_Y(1)$
	Quantum Numbers
$\widehat{V}_1 \equiv (\lambda', W_1^{\mu})$	(1, 1, 1)
$\widehat{V}_2 \equiv (\lambda^a, W_2^{\mu a})$	(1,3,0)
$V_3 \equiv (\tilde{g}^b, W_3^{\mu b})$	(8, 1, 0)
$\widehat{L}_i \equiv (\widetilde{L}, L)_i$	(1, 2, -1)
$\widehat{R}_i \equiv (\widetilde{\ell}_R, \ell_L^c)_i$	(1,1,2)
$\widehat{Q}_i \equiv (\widetilde{Q}, Q)_i$	$(3,2,\frac{1}{3})$
$\widehat{D}_i \equiv (\widetilde{d}_R, d_L^c)_i$	$(3,1,rac{2}{3})$
$\widehat{U}_i \equiv (\widetilde{u}_R, u_L^c)_i$	$(3, 1, -\frac{4}{3})$
$\widehat{H}_d \equiv (H_d, \widetilde{H}_d)$	(1,2,-1)
$\widehat{H}_u \equiv (H_u, \widetilde{H}_u)$	(1,2,1)

ISBOA Minimal Supersymmetric Standard Model ···

With the values in the previous table we can calculate the contribution of the various particles to the b_i coefficients.

Renormalization

Minimal subtraction

Lecture 13

Lecture 12

Eff gauge couplings

Applications

- $\bullet \, {\rm Scale} \, \, M_X$
- $\bullet \, {\rm Scale} \, \, M_Z$
- Standard Model

MSSM

• *SU*(3)

Gauge Supermultiplet

The gauge multiplet has a gauge boson contributing with

 $b^{\text{gauge boson}} = -\frac{11}{3} C_2(V)$

and the left-handed gauginos in the adjoint representation

 $b^{\text{gauginos}} = \frac{2}{3} C_2(V)$

and therefore

 $b^{\text{gauge SM}} = -3 C_2(V)$

where SM stands here for super-multiplet. Applying now to SU(3) we get

$$b_3^{\text{gauge SM}} = -9$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \ {\rm Scale} \ M_X$

 $\bullet \ {\rm Scale} \ M_Z$

Standard Model

MSSM

D Left-handed Lepton Supermultiplet

 $b_3^{\text{Leptons}_{\text{L}} \text{SM}} = 0$

Right-handed Lepton Supermultiplet

 $b_3^{\text{Leptons}_R SM} = 0$

D Left-handed Quark Supermultiplet

Right-handed Up-Quark Supermultiplet

$$b_{3}^{\mathrm{Up-Quark_{R}\,SM}} = \underbrace{\frac{2}{3} \times \frac{1}{2}}_{\mathrm{Up-Quarks_{R}}} + \underbrace{\frac{1}{3} \times \frac{1}{2}}_{\mathrm{Up-Squarks_{R}}} = \frac{1}{2}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \ {\rm Scale} \ M_X$

 $\bullet \ {\rm Scale} \ M_Z$

Standard Model

MSSM

Right-handed Down-Quark Supermultiplet

D Up type Higgs Supermultiplet

 $b_3^{\mathrm{Up-Higgs\,SM}} = 0$

Down type Higgs Supermultiplet

 $b_3^{\rm Down-Higgs\,SM}=0$

TÉCNICO LISBOA Minimal Supersymmetric Standard Model ····

• SU(2)

Gauge Supermultiplet

 $b_2^{\text{gauge SM}} = -6$

Left-handed Lepton Supermultiplet

¬ Right-handed Lepton Supermultiplet

 $b_2^{\text{Leptons}_R \text{SM}} = 0$

D Left-handed Quark Supermultiplet

$$b_2^{\text{Quarks}_{\text{L}}\text{SM}} = N_c \underbrace{\frac{2}{3} \times \frac{1}{2}}_{\text{Quarks}_{\text{L}}} + N_c \underbrace{\frac{1}{3} \times \frac{1}{2}}_{\text{Squarks}_{\text{L}}} = N_c \frac{1}{2} = \frac{3}{2}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

 $\bullet \, {\rm Scale} \, \, M_Z$

• Standard Model

• MSSM
Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \ {\rm Scale} \ M_X$

 $\bullet \ {\rm Scale} \ M_Z$

Standard Model

MSSM

Right-handed Up-Quark Supermultiplet

 $b_2^{\mathrm{Up-Quark}_{\mathrm{R}}\,\mathrm{SM}} = 0$

Right-handed Down-Quark Supermultiplet

 $b_2^{\text{Down-Quark}_R \text{SM}} = 0$

D Up type Higgs Supermultiplet

Down type Higgs Supermultiplet

$$b_2^{\text{Down-Higgs SM}} = \underbrace{\frac{1}{3} \times \frac{1}{2}}_{\text{Higgs_d}} + \underbrace{\frac{2}{3} \times \frac{1}{2}}_{\text{Higgsino}_{d}} = \frac{1}{2}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

- Scale M_X • Scale M_Z
- Standard Model
- MSSM

• U(1)

Gauge Supermultiplet

 $b_1^{\text{gauge SM}} = 0$

D Left-handed Lepton Supermultiplet

$$b_1^{\text{Leptons}_{\text{L}}\text{SM}} = \frac{3}{5} \times \left[\underbrace{\frac{2}{3} \times \left(-\frac{1}{2}\right)^2 \times 2}_{\text{Leptons}_{\text{L}}} + \underbrace{\frac{1}{3} \times \left(-\frac{1}{2}\right)^2 \times 2}_{\text{Sleptons}_{\text{L}}}\right] = \frac{3}{10}$$

¬ Right-handed Lepton Supermultiplet

$$b_1^{\text{Leptons}_{\text{R}} \text{SM}} = \frac{3}{5} \times \left[\underbrace{\frac{2}{3} \times (-1)^2}_{\text{Leptons}_{\text{R}}} + \underbrace{\frac{1}{3} \times (-1)^2}_{\text{Sleptons}_{\text{R}}} \right] = \frac{3}{5}$$

LISBOA Minimal Supersymmetric Standard Model ···

Left-handed Quark Supermultiplet

Renormalization

Lecture 12

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

 $\bullet \, {\rm Scale} \, \, M_Z$

• Standard Model

MSSM

Right-handed Up-Quark Supermultiplet

$$b_1^{\text{Up-Quarks}_{\text{R}}\text{SM}} = \frac{3}{5} \times N_c \times \left[\underbrace{\frac{2}{3} \times \left(\frac{2}{3}\right)^2}_{\text{Up-Quarks}_{\text{R}}} + \underbrace{\frac{1}{3} \times \left(\frac{2}{3}\right)^2}_{\text{Up-Squarks}_{\text{R}}} \right] = N_c \times \frac{3}{5} \times \frac{4}{9} = \frac{4}{5}$$

Right-handed Down-Quark Supermultiplet

$$b_1^{\text{Down-Quarks}_{\text{R}}\text{SM}} = \frac{3}{5} \times N_c \times \left[\underbrace{\frac{2}{3} \times \left(-\frac{1}{3}\right)^2}_{\text{Down-Quarks}_{\text{R}}} + \underbrace{\frac{1}{3} \times \left(-\frac{1}{3}\right)^2}_{\text{Down-Squarks}_{\text{R}}}\right] = N_c \times \frac{3}{5} \times \frac{1}{9} = \frac{1}{5}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

- $\bullet \, {\rm Scale} \, \, M_Z$
- Standard Model

MSSM

D Up type Higgs Supermultiplet

$$b_1^{\mathrm{Higgs_u SM}} = \frac{3}{5} \times \left[\underbrace{\frac{1}{3} \times \left(\frac{1}{2}\right)^2 \times 2}_{\mathrm{Higgs_u}} + \underbrace{\frac{2}{3} \times \left(\frac{1}{2}\right)^2 \times 2}_{\mathrm{Higgs_u}}\right] = \frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$$

Down type Higgs Supermultiplet

$$b_1^{\text{Higgs}_{d} \text{SM}} = \frac{3}{5} \times \left[\underbrace{\frac{1}{3} \times \left(-\frac{1}{2}\right)^2 \times 2}_{\text{Higgs}_{d}} + \underbrace{\frac{2}{3} \times \left(-\frac{1}{2}\right)^2 \times 2}_{\text{Higgs}_{d}}\right] = \frac{3}{5} \times \frac{1}{2} = \frac{3}{10}$$

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

 $\bullet \, {\rm Scale} \, \, M_X$

ullet Scale M_Z

• Standard Model

MSSM

Now we put everything together to obtain for the MSSM,

$$b_{1} = N_{g} \times \left(\frac{3}{10} + \frac{3}{5} + \frac{1}{10} + \frac{4}{5} + \frac{1}{5}\right) + \frac{3}{10} + \frac{3}{10} = 3 \times 2 + \frac{3}{5} = \frac{33}{5}$$

$$b_{2} = -6 + N_{g} \times \left(\frac{1}{2} + \frac{3}{2}\right) + \frac{1}{2} + \frac{1}{2} = 1$$

$$b_{3} = -9 + N_{g} \times \left(1 + \frac{1}{2} + \frac{1}{2}\right) = -3$$
(1)

Now let us look to see what are the results for M_X , $\sin^2 \theta_W(M_Z)$ and α_5^{-1} in the MSSM. Using the same inputs as for the SM, we get

$$M_X = 2.1 \times 10^{16} \text{ GeV}, \quad \sin^2 \theta_W(M_Z) = 0.231, \quad \alpha_5^{-1} = 24.27$$

we immediately see that these values are quite good. This can be seen very clearly if we plot the α_i^{-1} as a function of $\ln(\mu^2/M_Z^2)$.

ISBOA Minimal Supersymmetric Standard Model ···

10¹⁶

10⁸

μ (GeV)

10¹²

TÉCNICO LISBOA Minimal Supersymmetric Standard Model ···

Lecture 12

Renormalization

Minimal subtraction

Lecture 13

Eff gauge couplings

Applications

- $\bullet \ {\rm Scale} \ M_X$
- $\bullet \ {\rm Scale} \ M_Z$
- Standard Model
- MSSM

- We can still go a step further. We know that supersymmetry must be broken above the electroweak scale, so what we have done is not quite correct because we are running with the MSSM content down to the weak scale.
- Of course each particle will decouple at its mass, but assuming that their masses are not much different we can assume that there will a scale M_{SUSY}, below which we will have the SM RGEs.
- We can redo the calculation taking now the evolved SM values at $M_{\rm SUSY}$ as the boundary conditions for the MSSM evolution. The results are shown for various values of the SUSY scale.
- We see from these results that if the SUSY scale is much higher than, say 1 TeV, the good agreement starts do disappear. Before we end we should emphasize that these are one loop results, without many fine details, like thresholds (talking in account that not all the supersymmetric particles decouple at the same scale) and the important two-loop effects.

ISBOA Minimal Supersymmetric Standard Model ···

Jorge C. Romão

TCA-2012 - 116