The 2HDM limit of the C2HDM

J. C. Romão*

Departamento de Física and CFTP, Instituto Superior Técnico Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal

We try to look at the real limit of the C2HDM.

March 6, 2020

I. THE C2HDM IN OUR NOTATION

From Ref.[1] we parameterize the scalars Φ_{1} and Φ_{2} in the original generic basis as

$$
\Phi_{1}=\left[\begin{array}{c}
\varphi_{1}^{+} \tag{1}\\
\frac{1}{\sqrt{2}}\left(v_{1}+\eta_{1}+i \chi_{1}\right)
\end{array}\right], \quad \Phi_{2}=\left[\begin{array}{c}
\varphi_{2}^{+} \\
\frac{1}{\sqrt{2}}\left(v_{2}+\eta_{2}+i \chi_{2}\right)
\end{array}\right]
$$

The massless would-be Goldstone boson is $G^{0}=c_{\beta} \chi_{1}+s_{\beta} \chi_{2}$. We define the orthogonal state

$$
\begin{equation*}
\eta_{3}=-s_{\beta} \chi_{1}+c_{\beta} \chi_{2} \tag{2}
\end{equation*}
$$

where the angle β is defined by $\tan \beta=v_{2} / v_{1}$ and leads to

$$
\left[\begin{array}{l}
G^{+} \tag{3}\\
H^{+}
\end{array}\right]=\left[\begin{array}{cc}
c_{\beta} & s_{\beta} \\
-s_{\beta} & c_{\beta}
\end{array}\right]\left[\begin{array}{l}
\Phi_{1}^{+} \\
\Phi_{2}^{+}
\end{array}\right] \equiv U_{\beta}^{T}\left[\begin{array}{l}
\Phi_{1}^{+} \\
\Phi_{2}^{+}
\end{array}\right]
$$

where

$$
U_{\beta}=\left[\begin{array}{cc}
c_{\beta} & -s_{\beta} \tag{4}\\
s_{\beta} & c_{\beta}
\end{array}\right]
$$

The fields η_{1}, η_{2}, and η_{3} combine into the mass eigenstates h_{1}, h_{2}, and h_{3} as

$$
\left[\begin{array}{l}
h_{1} \tag{5}\\
h_{2} \\
h_{3}
\end{array}\right]=R\left[\begin{array}{l}
\eta_{1} \\
\eta_{2} \\
\eta_{3}
\end{array}\right]
$$

where the orthogonal matrix may be parameterized as

$$
R=\left[\begin{array}{ccc}
c_{1} c_{2} & s_{1} c_{2} & s_{2} \tag{6}\\
-\left(c_{1} s_{2} s_{3}+s_{1} c_{3}\right) & c_{1} c_{3}-s_{1} s_{2} s_{3} & c_{2} s_{3} \\
-c_{1} s_{2} c_{3}+s_{1} s_{3} & -\left(c_{1} s_{3}+s_{1} s_{2} c_{3}\right) & c_{2} c_{3}
\end{array}\right]
$$

Here, $s_{i}=\sin \alpha_{i}, c_{i}=\cos \alpha_{i}(i=1,2,3)$, and, without loss of generality, the angles may be restricted to

$$
\begin{equation*}
-\pi / 2<\alpha_{1} \leq \pi / 2, \quad-\pi / 2<\alpha_{2} \leq \pi / 2, \quad 0 \leq \alpha_{3} \leq \pi / 2 \tag{7}
\end{equation*}
$$

By definition, we take the masses of the neutral scalars in increasing order: $m_{1}<m_{2}<m_{3}$.

[^0]For the following we also need the coupling of the Higgs h_{i} to the vector bosons and to fermions. For the gauge bosons we take for instance with the W. We get from Ref.[2], that

$$
\begin{equation*}
\mathcal{L} \supset g M_{W} W^{+} W^{-} h_{i}\left(R_{i 1} c_{\beta}+R_{i 2} s_{\beta}\right) \tag{8}
\end{equation*}
$$

therefore the relative coupling to the SM is

$$
\begin{equation*}
C_{i}=R_{i 1} c_{\beta}+R_{i 2} s_{\beta} \tag{9}
\end{equation*}
$$

For the fermions it depends on the type of the model. To be precise we consider down type quarks in Type I model. We have

$$
\begin{equation*}
\mathcal{L} \supset-\left(\sqrt{2} G_{F}\right)^{1 / 2} m_{d} \bar{d}\left[\frac{R_{i 2}}{s_{\beta}}+i c_{\beta} \frac{R_{i 3}}{s_{\beta}} \gamma_{5}\right] d h_{i} \tag{10}
\end{equation*}
$$

II. THE 2HDM IN OUR NOTATION

We do not follow the notation of Ref.[3] but instead that of Silva (notes) and Posch. The doublets are defined as (I changed the names for the real and imaginary parts to be those of the C2HDM)

$$
\Phi_{1}=\left[\begin{array}{c}
\varphi_{1}^{+} \tag{11}\\
\frac{1}{\sqrt{2}}\left(v_{1}+\eta_{1}+i \chi_{1}\right)
\end{array}\right], \quad \Phi_{2}=\left[\begin{array}{c}
\varphi_{2}^{+} \\
\frac{1}{\sqrt{2}}\left(v_{2}+\eta_{2}+i \chi_{2}\right)
\end{array}\right] .
$$

The angle β has the same meaning, and the angle α is defined through

$$
\left[\begin{array}{c}
H \tag{12}\\
h
\end{array}\right]=\left[\begin{array}{cc}
c_{\alpha} & s_{\alpha} \\
-s_{\alpha} & c_{\alpha}
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right] \equiv U_{\alpha}\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]
$$

where

$$
U_{\alpha}=\left[\begin{array}{cc}
c_{\alpha} & s_{\alpha} \tag{13}\\
-s_{\alpha} & c_{\alpha}
\end{array}\right]
$$

It is also convenient to define the Higgs basis where all the vev is in the first doublet. We have

$$
H_{1}=\left[\begin{array}{c}
G^{+} \tag{14}\\
\frac{1}{\sqrt{2}}\left(v+h_{1}^{H}+i G^{0}\right)
\end{array}\right], \quad H_{2}=\left[\begin{array}{c}
\varphi_{2}^{+} \\
\frac{1}{\sqrt{2}}\left(h_{2}^{H}+i A\right)
\end{array}\right] .
$$

where

$$
\begin{array}{ll}
G^{+}=c_{\beta} \varphi_{1}^{+}+s_{\beta} \varphi_{2}^{+}, & H^{+}=-s_{\beta} \varphi_{1}^{+}+c_{\beta} \varphi_{2}^{+} \\
G^{0}=c_{\beta} \chi_{1}+s_{\beta} \chi_{2}, & A=-s_{\beta} \chi_{1}+c_{\beta} \chi_{2} \tag{16}
\end{array}
$$

We also have

$$
\left[\begin{array}{c}
H \tag{17}\\
h
\end{array}\right]=U_{\alpha}\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=U_{\alpha} U_{\beta}\left[\begin{array}{l}
h_{1}^{H} \\
h_{2}^{H}
\end{array}\right]=\left[\begin{array}{cc}
c_{\alpha-\beta} & s_{\alpha-\beta} \\
-s_{\alpha-\beta} & c_{\alpha-\beta}
\end{array}\right]\left[\begin{array}{l}
h_{1}^{H} \\
h_{2}^{H}
\end{array}\right]
$$

and

$$
\left[\begin{array}{c}
h_{1}^{H} \tag{18}\\
h_{2}^{H}
\end{array}\right]=\left[\begin{array}{cc}
c_{\alpha-\beta} & -s_{\alpha-\beta} \\
s_{\alpha-\beta} & c_{\alpha-\beta}
\end{array}\right]\left[\begin{array}{c}
H \\
h
\end{array}\right]
$$

A. Couplings to the Gauge Bosons in the 2HDM

Using the definition of the covariant derivative in terms of the physical gauge bosons of Ref.[4] we have for the Higgs

$$
\begin{equation*}
D_{\mu} \Phi_{i}=\left[\partial_{\mu}+i \frac{g}{\sqrt{2}}\left(\tau^{+} W_{\mu}^{+}+\tau^{-} W_{\mu}^{-}\right)+i e Q A_{\mu}+i \frac{g}{\cos \theta_{W}}\left(\frac{\tau_{3}}{2}-Q \sin ^{2} \theta_{W}\right) Z_{\mu}\right] \Phi_{i} \tag{19}
\end{equation*}
$$

where

$$
\tau^{+}=\left[\begin{array}{ll}
0 & 1 \tag{20}\\
0 & 0
\end{array}\right], \quad \tau^{-}=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right], \quad Q=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

Keeping only the terms without derivatives and only the neutral scalars we have

$$
\begin{align*}
D_{\mu} \Phi_{i} & =\left[i \frac{g}{\sqrt{2}}\left[\begin{array}{cc}
0 & W_{\mu}^{+} \\
W_{\mu}^{-} & 0
\end{array}\right]+i e\left[\begin{array}{cc}
A_{\mu} & 0 \\
0 & 0
\end{array}\right]+i \frac{g}{c_{W}}\left[\begin{array}{cc}
\frac{1}{2}-s_{W}^{2} & 0 \\
0 & -\frac{1}{2}
\end{array}\right]\right]\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}}\left(v_{i}+\eta_{i}+i \chi_{i}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
i e A_{\mu}+i \frac{g}{c_{W}}\left(\frac{1}{2}-s_{W}^{2}\right) & i \frac{g}{\sqrt{2}} W_{\mu}^{+} \\
i \frac{g}{\sqrt{2}} W_{\mu}^{-} & i \frac{g}{c_{W}}\left(-\frac{1}{2}\right) Z_{\mu}
\end{array}\right]\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{2}}\left(v_{i}+\eta_{i}+i \chi_{i}\right)
\end{array}\right] \\
& =\left[\begin{array}{c}
i \frac{g}{\sqrt{2}} W_{\mu}^{+} \frac{1}{\sqrt{2}}\left(v_{i} \eta_{i}+i \chi_{i}\right) \\
i \frac{g}{c_{W}}\left(-\frac{1}{2}\right) Z_{\mu} \frac{1}{\sqrt{2}}\left(v_{i} \eta_{i}+i \chi_{i}\right)
\end{array}\right] \tag{21}
\end{align*}
$$

Therefore

$$
\begin{align*}
\mathcal{L} & =\left(\frac{g}{\sqrt{2}}\right)^{2} W_{\mu}^{+} W^{-\mu} \frac{1}{2} \sum_{i}\left[\left(v_{i}+\eta_{i}\right)^{2}+\chi_{i}^{2}\right]+\left(\frac{g}{c_{W}}\right)^{2} \frac{1}{4} Z_{\mu} Z^{\mu} \frac{1}{2} \sum_{i}\left[\left(v_{i}+\eta_{i}\right)^{2}+\chi_{i}^{2}\right]+\cdots \\
& =\frac{g^{2}}{4} W_{\mu}^{+} W^{-} \sum_{i}\left(v_{i}^{2}+2 v_{i} \eta_{i}+\cdots\right)+\frac{g^{2}}{8 c_{W}^{2}} Z_{\mu} Z^{\mu} \sum_{i}\left(v_{i}^{2}+2 v_{i} \eta_{i}+\cdots\right)+\cdots \\
& =\frac{g^{2}}{4} W_{\mu}^{+} W^{-} v^{2}+\frac{g^{2}}{8 c_{W}^{2}} Z_{\mu} Z^{\mu} v^{2}+\frac{g^{2}}{2} W_{\mu}^{+} W^{-}\left(v_{1} \eta_{1}+v_{2} \eta_{2}\right)+\frac{g^{2}}{4 c_{W}^{2}} Z_{\mu} Z^{\mu}\left(v_{1} \eta_{1}+v_{2} \eta_{2}\right)+\cdots \\
& =M_{W}^{2} W_{\mu}^{+} W^{-}+\frac{1}{2} M_{Z}^{2} Z_{\mu} Z^{\mu}+g M_{W} W_{\mu}^{+} W^{-}\left(c_{\beta} \eta_{1}+s_{\beta} \eta_{2}\right)+\frac{g}{2} Z_{\mu} Z^{\mu}\left(c_{\beta} \eta_{1}+s_{\beta} \eta_{2}\right) \tag{22}
\end{align*}
$$

where we have defined

$$
\begin{equation*}
M_{W}=\frac{1}{2} g v, \quad, M_{Z}=\frac{1}{2 c_{W}} g v=\frac{M_{W}}{c_{W}}, \quad v^{2}=v_{1}^{2}+v_{2}^{2}, \quad v_{1}=v c_{\beta}, v_{2}=v s_{\beta} \tag{23}
\end{equation*}
$$

Now using Eq. (12) we obtain

$$
\begin{align*}
c_{\beta} \eta_{1}+s_{\beta} \eta_{2} & =c_{\beta}\left(c_{\alpha} H-s_{\alpha} h\right)+s_{\beta}\left(s_{\alpha} H+c_{\alpha} h\right) \\
& =s_{\beta-\alpha} h+c_{\beta-\alpha} H \tag{24}
\end{align*}
$$

Therefore the coupling of the Higgs to gauge bosons, equivalente to Eq. (9) is now

$$
\begin{equation*}
C_{h}=s_{\beta-\alpha}, \quad C_{H}=c_{\beta-\alpha}, \quad C_{A}=0 \tag{25}
\end{equation*}
$$

B. Couplings to the Fermions in the 2HDM

Finally the couplings to the fermions. To cover all case we just need to consider up and down fermions coupled to both Φ_{1} and Φ_{2}. We obtain this with the simplified Lagrangian (we assume diagonal couplings from the start)

$$
\begin{equation*}
\mathcal{L}_{\text {Yuk }}=y_{1}^{d} \bar{Q}_{L} \Phi_{1} d_{R}+y_{2}^{d} \bar{Q}_{L} \Phi_{2} d_{R}+y_{1}^{u} \bar{Q}_{L} \widetilde{\Phi}_{1} u_{R}++y_{2}^{u} \bar{Q}_{L} \widetilde{\Phi}_{2} u_{R}+\text { h.c } \tag{26}
\end{equation*}
$$

We now analyze the cases separately (we can consider that all up type couple to Φ_{2} and differentiaty only the way the down quarks couple)

C. All fermions couple only to $\Phi_{2}: y_{1}^{u}=y_{1}^{d}=0$

Considering only the neutral components of the Higgs we have

$$
\begin{align*}
\mathcal{L}_{\text {Yuk }} & =y_{2}^{d} \bar{d}_{L} d_{R} \frac{1}{\sqrt{2}}\left(v_{2}+\eta_{2}\right)+y_{2}^{u} \bar{u}_{L} u_{R} \frac{1}{\sqrt{2}}\left(v_{2}+\eta_{2}\right)+\text { h.c. }+\cdots \\
& =\frac{y_{2}^{d} v s_{\beta}}{\sqrt{2}}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)\left[1+\frac{\eta_{2}}{v s_{\beta}}\right]+\frac{y_{2}^{u} v s_{\beta}}{\sqrt{2}}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)\left[1+\frac{\eta_{2}}{v s_{\beta}}\right]+\cdots \tag{27}
\end{align*}
$$

Now we identify

$$
\begin{equation*}
y_{2}^{d}=-\frac{\sqrt{2} m_{d}}{v s_{\beta}}, \quad y_{2}^{u}=-\frac{\sqrt{2} m_{u}}{v s_{\beta}} \tag{28}
\end{equation*}
$$

to write

$$
\begin{align*}
\mathcal{L}_{\text {Yuk }}= & -m_{d}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)-m_{u}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right) \\
& -\frac{m_{d}}{v}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)\left(\frac{s_{\alpha}}{s_{\beta}} H+\frac{c_{\alpha}}{s_{\beta}} h\right)-\frac{m_{u}}{v}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)\left(\frac{s_{\alpha}}{s_{\beta}} H+\frac{c_{\alpha}}{s_{\beta}} h\right) \\
= & -m_{d} \bar{d} d-m_{u} \bar{u} u-\frac{m_{d}}{v} \bar{d} d\left[\frac{c_{\alpha}}{s_{\beta}} h+\frac{s_{\alpha}}{s_{\beta}} H\right]-\frac{m_{u}}{v} \bar{u} u\left[\frac{c_{\alpha}}{s_{\beta}} h+\frac{s_{\alpha}}{s_{\beta}} H\right] \tag{29}
\end{align*}
$$

D. Up type fermions couple to Φ_{2} and Down type couple to $\Phi_{1}: y_{1}^{u}=y_{2}^{d}=0$

Considering again only the neutral components of the Higgs we have

$$
\begin{align*}
\mathcal{L}_{\text {Yuk }} & =y_{1}^{d} \bar{d}_{L} d_{R} \frac{1}{\sqrt{2}}\left(v_{1}+\eta_{1}\right)+y_{2}^{u} \bar{u}_{L} u_{R} \frac{1}{\sqrt{2}}\left(v_{2}+\eta_{2}\right)+\text { h.c. }+\cdots \\
& =\frac{y_{1}^{d} v c_{\beta}}{\sqrt{2}}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)\left[1+\frac{\eta_{1}}{v c_{\beta}}\right]+\frac{y_{2}^{u} v s_{\beta}}{\sqrt{2}}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)\left[1+\frac{\eta_{2}}{v s_{\beta}}\right]+\cdots \tag{30}
\end{align*}
$$

Now we identify

$$
\begin{equation*}
y_{1}^{d}=-\frac{\sqrt{2} m_{d}}{v c_{\beta}}, \quad y_{2}^{u}=-\frac{\sqrt{2} m_{u}}{v s_{\beta}} \tag{31}
\end{equation*}
$$

to write

$$
\begin{align*}
\mathcal{L}_{\text {Yuk }}= & -m_{d}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)-m_{u}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right) \\
& -\frac{m_{d}}{v}\left(\bar{d}_{L} d_{R}+\bar{d}_{R} d_{L}\right)\left(\frac{c_{\alpha}}{c_{\beta}} H-\frac{s_{\alpha}}{c_{\beta}} h\right)-\frac{m_{u}}{v}\left(\bar{u}_{L} u_{R}+\bar{u}_{R} u_{L}\right)\left(\frac{s_{\alpha}}{s_{\beta}} H+\frac{c_{\alpha}}{s_{\beta}} h\right) \\
= & -m_{d} \bar{d} d-m_{u} \bar{u} u-\frac{m_{d}}{v} \bar{d} d\left[-\frac{s_{\alpha}}{c_{\beta}} h+\frac{c_{\alpha}}{c_{\beta}} H\right]-\frac{m_{u}}{v} \bar{u} u\left[\frac{c_{\alpha}}{s_{\beta}} h+\frac{s_{\alpha}}{s_{\beta}} H\right] \tag{32}
\end{align*}
$$

III. THE 2HDM LIMIT OF THE C2HDM

We consider the real limit of the C2HDM, by taking

$$
\begin{equation*}
\alpha_{2} \rightarrow 0, \quad \alpha_{3} \rightarrow 0 \tag{33}
\end{equation*}
$$

Then the R matrix becomes

$$
R=\left[\begin{array}{ccc}
c_{1} & s_{1} & 0 \tag{34}\\
-s_{1} & c_{1} & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Let us see how this compares with the 2HDM defined in the previous section. We have (as the fields might differ by a sign, we denote in this limit, $h^{\prime}=h_{1}, H^{\prime}=h_{2}, A=h_{3}$),

$$
\begin{equation*}
h^{\prime}=c_{1} \eta_{1}+s_{1} \eta_{2}, \quad H^{\prime}=-s_{1} \eta_{1}+c_{1} \eta_{2}, \quad A=-s_{\beta} \chi_{1}+c_{\beta} \chi_{2} \tag{35}
\end{equation*}
$$

The lagrangian for gauge bosons and Type I is then

$$
\begin{align*}
\mathcal{L} \supset & g M_{W} W^{+} W^{-}\left(c_{1} c_{\beta}+s_{1} s_{\beta}\right) h^{\prime}+g M_{W} W^{+} W^{-}\left(-s_{1} c_{\beta}+c_{1} s_{\beta}\right) H^{\prime} \\
& -\frac{m_{d}}{v}\left[\bar{d} d h^{\prime} \frac{s_{1}}{s_{\beta}}+\bar{d} d H^{\prime} \frac{c_{1}}{s_{\beta}}\right]-\frac{m_{u}}{v}\left[\bar{u} u h^{\prime} \frac{s_{1}}{s_{\beta}}+\bar{u} u H^{\prime} \frac{c_{1}}{s_{\beta}}\right] \\
= & g M_{W} W^{+} W^{-}\left(c_{\beta-\alpha_{1}} h^{\prime}+s_{\beta-\alpha_{1}} H^{\prime}\right) \\
& -\frac{m_{d}}{v} \bar{d} d\left[h^{\prime} \frac{s_{1}}{s_{\beta}}+H^{\prime} \frac{c_{1}}{s_{\beta}}\right]-\frac{m_{u}}{v} \bar{u} u\left[h^{\prime} \frac{s_{1}}{s_{\beta}}+H^{\prime} \frac{c_{1}}{s_{\beta}}\right] \tag{36}
\end{align*}
$$

and for Type II

$$
\begin{align*}
& \mathcal{L} \supset g M_{W} W^{+} W^{-}\left(c_{\beta-\alpha_{1}} h^{\prime}+s_{\beta-\alpha_{1}} H^{\prime}\right) \\
&-\frac{m_{d}}{v} \bar{d} d\left[h^{\prime} \frac{c_{1}}{c_{\beta}}-H^{\prime} \frac{s_{1}}{c_{\beta}}\right]-\frac{m_{u}}{v} \bar{u} u\left[h^{\prime} \frac{s_{1}}{s_{\beta}}+H^{\prime} \frac{c_{1}}{s_{\beta}}\right] \tag{37}
\end{align*}
$$

To make contact we have to satisfy the relations

$$
\begin{align*}
s_{\beta-\alpha} h & =c_{\beta-\alpha_{1}} h^{\prime} \tag{38}\\
c_{\beta-\alpha} H & =s_{\beta-\alpha_{1}} H^{\prime} \tag{39}\\
\frac{c_{\alpha}}{s_{\beta}} h & =\frac{s_{\alpha_{1}}}{s_{\beta}} h^{\prime} \tag{40}\\
\frac{s_{\alpha}}{s_{\beta}} H & =\frac{c_{\alpha_{1}}}{s_{\beta}} H^{\prime} \tag{41}\\
-\frac{s_{\alpha}}{c_{\beta}} h & =\frac{c_{\alpha_{1}}}{c_{\beta}} h^{\prime} \tag{42}\\
\frac{c_{\alpha}}{c_{\beta}} H & =-\frac{s_{\alpha_{1}}}{c_{\beta}} H^{\prime} \tag{43}
\end{align*}
$$

Now these relations can either be solved with $\alpha_{1}=\alpha \pm \pi / 2$. I get for $\alpha_{1}=\alpha+\pi / 2$

$$
\begin{equation*}
c_{\beta-\alpha_{1}}=s_{\beta-\alpha}, s_{\beta-\alpha_{1}}=-c_{\beta-\alpha}, c_{1}=-s_{\alpha}, s_{1}=c_{\alpha} \tag{45}
\end{equation*}
$$

and therefore $h^{\prime}=h, H^{\prime}=-H$. On the other hand for $\alpha_{1}=\alpha-\pi / 2$, I get

$$
\begin{equation*}
c_{\beta-\alpha_{1}}=-s_{\beta-\alpha}, s_{\beta-\alpha_{1}}=c_{\beta-\alpha}, c_{1}=s_{\alpha}, s_{1}=-c_{\alpha} \tag{46}
\end{equation*}
$$

and therefore $h^{\prime}=-h, H^{\prime}=H$.
[1] M. P. Bento, H. E. Haber, J. C. Romão and J. P. Silva, 1708.09408.
[2] D. Fontes et al., JHEP 02, 073 (2018), [1711.09419].
[3] G. C. Branco et al., Phys. Rept. 516, 1 (2012), [1106.0034].
[4] J. C. Romao and J. P. Silva, Int. J. Mod. Phys. A27, 1230025 (2012), [1209.6213].

[^0]: *Electronic address: jorge.romao@tecnico.ulisboa.pt

