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In this note we review the techniques used in Quantum Field Theory in a non trivial example,
the Higgs boson production at a linear collider through the process e−e+ → ZZH . The emphasis is
in the use of the package FeynCalc for Mathematica and both the trace techniques and the helicity
amplitudes method are discussed.

I. INTRODUCTION

It is always a problem when the students want to attack a more complex problem that needs large trace calculations
and numerical integrations. In normal textbooks this part it is normally not covered and, at most, is left as an exercise.
My experience is that, for the first time, the students need some help. I will try to cover in this article all the details
of a real calculation, from the first stages to the final plots for the cross section. To this end we pick a non-trivial
problem, the Higgs boson production at a linear collider in association with a pair of Z bosons [1], that is,

e−e+ → ZZH . (1)

This corresponds, in the limit of neglecting the electron mass, to the following Feynman diagrams,
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Figure 1: Feynman diagrams for e−e+ → ZZH .
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II. THE AMPLITUDES

We start by noting that the amplitudes can be written in the following form:

Mi =

(

g

cos θW

)3

v(p2) Γi u(p1) (2)

where

Γ1 = ǫµ(q1)ǫ
ν(q2) γ

ν (gV − gAγ5) (−p/2 + q/2)γ
µ (gV − gAγ5)

1

De(1)DZ(1)

Γ2 = ǫµ(q1)ǫ
ν(q2) γ

ν (gV − gAγ5) (p/1 − q/1)γ
µ (gV − gAγ5)

1

De(2)DZ(2)

Γ3 = ǫµ(q1)ǫ
ν(q2) γ

µ (gV − gAγ5) (p/1 − q/2)γ
ν (gV − gAγ5)

1

De(3)DZ(3)

Γ4 = ǫµ(q1)ǫ
ν(q2) γ

µ (gV − gAγ5) (p/2 + q/1)γ
ν (gV − gAγ5)

1

De(4)DZ(4)
(3)

The denominators of the propagators are:

DZ(1) = DZ(3) = (q1 + k)2 −M2
Z + iMZΓZ (4)

DZ(2) = DZ(4) = (q2 + k)2 −M2
Z + iMZΓZ (5)

De(1) = (−p2 + q2)
2 ; De(2) = (p1 − q1)

2 (6)

De(3) = (p1 − q2)
2 ; De(4) = (−p2 + q1)

2 (7)

We should note that in arriving at these expressions we took me = 0. It can be shown that the terms in the
numerator of the propagator of the Z proportional to the momentum exactly cancel, and therefore we have put them
to zero from the start.

III. THE SPIN AVERAGED |M |2

The normal technique is to transform the spin averaged |M |2 into traces. We get

|M |2 =
1

4

(

g

cos θW

)6

M2
Z

4
∑

i=1

4
∑

j=1

Tr
[

p/2 Γ
µν
i p/1 Γ

βα

j

]

(

−gµα −
q1µq1α
M2

Z

)(

−gνβ −
q2νq2β
M2

Z

)

(8)

where

Γi = Γαβ
i ǫα(q1)ǫ

β(q2) ; Γ
βα

i = γ0
(

Γαβ
i

)†

γ0 (9)

These traces are not so easy to evaluate because they are traces of eight Dirac γ matrices. The best is to resort to
automatic evaluation using some algebraic program. Nowadays, it seems to me that the more interesting approach is
to use the package FeynCalc [2, 3] for Mathematica. In the appendix it is shown an example of a program that does
that for the first diagram. It should be easy to generalize to all the diagrams including interference terms. For the
following it is convenient to introduce the following notation

|M |2 ≡ 1

4

(

g

cos θW

)6 √
2π4

M2
Z

∑

i,j

Yij

= 64π4 G3
FM

4
Z

∑

i,j

Yij (10)

where the Yij are dimensionless and defined by,

Yij =
M4

Z√
2π4

Tr
[

p/2 Γ
µν
i p/1 Γ

βα

j

]

(

−gµα −
q1µq1α
M2

Z

)(

−gνβ −
q2νq2β
M2

Z

)

(11)
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IV. THE CROSS SECTION

We choose the kinematics in the CM frame shown in Fig 2. The cross section is then given by (there is an extra
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Figure 2: Kinematics

factor of 1/2 because there are two identical particles in the final state),

dσ =
1

(2π)5
1

2s

1

2
|M |2 δ4(p1 + p2 − pH − q1 − q2)

d3pH
2EH

d3q1
2q01

d3q2
2q02

(12)

Using Eq. (10) we can write then,

dσ

dEHd cos θ
=

G3
FM

4
Z pH
s

∫ 2π

0

dϕ

2π

∫

d3q1
2q01

d3q2
2q02

δ4(p1 + p2 − pH − q1 − q2)
∑

ij

Yij . (13)

To proceed we must do the integrations over the two Z bosons. For this we evaluate the following quantities

Xij =

∫

d3q1
2q01

d3q2
2q02

δ4(∆− q1 − q2)Yij . (14)

where ∆ = p1+p2−pH . These quantities are Lorentz invariant and can be evaluated in any reference frame. However
the calculation it is particularly simple in the CM frame of the two Z bosons. In that frame

∆ = (m12, 0, 0, 0) (15)

where m2
12 = (q1 + q2)

2 = (p1 + p2 − pH)2 is the invariant mass of the pair. We then get (q∗1 are the vectors in the
CM frame of the pair)

Xij =
1

4

∫

d3q∗1
q∗01 q∗02

δ(m12 − q∗01 − q∗02 )Yij

=
1

4

∫ |~q∗1|dq∗01 dΩ∗
1

q∗01
δ(m12 − 2q∗01 )Yij

=
1

8

√

1− 4M2
Z

m2
12

∫

dΩ∗
1 Yij (16)

and the final form for the cross section is

σ =
∑

ij

σij (17)

where

σij =
G3

FM
4
Z

s

∫ Emax

H

MH

dEH

√

E2
H −M2

H

∫ π

0

dθ sin θ

∫ π

0

dθ∗ sin θ∗
∫ 2π

0

dϕ∗ 1

8

√

1− 4M2
Z

m2
12

Yij (18)

and we have already used the fact that the final result does not depend on the azimuthal angle ϕ of the H and have
done that integration. It is crucial to understand the meaning of the angles in the previous expression. The angle θ
is the scattering angle of the Higgs boson in the CM of the e−e+ system (the lab frame), while the angles (θ∗, ϕ∗) are
the angles of one of the Z bosons (the one with momentum q1) in the CM frame of the pair of Z bosons. It is in these
variables that the integrations are simple to set, but of course, there remains the difficulty of relating the 4-momenta
in that frame to the lab frame. We will discuss in generality this question in the following section.
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V. KINEMATICS: HOW TO RELATE DIFFERENT REFERENCE FRAMES

As we have seen in the previous section we have to relate the coordinates of 4-vectors in different reference frames.
The best way is to do this in steps, using in sequence elementary rotations and boosts. We always perform boosts
along the z axis, so the relevant Lorentz transformation is

x = Boostz(β) · x′ (19)

where x(x′) are the coordinates in the reference frame S(S′), respectively, and the reference frame S′ moves with
relative speed β along the z axis with respect to S. The explicit form of the matrix Boostz(β) is

Boostz(β) =







γ 0 0 γβ
0 1 0 0
0 0 1 0
γβ 0 0 γ






(20)

For rotations, we can always use a sequence of rotations along the coordinate axis. So the relevant rotations, always
written with the convention

x = Rotx(θ) · x′ ; x = Roty(θ) · x′ ; x = Rotz(θ) · x′ (21)

are

Rotx(θ) =







1 0 0 0
0 1 0 0
0 0 cos θ sin θ
0 0 − sin θ cos θ






Roty(θ) =







1 0 0 0
0 cos θ 0 sin θ
0 0 1 0
0 − sin θ 0 cos θ






(22)

and

Rotz(θ) =







1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1






(23)

Now, if we look at the kinematics shown in Fig. 2, we can easily realize that the correct transformation laws for q∗1
and q∗2 in the CM frame of the Z boson pair are,

q1,2 = Roty(θ + π) ·Boostz(β) · q∗1,2 (24)

where

β =

√

1− 1

γ2

γ =
E12

m12

(25)

m12 =
√

(q1 + q2)2 =
√

s+M2
H − 2

√
sEH

E12 =
s+m2

12 −M2
H

2
√
s

Taking in account that






















q∗01 = 1
2
m12

q∗11 = qCM
12 sin θ∗ cosϕ∗

q∗21 = qCM
12 sin θ∗ sinϕ∗

q∗31 = qCM
12 cos θ∗























q∗02 = 1
2
m12

q∗12 = −qCM
12 sin θ∗ cosϕ∗

q∗22 = −qCM
12 sin θ∗ sinϕ∗

q∗32 = −qCM
12 cos θ∗

(26)

where

qCM
12 =

√

m2
12

4
−M2

Z (27)

we can now use Eq. (24) to obtain q1 and q2 in the lab frame, as a function of (EH , θ, θ∗, ϕ∗).
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VI. NUMERICAL INTEGRATION

With the kinematics completely implemented, we have to perform the integrations and obtain the cross sections. In
few problems can the integrals that appear in the evaluation of cross sections be done analytically. Most of the time
we have to revert to numerical methods to evaluate the integrals. There are many ways to do evaluate the integrals
numerically. A good library is CUBA package[4]. It can be linked either with C/C++ or with Fortran programs. It
has several methods with the same calling structure, so that one can substitute one method for another and check
for accuracy. The manual comes with the package. I have done a gaussian integration subroutine in Fortran called
gauss.f that uses the same calling conventions, and therefore can also be tested in the same way. The codes for these
programs can be found in a Web page that I have created [5].
Using these methods one should be able to reproduce the final result it is shown in Fig. 3 and is in agreement with

Ref.[1].
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Figure 3: σ(s) for MH = 90, 120, 150 GeV.

VII. THE HELICITY AMPLITUDES TECHNIQUE

The example done in the previous sections requires already quite complex calculations. As the number of diagrams,
N , grow the difficulty of the calculations grows as N2 making a process with a large number of diagrams hard to
handle. There is another way of making the calculations, where the complexity only grows linearly with N . This is
the helicity amplitude method. This method is specially simple in the case of massless fermions and photons, but it
can be generalized to the case of massive fermions and massive gauge bosons. As we will see the price to pay there
is to have to integrate over more variables, but if one uses Monte Carlo methods, the efficiency does not change very
much with the number of integrations.

A. Spinor products

In this section we will follow the work done by Kleiss and collaborators [6–8]. Let us start by considering massless
fermions. Then the spinors can be taken as eigenstates of helicity, and there is no distinction between u and v spinors.
We will denote these spinors by u±(p) with p2 = 0. It is convenient to define the left and right projectors

γ± =
1± γ5

2
(28)
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Then our spinors satisfy

γ+p/ = u+(p)u+(p) ; γ−p/ = u−(p)u−(p) ; p/ = u+(p)u+(p) + u−(p)u−(p) (29)

With these spinors we can form two independent spinor products [7],

s(p1, p2) = u+(p1)u−(p2) = −s(p2, p1)

t(p1, p2) = u−(p1)u+(p2) = s∗(p2, p1) (30)

with the normalization

|s(p1, p2)|2 = 2p1 · p2 (31)

In order to perform explicitly calculations it is necessary to have a formula for these spinor products. This is given
by[6],

s(p1, p2) =
(

p21 + ip31
)

√

p02 − p12
p01 − p11

−
(

p22 + ip32
)

√

p01 − p11
p02 − p12

(32)

and using it it is trivial to verify Eq. (31). A very important relation is (σ = ±),

uσ(p1)γµuσ(p2) γ
µ = 2uσ(p2)uσ(p1) + 2u−σ(p1)u−σ(p2) (33)

which shows that the spinors are normalized in such a way that

uσ(p)γµuσ(p) = 2pµ . (34)

Using Eq. (29) one can show the following useful relations:

u+(p1)p/2p/3 · · · p/2n−1u−(p2n) = s(p1, p2)s
∗(p3, p2)s(p3, p4) · · · s(p2n−1, p2n)

u−(p1)p/2p/3 · · · p/2n−1u+(p2n) = s∗(p2, p1)s(p2, p3)s
∗(p4, p3) · · · s∗(p2n, p2n−1)

u+(p1)p/2p/3 · · · p/2nu+(p2n+1) = s(p1, p2)s
∗(p3, p2)s(p3, p4) · · · s∗(p2n+1, p2n)

u−(p1)p/2p/3 · · · p/2nu−(p2n+1) = s∗(p2, p1)s(p2, p3)s
∗(p4, p3) · · · s(p2n, p2n+1) (35)

where pi are massless momenta. When we have two fermion lines connected by the contraction of a Dirac γ matrix,
then one has to use Eq. (33). For instance,

u+(p1)γµu+(p2)u+(p3)γ
µu+(p4) = 2s(p3, p1)s

∗(p4, p2) . (36)

Using the above relations one can transform all the amplitudes involving massless fermions in terms of spinor products.
As an example, let us evaluate the Bhabha cross section in QED in the limit of massless electrons (high energy

limit). We have the two diagrams of Fig 4, corresponding to the amplitudes,
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Figure 4: Diagrams for Bhabha scattering

M1 =
e2

t
u(p3)γ

µu(p1)v(p2)γµv(p4)

M2 = −e2

s
v(p2)γ

µu(p1)u(p3)γµv(p4) (37)
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with s = (p1 + p2)
2, t = (p1 − p3)

2. One normally now goes for the spin averaged amplitude squared using the trace
technique and obtaining easily,

1

4

∑

spins

|M1 +M2|2 = 2e4
[

t2 + (s+ t)2

s2
+

s2 + (s+ t)2

t2
+ 2

(s+ t)2

st

]

(38)

Let us now use the helicity amplitude technique to recover the same result. First we start by noticing that from the 16
possible helicity amplitudes M(σ1σ2;σ3σ4) only 6 are non zero. These are M(++;++), M(−−;−−), M(+−; +−),
M(−+;−+), M(++;−−) and M(−−; ++). Using the compact notation

sij = s(pi, pj) (39)

and using relations of the type of Eq. (36), we get

M(++;++) = M1(++;++) +M2(++;++) = 2e2
[

s23s
∗
41

t
− s32s

∗
41

s

]

(40)

M(−−;−−) = M1(−−;−−) +M2(−−;−−) = 2e2
[

s∗32s14
t

− s∗23s14
s

]

(41)

M(+−; +−) = M1(+−; +−) = 2e2
s∗12s34

t
(42)

M(−+;−+) = M1(−+;−+) = 2e2
s21s

∗
43

t
(43)

M(++;−−) = M2(++;−) = −2e2
s∗13s24

s
(44)

M(−−; ++) = M2(−−; ++) = −2e2
s31s

∗
42

s
(45)

Now

|M |2 =
1

4

[

|M(++;++)|2 + |M(−−;−−)|2 + |M(+−; +−)|2

+|M(−+;−+)|2 + |M(++;−−)|2 + |M(−−; ++)|2
]

= e4
[

2
|s23|2|s41|2

t2
+ 2

|s32|2|s41|2
s2

+ 4
|s23|2|s41|2

st

2
|s12|2|s34|2

t2
+ 2

|s13|2|s24|2
s2

]

(46)

and using

|s23|2 = −u = t+ s = |s41|2

|s12|2 = s = |s34|2

|s13|2 = t = |s24|2 (47)

we finally recover Eq. (38). It should be noted that for this simple problem there is probably no gain in using this
technique instead of just taking the traces. However in more complex problems, like e−e+ → e−e+e−e+ the gain is
enormous. Also in these cases one normally calculates the amplitudes numerically as complex numbers, using Eq.(32),
and then takes the absolute value, without having to transform them in scalar products.

B. Polarizations for massless gauge bosons

In the previous section we only considered gauge bosons in the internal lines. What happens if we have gauge
bosons in the external lines? In this section we will show, first for massless gauge bosons (photons), how to handle
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the sum over polarizations. We want to implement, using massless spinors, the result

∑

λ

ǫµ(k, λ)ǫ∗µ(k, λ) = −gµν + terms proportional to k. (48)

where the terms proportional to k can be neglected because of gauge invariance. Following Kleiss[7, 8] this can be
done with the identification

ǫµ(k, λ) =
1

(4k · p)1/2 uλ(k)γ
µuλ(p) (49)

where p is any light-like 4-vector not proportional to k. As this polarization vector will always appear contracted with
a γµ matrix we can use Eq. (33) to write,

ǫ/(k, λ) = 2uλ(p)uλ(k) + 2u−λ(k)u−λ(p) (50)

which shows that we can indeed use for the polarization vectors massless spinors. Before we proceed with a simple
example let us show that Eq. (49) and Eq. (48) are indeed consistent with each other. We have (N =

√
4k · p),

∑

λ

ǫµ(k, λ)ǫ∗ν(k, λ) =
1

N2

[

u+(k)γ
µu+(p)u+(p)γ

νu+(k) + u−(k)γ
µu−(p)u−(p)γ

νu−(k)

]

=
1

N2

(

Tr [γµp/γνγ+k/] + Tr [γµp/γνγ−k/]

)

= −gµν +
pµkν + pνkµ

k · p (51)

As an example of this technique we consider the process e−e+ → γγ. We have two diagrams as shown in Fig. 5. The

p1p1

p2p2

k1k1

k2k2

Figure 5: Diagrams for e−e+ → γγ

corresponding amplitudes are given by

M1 = e2 v(p2)ǫ/(k2) (p/1 − k/1)ǫ/(k1)u(p1)
1

t

M2 = e2 v(p2)ǫ/(k1) (p/1 − k/2)ǫ/(k2)u(p1)
1

u

(52)

where t = (p1 − k1)
2 and u = (p1 − k2)

2. It is not difficult to show, using the usual trace techniques, that the
interference vanishes and that we obtain,

∑

spins

∑

λ1,λ2

|M |2 = 8e4
u

t
+ 8e4

t

u
= 8e4

u2 + t2

ut
(53)

Now let us use the helicity amplitudes technique to reproduce the same result. By looking at Eq. (52) one imme-
diately realizes that the electron and the positron must have the same helicity. For the photons it is more subtle.
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We are free to choose the reference vector in the polarization vector, Eq. (49), in order to simplify the calculation.
The only restriction is that in ǫ(k, λ) the reference vector p is not proportional to k. We can even make different
choices for different diagrams. For instance, if we choose for M1 the reference p1 for ǫ(k1, λ) and p2 for ǫ(k2, λ) and for
M2 the reverse choice, that is, p2 for ǫ(k1, λ) and p1 for ǫ(k2, λ), we immediately realize that the only non vanishing
amplitudes are,

M(++;−+) = 4e2
s(p1, k1)s(p2, k2)s

∗(k1, p2)s
∗(p1, k1)

t

1

N(p1, k1)2

= 2e2
s(p2, k2)s

∗(k1, p2)

t

M(++;+−) = 4e2
s(p1, k2)s(p2, k1)s

∗(k2, p2)s
∗(p1, k2)

u

1

N(p1, k2)2

= 2e2
s(p2, k1)s

∗(k2, p2)

u
(54)

M(−−; +−) = 4e2
s(p1, k1)s(p2, k1)s

∗(k2, p2)s
∗(p1, k1)

t

1

N(p1, k1)2

= 2e2
s(p2, k1)s

∗(k2, p2)

t

M(−−;−+) = 4e2
s(p1, k2)s(p2, k2)s

∗(k1, p2)s
∗(p1, k2)

u

1

N(p1, k2)2

= 2e2
s(p2, k2)s

∗(k1, p2)

u

From here we obtain

∑

σ1,σ2,λ1,λ2

|M(σ1, σ2;λ1, λ2)|2 = 8e4
u

t
+ 8e4

u

t
= 8e4

u2 + t2

ut
(55)

in agreement with Eq. (53).
If we had chosen another reference frame, the result would be the same but it would be more difficult to realize it.

For instance, suppose that we take the same convention for M2 as we did for M1. Then we can easily show that,

M(++;++) = 0

M(++;+−) = 4e2
s(p2, k2)s(p2, k1)s

∗(k2, p1)s
∗(p1, k2)

u

1

N(p1, k1)2

M(++;−+) = 4e2
s(p1, k2)s(p2, p1)s

∗(p1, k1)s
∗(p1, p2)

u

1

N(p1, k1)2

+4e2
s(p1, k1)s(p2, k2)s

∗(k1, p2)s
∗(p1, k1)

t

1

N(p1, k1)2

M(++;−−) = 4e2
s(p1, p2)s(p2, p1)s

∗(p1, k1)s
∗(p1, k2)

u

1

N(p1, k1)2

+4e2
s(p2, k2)s(p2, p1)s

∗(k2, k1)s
∗(p1, k2)

u

1

N(p1, k1)2
(56)

M(−−; ++) = M(++;−−)∗

M(−−; +−) = M(++;−+)∗

M(−−;−+) = M(++;+−)∗

M(−−;−−) = 0

These expressions look different from those in Eq. (54). However choosing a given kinematics and using Eq. (32)
one can show that they give the same result. For instance in Eq. (54) the amplitude M(++;−−) vanishes while in
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Eq. (56) it does not seem to vanish. However, choosing the kinematics

p1 = (
√
s/2, 0, 0,

√
s/2)

p2 = (
√
s/2, 0, 0,−

√
s/2)

k1 = (
√
s/2, 0,

√
s/2 sin θ,

√
s/2 cos θ) (57)

k2 = (
√
s/2, 0,−

√
s/2 sin θ,−

√
s/2 cos θ)

from Eq. (32) we obtain

s(p1, p2) = i 2

√
s

2

s(p1, k1) = i

√
s

2
− i

√
s

2
e−iθ

s(p1, k2) = i

√
s

2
+ i

√
s

2
e−iθ

s(p2, k1) = −i

√
s

2
− i

√
s

2
e−iθ (58)

s(p2, k2) = −i

√
s

2
+ i

√
s

2
e−iθ

s(k2, k1) = −i 2

√
s

2
e−iθ

Using these explicit expressions one can show that

s(p1, p2)s
∗(p1, k1) + s(p2, k2)s

∗(k2, k1) =

=

(√
s

2

)2
[

2i
(

−i+ ieiθ
)

+
(

−i+ ie−iθ
) (

2 ieiθ
)]

(59)

=

(√
s

2

)2
(

2− 2eiθ + 2eiθ − 2
)

= 0

which is needed to verify that M(++;−−) in Eq. (56) vanishes identically. In a similar way one can verify that
the expressions in Eq. (56) are equivalent to those in Eq. (54). To summarize, one can choose the more convenient
reference frame to simplify the calculations.

C. Polarizations for massive gauge bosons

In the previous section we learned how to use massless spinors to describe the polarization vectors of massless
gauge bosons (photons). However, for calculations within the Standard Model we also need to known how to describe
massive gauge bosons, like the W and Z. The most important property that we have to retain is the polarization
sum, that is,

∑

λ

ǫµ(q, λ)ǫ∗ν(q, λ) = −gµν +
qµqν

M2
V

(60)

where q2 = M2
V and V = W,Z. This can be achieved if we make the assignment [7],

ǫµ(q) → aµ = u−(r1)γ
µu−(r2) (61)

where r1,2 are two massless 4-vectors such that

q = r1 + r2 (62)

and make the correspondence,

∑

λ

ǫµ(q, λ)ǫ∗ν(q, λ) → 3

8πM2
V

∫

dΩ aµa∗ν (63)
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where dΩ is the solid angle of one of the 4-vectors, say r1, in the rest frame of the gauge boson. Let us show that this
is indeed the case. We have,

∫

dΩ aµa∗ν =

∫

dΩ u−(r1)γ
µu−(r2)u−(r2)γ

µu−(r1)

=

∫

dΩ Tr [γ−r/1γ
µγ−r/2γ

ν]

=

∫

dΩ (2rµ1 r
ν
2 + 2rµ2 r

ν
1 − 2r1 · r2gµν) (64)

This last integral can be easily done by realizing that it can only depend on the metric tensor and on the 4-vector q.
Using q2 = 2r1 · r2 = M2

V we have

Iµν =

∫

dΩ
(

2rµ1 r
ν
2 + 2rµ2 r

ν
1 −M2

V gµν
)

= M2
V g

µνA+ qµqνB (65)

A and B can be obtained by multiplying Eq. (65) by gµν and by qµqν and using the fact that 2q · r1 = q2 = M2
V . We

get,

4A+B = −8π

A+B = 0 (66)

which gives A = −B = −8π/3. We therefore obtain

∫

dΩ aµa∗ν =
8πM2

V

3

(

−gµν +
qµqν

M2
V

)

(67)

in agreement with Eq. (63). In the next section we will give an example of the use of this technique for massive gauge
bosons.

VIII. HELICITY AMPLITUDES FOR e−e+ → ZZH

In this section we will use the process e−e+ → ZZH as an example of the helicity amplitudes technique.

A. The Helicity Amplitudes

The amplitudes corresponding to the four diagrams of Fig. 1 are,

M1 =

(

g

cos θW

)3

MZ u(p2)ǫ/(q2) (g−γ−+ g+γ+) (−p/2 + q/2) ǫ/(q1) (g−γ−+ g+γ+)u(p1)
1

De(1)DZ(1)

M2 =

(

g

cos θW

)3

MZ u(p2)ǫ/(q2) (g−γ−+ g+γ+) (p/1 − q/1) ǫ/(q1) (g−γ−+ g+γ+)u(p1)
1

De(2)DZ(2)

M3 =

(

g

cos θW

)3

MZ u(p2)ǫ/(q1) (g−γ−+ g+γ+) (p/1 − q/2) ǫ/(q2) (g−γ−+ g+γ+)u(p1)
1

De(3)DZ(3)
(68)

M4 =

(

g

cos θW

)3

MZ u(p2)ǫ/(q1) (g−γ−+ g+γ+) (−p/2 + q/1) ǫ/(q2) (g−γ−+ g+γ+)u(p1)
1

De(4)DZ(4)

where

g− = gV + gA ; g+ = gV − gA (69)
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and the denominators were given in Eq. (4). From Eq. (68) one immediately realizes that the electron and the positron
must have the same helicity. We use Eq. (61) and Eq. (33) to write,

ǫ/(q2) = 2u−(w2)u−(w1) + 2u+(w1)u+(w2)

ǫ/(q1) = 2u−(r2)u−(r1) + 2u+(r1)u+(r2) (70)

where the massless 4-vectors w1,2 and r1,2 satisfy

q1 = r1 + r2 ; q2 = w1 + w2 (71)

Then, the non-vanishing amplitudes M(σ1σ2) are:

M1(++) =

(

g

cos θW

)3

MZ
4g2+

De(1)DZ(1)

[

− s(p2, w2)s
∗(p2, w1)s(p2, r2)s

∗(p1, r1)

+ s(p2, w2)s
∗(w2, w1)s(w2, r2)s

∗(p1, r1)
]

M1(−−) =

(

g

cos θW

)3

MZ
4g2−

De(1)DZ(1)

[

− s∗(w1, p2)s(w2, p2)s
∗(r1, p2)s(r2, p1)

+ s∗(w1, p2)s(w2, w1)s
∗(r1, w1)s(r2, p1)

]

M2(++) =

(

g

cos θW

)3

MZ
4g2+

De(2)DZ(2)

[

+ s(p1, r2)s(p2, w2)s
∗p1, r1)s

∗(p1, w1)

− s(p2, w2)s(r1, r2)s
∗(p1, r1)s

∗(r1, w1)
]

M2(−−) =

(

g

cos θW

)3

MZ
4g2−

De(2)DZ(2)

[

+ s(r2, p1)s(w2, p1)s
∗(r1, p1)s

∗(w1, p2)

− s(r2, p1)s(w2, r2)s
∗(r1, r2)s

∗(w1, p2)
]

(72)

M3(++) =

(

g

cos θW

)3

MZ
4g2+

De(3)DZ(3)

[

+ s(p1, w2)s(p2, r2)s
∗(p1, r1)s

∗(p1, w1)

− s(p2, r2)s(w1, w2)s
∗(p1, w1)s

∗(w1, r1)
]

M3(−−) =

(

g

cos θW

)3

MZ
4g2−

De(3)DZ(3)

[

+ s(r2, p1)s(w2, p1)s
∗(r1, p2)s

∗(w1, p1)

− s(r2, w2)s(w2, p1)s
∗(r1, p2)s

∗(w1, w2)
]

M4(++) =

(

g

cos θW

)3

MZ
4g2+

De(4)DZ(4)

[

+ s(p2, r2)s(r2, w2)s
∗(p1, w1)s

∗(r2, r1)

− s(p2, r2)s(p2, w2)s
∗(p1, w1)s

∗(p2, r1)
]

M4(−−) =

(

g

cos θW

)3

MZ
4g2−

De(4)DZ(4)

[

+ s(r2, r1)s(w2, p1)s
∗(r1, p2)s

∗(w1, r1)

− s(r2, p2)s(w2, p1)s
∗(r1, p2)s

∗(w1, p2)
]

Although these expressions are not too difficult to obtain, one can use the FeynCalc program to evaluate them. In
the Appendix A2 we show a program that evaluates the amplitudes in terms of the spinor products. The only point
worth noticing is that from the definitions, Eq. (30), we can obtain

u(p1)u(p2) = s(p1, p2) + s∗(p2, p1)

u(p1)γ5u(p2) = −s(p1, p2) + s∗(p2, p1) (73)

which allows to write the spinors in terms of spinor products.
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B. The Cross Section

To write the expression for the cross section we start by noticing that

|M |2 =
1

4

∑

σi,σj

∑

λ1,λ2

|M(σ1, σ2, λ1, λ2)|2

=
1

4

(

3

8πM2
Z

)2 ∫

dΩ~r1

∫

dΩ~w1

∑

σi,σj

|M(σ1σ2)|2 (74)

= 64π4G3
FM

4
Z

(

9

64π6
√
2

)
∫

dΩ~r1

∫

dΩ~w1

∑

σi,σj

|Y (σ1σ2)|2

where we have defined the reduced amplitude, Y (σ1σ2), by

M(σ1σ2) ≡
(

g

cos θW

)3

MZ Y (σ1σ2) (75)

Now, using the results of section IV, we can write,

σ =
G3

FM
4
Z

s

∫ Emax

H

MH

dEH

√

E2
H −M2

H

∫ π

0

dθ sin θ

∫ π

0

dθ∗ sin θ∗
∫ 2π

0

dϕ∗

∫

dΩ~r1

∫

dΩ~w1

√

1− 4M2
Z

m2
12

(

9

512π6
√
2

)

∑

σi,σj

|Y (σ1σ2)|2 (76)

The price to pay in this method is the increase in the number of integrations. Now, instead of the four integrations
in Eq. (18), we have to do eight integrations. This can be a problem if we use the Gauss method, but if instead we
use a Monte Carlo integration method, the increase in complexity is acceptable. The only non trivial problem is to
write all the 4-vectors in the center of mass frame. This has been done in section V for the 4-vectors q1, q2, but we
also have to be able to write the massless 4-vectors ri, wi in that frame. This will explained in the next section.

C. The Kinematics

The basic kinematics was explained in section V. The expressions for the 4-vectors qi in the center of mass frame
as still given by Eq. (26). For the 4-vectors ri and wi we have,

r1,2=Roty(θ + π) ·Boostz(β) ·Rotz(ϕ
∗) ·Roty(θ

∗) ·Boostz(β1) r
CM
1,2

w1,2=Roty(θ + π) ·Boostz(β) ·Rotz(ϕ
∗ + π) ·Roty(π − θ∗) ·Boostz(β1) w

CM
1,2 (77)

where

γ1 =
m12

2MZ
, β1 =

√

1− 1

γ2
1

(78)

and


























rCM 0
1,2 = 1

2
mZ

rCM 1
1,2 = ± 1

2
mZ sin θr cosϕr

rCM 2
1,2 = ± 1

2
mZ sin θr sinϕr

rCM 3
1,2 = ± 1

2
mZ cos θr



























wCM0
1,2 = 1

2
mZ

wCM1
1,2 = ± 1

2
mZ sin θw cosϕw

wCM2
1,2 = ± 1

2
mZ sin θw sinϕw

wCM3
1,2 = ± 1

2
mZ cos θw

(79)

Using Eq. (79) and Eq. (77) it is now straightforward to express ri and wi in the center of mass frame and to perform
the integrations in Eq. (76).
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IX. CONCLUSIONS

In this note we review the techniques used in Quantum Field Theory in a non trivial example, the Higgs boson
production at a linear collider through the process e−e+ → ZZH . The emphasis is in the use of the package FeynCalc
for Mathematica and both the trace techniques and the helicity amplitudes method are discussed.

Appendix A: INPUT FOR FEYNCALC

1. Input for the Traces Method

(* Begin Program *)
(* Definitions *)

dm[mu_]:=DiracMatrix[mu]
dm[5]:=DiracMatrix[5]

ds[p_]:=DiracSlash[p]
mt[mu_,nu_]:=MetricTensor[mu,nu]

fv[p_,mu_]:=FourVector[p,mu]
epsilon[a_,b_,c_,d_]:=LeviCivita[a,b,c,d]

id[n_]:=IdentityMatrix[n]
sp[p_,q_]:=ScalarProduct[p,q]

kin={sp[p1,p1]->0,sp[p2,p2]->0,sp[q1,q1]->MZ^2,sp[q2,q2]->MZ^2,\
sp[p1,p2]->rs^2/2}

NumProp[p_,m_]:=(ds[p] + m )
Zcoup:= (gv - ga dm[5])

SumPol[mu_,nu_,k_,M_]:=(-mt[mu,nu]+fv[k,mu] fv[k,nu]/M^2)

Gamma1= dm[nu] . Zcoup . NumProp[-p2+q2,0] . dm[mu] . Zcoup
Gamma1Bar= dm[a] . Zcoup . NumProp[-p2+q2,0] . dm[b] . Zcoup

Line11=ds[p2] . Gamma1 . ds[p1] . Gamma1Bar

ans11:= Simplify[Contract[SumPol[mu,a,q1,MZ] SumPol[nu,b,q2,MZ] \
Tr[Line11]] DE[1]^2 DZ[1] DZc[1] /. kin ]

DotPro1={sp[p1,q1]->dot[p1,q1],sp[p1,q2]->dot[p1,q2],sp[p2,q1]->dot[p2,q1]}

DotPro2={sp[p2,q2]->dot[p2,q2],sp[q1,q2]->dot[q1,q2]}
DotProducts=Flatten[{DotPro1,DotPro2}]

PropZ1={DZ[1]->(MH^2+2*dot[q1,k] -I MZ GZ)/((MH^2+2*dot[q1,k])^2+(MZ*GZ)^2)}

PropZ1c={DZc[1]->(MH^2+2*dot[q1,k] +I MZ GZ)/((MH^2+2*dot[q1,k])^2+(MZ*GZ)^2)}
PropZ2={DZ[2]->(MH^2+2*dot[q2,k] -I MZ GZ)/((MH^2+2*dot[q2,k])^2+(MZ*GZ)^2)}

PropZ2c={DZc[2]->(MH^2+2*dot[q2,k] +I MZ GZ)/((MH^2+2*dot[q2,k])^2+(MZ*GZ)^2)}
PropZ=Flatten[{PropZ1,PropZ1c,PropZ2,PropZ2c}

PropE1={DE[1]->1/(MZ^2-2*dot[p2,q2]),DE[2]->1/(MZ^2-2*dot[p1,q1])}

PropE2={DE[3]->1/(MZ^2-2*dot[p1,q2]),DE[4]->1/(MZ^2-2*dot[p2,q1])}
PropE=Flatten[{PropE1,PropE2}]

simp=Flatten[{kin,DotProducts,PropZ,PropE]

res11= Simplify[Expand[ans11 /. simp]]

(* End Program *)
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2. Input for the Helicity Amplitudes Method

(* Begin Program *)

(* Definitions *)
dp[s_]:= (1 + s DiracMatrix[5])/2
U[p_,s_]:= dp[s] . Spinor[p,0]

UBar[p_,s_]:= SpinorUBar[p,0] . dp[-s]
Myds[p_] := U[p,1] UBar[p,1] + U[p,-1] UBar[p,-1]

PolS[k_,p_,l_]:= 2 ( U[p,l] UBar[k,l] ) + 2 ( U[k,-l] UBar[p,-l] )
PolSV[k_,r1_,r2_]:= PolS[r1,r2,-1]

gvga= gm dp[-1] + gp dp[1]

(* The amplitudes *)

M1[s1_,s2_]:=UBar[p2,s2] . PolSV[q2,w1,w2] . gvga . \
(-Myds[p2]+Myds[w1]+Myds[w2]) . PolSV[q1,r1,r2] . gvga . U[p1,s1]

res1[s1_,s2_]:=DiracSimplify[DotSimplify[M1[s1,s2]]]/D1

M2[s1_,s2_]:=UBar[p2,s2] . PolSV[q2,w1,w2] . gvga . \
(Myds[p1]-Myds[r1]-Myds[r2]) . PolSV[q1,r1,r2] . gvga . U[p1,s1]

res2[s1_,s2_]:=DiracSimplify[DotSimplify[M2[s1,s2]]]/D2

M3[s1_,s2_]:=UBar[p2,s2] . PolSV[q1,r1,r2] . gvga . \
(Myds[p1]-Myds[w1]-Myds[w2]) . PolSV[q2,w1,w2] . gvga . U[p1,s1]
res3[s1_,s2_]:=DiracSimplify[DotSimplify[M3[s1,s2]]]/D3

M4[s1_,s2_]:=UBar[p2,s2] . PolSV[q1,r1,r2] . gvga . \

(-Myds[p2]+Myds[r1]+Myds[r2]) . PolSV[q2,w1,w2] . gvga . U[p1,s1]
res4[s1_,s2_]:=DiracSimplify[DotSimplify[M4[s1,s2]]]/D4

(* Simplifications *)

vlist={p1,p2,r1,r2,w1,w2}

simp1=Table[Spinor[vlist[[i]],0] . Spinor[vlist[[j]],0] -> \
MySP[vlist[[i]],vlist[[j]]] + MySPc[vlist[[j]],vlist[[i]]],{i,1,6},{j,1,6}] \

/. {MySP[p_, p_] -> 0, MySPc[q_, q_] -> 0}

simp2=Table[Spinor[vlist[[i]],0] . DiracMatrix[5] . Spinor[vlist[[j]],0] -> \
-MySP[vlist[[i]],vlist[[j]]] + MySPc[vlist[[j]],vlist[[i]]],{i,1,6},{j,1,6}] \

/. {MySP[p_, p_] -> 0, MySPc[q_, q_] -> 0}

simp=Flatten[{simp1,simp2}];

M[s1_,s2_]:=Expand[res1[s1,s2]+res2[s1,s2]+res3[s1,s2]+res4[s1,s2] /. simp]

(* End Program *)
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