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Abstract

We write down the mass matrices and couplings needed for Minimal Supersym-
metric Standard Model (MSSM) calculations. These include the mass matrices for
all the particles in the model, the charged and neutral current couplings of the spin
% particles with the gauge bosons, and the couplings of the charged and neutral
scalars with the spin % particles. To fix our notation, we have also included the
couplings of the gauge bosons with themselves, although these are the same as in
the SM.
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1 Introduction and Motivation

In recent years it has been established [I] with great precision (in some cases better than
0.1%) that the interactions of the gauge bosons with the fermions are described by the
Standard Model (SM) [2]. However other sectors of the SM have been tested to a much
lesser degree. In fact only now we are beginning to probe the self-interactions of the
gauge bosons through their pair production at the Tevatron [3] and LEP [4] and the
Higgs sector, responsible for the symmetry breaking has not yet been tested.

Despite all its successes, the SM still has many unanswered questions. Among the various
candidates to Physics Beyond the Standard Model, supersymmetric theories play a special
role. Although there is not yet direct experimental evidence for supersymmetry (SUSY),
there are many theoretical arguments indicating that SUSY might be of relevance for

physics below the 1 TeV scale.

The most commonly invoked theoretical arguments for SUSY are:

i. Interrelates matter fields (leptons and quarks) with force fields (gauge and/or Higgs

bosons).

ii. Aslocal SUSY implies gravity (supergravity)it could provide a way to unify gravity

with the other interactions.

1. As SUSY and supergravity have fewer divergences than conventional filed theories,

the hope is that it could provide a consistent (finite) quantum gravity theory.

1. SUSY can help to understand the mass problem, in particular solve the naturalness
problem ( and in some models even the hierarchy problem) if SUSY particles have
masses < O(1TeV).

As it is the last argument that makes SUSY particularly attractive for the experiments
being done or proposed for the next decade, let us explain the idea in more detail. As
the SM is not asymptotically free, at some energy scale A, the interactions must become
strong indicating the existence of new physics. Candidates for this scale are, for instance,
Mx =~ O(10'% GeV) in GUT’s or more fundamentally the Planck scale Mp ~ O(10"*GeV).
This alone does not indicate that the new physics should be related to SUSY, but the so—
called mass problem does. The only consistent way to give masses to the gauge bosons and
fermions is through the Higgs mechanism involving at least one spin zero Higgs boson.
Although the Higgs boson mass is not fixed by the theory, a value much bigger than
< HO >~ G}l/ ? ~ 250 GeV would imply that the Higgs sector would be strongly coupled
making it difficult to understand why we are seeing an apparently successful perturbation
theory at low energies. Now the one loop radiative corrections to the Higgs boson mass

would give

om2, = O (%) A2 (1)
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which would be too large if A is identified with Agyr or Apjgner. SUSY cures this problem
in the following way. If SUSY were exact, radiative corrections to the scalar masses
squared would be absent because the contribution of fermion loops exactly cancels against

the boson loops. Therefore if SUSY is broken, as it must, we should have
Q@
omiy = O (=) Im —md 2)

We conclude that SUSY provides a solution for the the naturalness problem if the masses
of the superpartners are below O(1 TeV). This is the main reason behind all the phe-
nomenological interest in SUSY.

In the following we will give a brief review of the main aspects of the SUSY extension of
the SM, the so—called Minimal Supersymmetric Standard Model (MSSM). Almost all the

material is covered in many excellent reviews that exist in the literature [5, [6].

2 SUSY Algebra, Representations and Particle Con-

tent

2.1 SUSY Algebra

The SUSY generators obey the following algebra

{Qa,Qs} = 0 (3)
{Qs,Qs} = 0 (4)
{Qa,Qg} = 2(0"),5 Pu (5)
where
ot =(1,0") ; T'=(1-0") (6)

and «a, 8,a, 8 = 1,2 (Weyl 2—component spinor notation). The commutation relations

with the generators of the Poincaré group are
[PN’ Qa] =0
[M"™,Qa) = —i("),” Qs
From these relations one can easily derive that the two invariants of the Poincaré group,
P? = P,P®
2 7)
wWe =W, we
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where W# is the Pauli-Lubanski vector operator

l

W=~

€pvpe M P? (8)
are no longer invariants of the Super Poincaré group. In fact

[Qaa P2] =0
[Qa, W2 # 0 (9)

showing that the irreducible multiplets will have particles of the same mass but different

spin.

2.2 Simple Results from the Algebra

From the supersymmetric algebra one can derive two important results:

A. Number of Bosons = Number of Fermions

We have

Qu|B >= |F > : (-1)V*|B >=|B >
QuF >=|B> ; (-)™|F>=—|F> (10)

where (—1)VF is the fermion number of a given state. Then we obtain
Qua(~1)"" = —=(-1)""Qa (11)
Using this relation we can show that

Tr (=) {Qa, Qs}] = Tr [(=1)""QuQs + (1) QeQa]
= Tr [_Qa(_l)NF@d + Qa(_l)NFGd}
=0

But using Eq. [l we also have

Tr [(-1)" {Qa, Qs }] = Tr [(-1)"" 20", P,] (12)

This in turn implies

Tr(—1)n, = #Bosons — #Fermions = 0

showing that in a given representation the number of degrees of freedom of the

bosons equals those of the fermions.



B. (0|H|0) >0
From the algebra we get
{Qla@l}_l_{QQa@Z} = QTT(O-M)PM
= 4H (13)

Then
(Q1Q, + Q205 + QiQ1 + Q3Q2) (14)

q>|}~

and
(01H10) = ([1Q1[0) [|* + [|Q+10) | +11@; 10) 11> + [|Qs [0) |1?)
> 0 (15)

showing that the energy of the vacuum state is always positive definite.

2.3 SUSY Representations

We consider separately the massive and the massless case.

A. Massive case

In the rest frame
{Qa,Qu} = 2m das (16)
This algebra is similar to the algebra of the spin 1/2 creation and annihilation

operators. Choose |Q2) such that
Q1]€2) =Q2[Q2) =0 (17)
Then we have 4 states
Q) 5 Q112) 5 Q1) 3 Q1Q, 1) (18)

If J3]2) = j3|Q) we show in Table [Il the values of J3 for the 4 states. We notice

State Js3 Eigenvalue

_|Q> J3

91 2) J3+ 3
Q| g
Q102 (9) J3

Table 1: Massive states

that there two bosons and two fermions and that the states are separated by one

half unit of spin.



B. Massless case

If m = 0 then we can choose P* = (E,0,0, E). In this frame

{Qaa@d} = Mg (19)

where the matrix M takes the form

0 O
w0 2) "

Then
{Q2,Q,} = 4E (21)
all others vanish. We have then just two states
) 5 Q:(92) (22)

If J5|Q) = A |Q2) we have the states shown in Table 2]

State | J3 Eigenvalue
€2) A
@) A—

N[

Table 2: Massless states

3 How to Build a SUSY Model

To construct supersymmetric Lagrangians one normally uses superfield methods (see for
instance [5], [6]). Here we do not go into the details of that construction. We will take
a more pragmatic view and give the results in the form of a recipe. To simplify matters
even further we just consider one gauge group G. Then the gauge bosons W are in the

adjoint representation of GG and are described by the massless gauge supermultiplet
Ve= (AL W) (23)

where \* are the superpartners of the gauge bosons, the so—called gauginos. We also

consider only one matter chiral superfield

belonging to some N dimensional representation of G. We will give the rules for the
different parts of the Lagrangian for these superfields. The generalization to the case
where we have more complicated gauge groups and more matter supermultiplets, like in
the MSSM, is straightforward.



3.1 Kinetic Terms
Like in any gauge theory we have
Lrin = —LF Fowv % Ny DA + (DA DFA + iy D, Py (25)
where the field strength F7, is given by
Fi,=0W; —0,W; — gfebe WL’W; (26)
and f2% are the structure constants of the gauge group G. The covariant derivative is
D, =0, +igW;T* (27)

In Eq. 25 one should note that 1 is left handed and that A is a Majorana spinor.

3.2 Self Interactions of the Gauge Multiplet

For a non Abelian gauge group G we have the usual self-interactions (cubic and quartic)
of the gauge bosons with themselves. These are well known and we do write them here
again. But we have a new interaction of the gauge bosons with the gauginos. In two

component spinor notation it reads [5, [6]
Loww = 19 fabe N Wi + h.c. (28)

where fu. are the structure constants of the gauge group G and the matrices o* were
introduced in Eq.

3.3 Interactions of the Gauge and Matter Multiplets

In the usual non Abelian gauge theories we have the interactions of the gauge bosons
with the fermions and scalars of the theory. In the supersymmetric case we also have
interactions of the gauginos with the fermions and scalars of the chiral matter multiplet.

The general form, in two component spinor notation, is [5}, 0],
Low = —gToWe @ﬁ% + z’A;f‘éuAj) + g7 (T°T?), WaW™ A7 A
+igV2 T} ()\%ijj - XG@ZAJ) (29)

where the new interactions of the gauginos with the fermions and scalars are given in the

last term.



3.4 Self Interactions of the Matter Multiplet

These correspond in non supersymmetric gauge theories both to the Yukawa interactions
and to the scalar potential. In supersymmetric gauge theories we have less freedom to
construct these terms. The first step is to construct the superpotential W. This must be
a gauge invariant polynomial function of the scalar components of the chiral multiplet ®;,
that is A;. It does not depend on A?. In order to have renormalizable theories the degree
of the polynomial must be at most three. This is in contrast with non supersymmetric
gauge theories where we can construct the scalar potential with a polynomial up to the
fourth degree.

Once we have the superpotential W, then the theory is defined and the Yukawa interac-

tions are o R
_ 1 aly AN ey
and the scalar potential is
‘/scalar == %DGDG + F’ZF;* (31>
where
o= ow

0A,
D' = g A'TA

i Lij4t

(32)

We see easily from these equations that, if the polynomial degree of W were higher than
three, then the scalar potential would be a polynomial of degree higher than four and

hence non renormalizable.

3.5 Supersymmetry Breaking Lagrangian

As we have not discovered superpartners of the known particles with the same mass, we
conclude that SUSY has to be broken. How this done is the least understood sector of
the theory. In fact, as we shall see, the majority of the unknown parameters come from
this sector. As we do not want to spoil the good features of SUSY, the form of these
SUSY breaking terms has to obey some restrictions. It has been shown that the added
terms can only be mass terms, or have the same form of the superpotential, with arbitrary
coefficients. These are called soft terms. Therefore, for the model that we are considering,

the general form would b

Lsp =m; Re(A?) +m3 Im(A®) —my ()\“)\“ + X“X“) +my (A* + h.c.) (33)

L 'We do not consider a term linear in A because we are assuming that ®, and hence A, are not gauge

singlets.



where A? and A? are gauge invariant combinations of the scalar fields. From its form, we
see that it only affects the scalar potential and the masses of the gauginos. The parameters

m; have the dimension of a mass and are in general arbitrary.

3.6 R-Parity

In many models there is a multiplicatively conserved quantum number the called R—parity.
It is defined as
R — (_1)2J+3B+L (34)

With this definition it has the value +1 for the known particles and —1 for their su-
perpartners. The MSSM it is a model where R—parity is conserved. The conservation
of R—parity has three important consequences: i) SUSY particles are pair produced, i)
SUSY particles decay into SUSY particles and i) The lightest SUSY particle is stable
(LSP).

4 The Minimal Supersymmetric Standard Model

4.1 The Gauge Group and Particle Content

We want to describe the supersymmetric version of the SM. Therefore the gauge group is
considered to be that of the SM, that is

G =SU.(3) ® SUL(2) ® Uy (1) (35)
We will now describe the minimal particle content.

e Gauge Fields

We want to have gauge fields for the gauge group G = SU.(3) ® SUL(2) ® Uy(1).
Therefore we will need three vector superfields (or vector supermultiplets) ‘7@ with

the following components:

Vi= W, W = Uy(1)
Vo= (A, Wh) = SUL(2) , a=1,2,3 (36)
Vs= (@ W% — SU(3) , b=1,...,8

where W/ are the gauge fields and N, A and g are the Uy (1) and SUL(2) gauginos
and the gluino, respectively.

e Leptons

The leptons are described by chiral supermultiplets. As each chiral multiplet only

describes one helicity state, we will need two chiral multiplets for each charged

8



lepton@. The multiplets are given in TableBl where the Uy (1) hypercharge is defined

Supermultiplet | SU.(3) ® SUL(2) ® Uy(1)
Quantum Numbers

= (L, L); (1,2,—3)

= (g, 15); (1,1,1)

L;
R;

Table 3: Lepton Supermultiplets

through (Q = T5+Y . Notice that each helicity state corresponds to a complex scalar
and that L; is a doublet of SU(2), that is

- Vri )
P S e (37)
KLZ- gLi

The quark supermultiplets are given in Table 4l The supermultiplet @Z is also a
doublet of SUL(2), that is

e Quarks

Supermultiplet | SU.(3) ® SUL(2) ® Uy(1)
Quantum Numbers

@\i = (?a Q)Z (3> 2? %)
D; = (dg, d$); (3,1,3)
U, = (g, uf); (3,1,—3)

Table 4: Quark Supermultiplets

~ aLi Ur;

Qi = ~ ) Qi = (38)
d Li dLi

Finally the Higgs sector. In the MSSM we need at least two Higgs doublets. This is

in contrast with the SM where only one Higgs doublet is enough to give masses to

e Higgs Bosons

all the particles. The reason can be explained in two ways. Either the need to cancel
the anomalies, or the fact that, due to the analyticity of the superpotential, we have
to have two Higgs doublets of opposite hypercharges to give masses to the up and
down type of quarks. The two supermultiplets, with their quantum numbers, are
given in Table Bl

2We will assume that the neutrinos do not have mass.



Supermultiplet | SU.(3) ® SUL(2) ® Uy(1)
Quantum Numbers

H, = (Hy, H) (1,2,—3)
H, = (H,, Hy) (1,2,+3)

Table 5: Higgs Supermultiplets

4.2 Field Strengths and Covariant Derivatives

For the derivation of the Feynman rules for the interactions it is important to fix the

notation for the the field strenghts and covariant derivatives. Here we just write the

SUL(2) ® Uy (1) part. We have

1 a va v
Léauge = —+ FO FMa — B, BF

|n%

where

Fo, = 0Ws—9,W; — g WW

jn%

B, = 0,B,—-0,B,

where €22 = 1. The covariant derivative reads

7_(1

a . Y
5 Wi+ig = B,

D,=0,+1g 5

where our normalization for the hypercharge is
R=T:+Y
After symmetry breaking (see below) we have

Wj = sinfwA, + cosbwZ,
Bﬁ = cosbOwA, —sinbyZ,

with

/
e =g sinfy = ¢ cosby; ; g—:tanew
g

We can then write the covariant derivative in the more useful form

LOW:__FLOO
vzlo o) va\wr o

D, = 0,+i

cos Oy

10
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(39)

(40)

(41)

(42)

(43)
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4.3 The Superpotential and SUSY Breaking Lagrangian

The MSSM Lagrangian is specified by the R—parity conserving superpotential W
W = ew |hJQiUHY + hiQVD; HY + LR, HY — Mff{lﬁg] (47)

where 7,7 = 1,2,3 are generation indices, a,b = 1,2 are SU(2) indices, and ¢ is a com-
pletely antisymmetric 2 x 2 matrix, with ;5 = 1. The coupling matrices hy, hp and hg
will give rise to the usual Yukawa interactions needed to give masses to the leptons and
quarks. If it were not for the need to break SUSY, the number of parameters involved
would be less than in the SM. This can be seen in Table [Gl

The most general SUSY soft breaking is

—Lsp = MZQyQ:+ MPPUU; + My’D;D; + MLy L8 + Mi* R, R} + m3, H{* H
+myy, Hy HY — [ MM+ s MM+ 3 M'NN + h.c
ea |AGRIQLT; HY + AGJQLD;HY + AZWILIR;HY — BuliHy|  (48)

Theory Gauge | Fermion Higgs
Sector Sector Sector
SM e,g,0s | hy,hp,hg 2\
MSSM e,g,as | hy,hp, hg 0
Broken MSSM | e, g, a5 | hy,hp, hg | w, My, My, M3, Ay, Ap, Ag, B
miy,, my, mé, m, mb, mi, my

Table 6: Comparative counting of parameters

4.4 Symmetry Breaking

The electroweak symmetry is broken when the two Higgs doublets H; and Hs acquire
VEVs Lo o .
—=lo] +v1 +1 H.
H, = <\/§[ 1 _1 901]>’ Hy = <1 . 2 - 0) (49)
H; 75109 + v2 + i3]

with m§, = 1¢g*v? and v? = v + v3 = (246 GeV)2. The full scalar potential at tree level

18

oW |?
Viotal = Z ‘ 5. + Vb + Vot (50)
The scalar potential contains linear terms
Winear - t?U? + t(Q)Ug (51)
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where

tr = (my, +p)vr — Buvs + 2(* + g1 (v — v3),

ts = (my, + p’)vs — Buvy — H(g* + ¢*)va(v] — v3) (52)

One can determine in the tree-level approximation the minimum of the scalar potential
by imposing the condition of vanishing tadpoles in Eq. 52l One-loop corrections change
these equations to

ti =t — ot + Ti(Q) (53)

where ¢;, with ¢ = 1,2, are the renormalized tadpoles, t{ are the tree level tadpoles
given in Eq. 52 dt; are the tadpole counter-terms, and T;(()) are the sum of all one-loop
contributions to the corresponding one—point functions with zero external momentum.
The contribution from quarks and squarks to these tadpoles in our model can be found
in ref. [§]. In an on shell scheme we identify the tree level tadpoles with the renormalized
ones. Therefore, to find the correct minima we use Eq. B2 unchanged, where now all the
parameters are understood to be renormalized quantities. Eqs. (52]) can be solved for B

and p up to a sign. We have
mf% sin? f — m%h cos? B
cos 2

Bu = 1sin28 (m3;, +mj, +2p°) (54)

ph=—gmy +

It can be shown that necessary conditions for the existence of a stable minimum are

(Bp)? > (m, + p®)(miy, + 1)
my;, +my, +24° > | By (55)

Notice that Eq. [54] only makes sense if y? > 0 and, as we shall see in Section [5.3], also
By > 0 because is related with the mass squared, m?, of the physical CP-odd state.

4.5 The Constrained Minimal Supersymmetric Standard Model

We have seen in the previous section that the parameters of the MSSM can be consid-
ered arbitrary at the weak scale. This is completely consistent. However the number of
independent parameters in Table [6] can be reduced if we impose some further constraints.
That is usually done by embedding the MSSM in a grand unified scenario. Different
schemes are possible but in all of them some kind of unification is imposed at the GUT
scale. Then we run the Renormalization Group (RG) equations down to the weak scale

to get the values of the parameters at that scale. This is sometimes called the constrained
MSSM model.
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Among the possible scenarios, the most popular is the MSSM coupled to N = 1 Super-
gravity (SUGRA). Here at Mgyr one usually takes the conditions:

A=A, =A.,=A B=A-1,
my, =my, = M} = Mj, =mj ,M§ = M} = M}, =mj
M3z = My = M, =M1/2 (56)

The counting of free parameters@ is done in Table [7]

Parameters Conditions Free Parameters

hta h’ba h"r) V1, U2 | Mw, My, My, My tanﬁ

A, mo, Mo, p t;=0,1=1,2 | 2 Extra free parameters
Total = 9 Total = 6 Total = 3

Table 7: Counting of free parameters in the MSSM coupled to N=1 SUGRA

where we introduced the usual notation

tan 0 = kel (57)

U1
It is remarkable that with so few parameters we can get the correct values for the param-
eters, in particular quz < 0. For this to happen the top Yukawa coupling has to be large

which we know to be true.

5 Mass Matrices in the MSSM

5.1 The Chargino Mass Matrices

The charged gauginos mix with the charged hlggsmos giving the so—called charginos. In
a basis where 7 = (—iA*, H}) and ¢~T = (—iA~, H), the chargino mass terms in the

Lagrangian are
_ Yo [0 o
Lo =—50*7,0 )(MC 0>(w>+hc (58)

where the chargino mass matrix is given by

M, L9112
Mo = V2 (59)
7901 M

and M, is the SU(2) gaugino soft mass. It is sometimes more useful to write this mass

matrix in terms of the physical masses, that is

My V2myy sin 8
M = (60)

\/§mW cos 3 2

3For one family and without counting the gauge couplings.

13



The chargino mass matrix is diagonalized by two rotation matrices U and V defined by

Fr=Uydy o FF=Vyyf (61)

)

Then
UMV~ = M3ee (62)

where Mgiag is the diagonal chargino mass matrix. To determine U and V we note that

. 2
M) — VMLMcV ™' = U*Me ML (U*) ™! (63)
C C (o)

implying that V diagonalizes MéMo and U* diagonalizes MoMé. In the previous expres-
sions the FZ-jE are two component spinors. We construct the four component Dirac spinors

out of the two component spinors with the conventionﬂ,

;= i 64
Xi = (F,ZJr) (64)

5.2 The Neutralino Mass Matrices

In the basis )7 = (—iX, —iA3, H!, H2) the neutral fermions mass terms in the Lagrangian

are given by

1
L, = _§(¢0)TMN¢° + h.c. (65)
where the neutralino mass matrix is
M, 0 —39v1 390
M. 1 1
My=| @ 20 i (66)
—39'v1 59v1 0 —
%9’”2 —%9U2 —H 0

and M, is the U(1) gaugino soft mass. The neutralino mass matrix can be written in

terms of the physical masses

M, 0 —mysinbfy cos 5 mysin Oy sin 3
0 M, my cos By cos . —my cos By sin 3
My = .
—mysin Oy cos 5 my cos By cos B 0 —
mysinfy sin 8 —my cos By sin 5 — 0
(67)

This neutralino mass matrix is diagonalized by a 4 x 4 rotation matrix N such that

N*MNN_l = diag(mF{)a mg9, Mg, mpg) (68)

4Here we depart from the conventions of ref. [5, [6] because we want the x~ to be the particle and not

the anti—particle.
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and
Fy = Ny ) (69)

The four component Majorana neutral fermions are obtained from the two component

o (2 70
Xi = F_Z-O (70)

5.3 Neutral Higgs Mass Matrices

via the relation

The quadratic scalar potential includes

0

o
Visaarasie = 3160, @8] Mo | 70| + 5[0, 03] Mo |4 + ()
2 2
where the CP-odd neutral scalar mass matrix is
Bputan § + 4 Bu
M, = 1 (72)
Bu Bcot B+ 2—22

This matrix also has a vanishing determinant after the tadpoles are set to zero, and the
zero eigenvalue corresponds to the mass of the neutral Goldstone boson. The mass of the
CP-odd state, usually called A, is

2Bu
2
= 73
A= Gin2B (73)
The relation between the lagrangian states and the mass eigenstates is, as can be easily
verified,
G° _ |- FEOSﬁ sin 3| | ¢! (74)
AD sinf3  cosf| |9

that can be written in matrix form as
P’ = RPP"® (75)

where, P°T = (G°, A%), POT = (©9, ¢9) and the rotation matrix is

RP — [— cos 3 sinﬁ] (76)

sinf3 cosf
for future reference we note that
<P(1) = RP;GO + RP;AO
© = RP,G' + RP, A (77)
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The neutral CP-even scalar sector mass matrix in Eq. [[1lis given by
M Butanﬁ+m2zcos2ﬁ+z—1l — By — m?% sin B cos 3 78)
° — Bp — m%sin 3 cos 3 B,ucotﬁ+m%sin2ﬁ—|—i—22
As before we define the rotation matrix as
S0 = RSS" (79)
where ST = (h°, H?), ST = (49, 09). For future reference we note that

o) = RS|,h" + RS, H°

o = RS,h°" + RS, H° (80)

For completeness we note that this (orthogonal) matrix is normally parameterized by an

angle « in the following way

RS: [—SIHOK COSO(] . (81)

cosa  sin«

5.4 Charged Higgs Mass Matrices

The mass matrix of the charged Higgs bosons follows from the quadratic terms in the

Z] )

scalar potential

V;]uadratic = [Hl_a H2_7] M?ii

where the charged Higgs mass matrix is

ML — Butan B + m?, sin® 3 + Z—ll By + m¥, sin 3 cos 3 (83)
2=
B+ m3, sin B cos 3 Byucot 8+ mjy, cos® 4 2

The relation between the lagrangian states and the mass eigenstates is, again as in Eq. ({74)

G* _|—cosB sinf Hli
HE| [ sin 3 cosﬁ] [H;] (84)

that can be written in matrix form as

5* = RS* 5+ (85)
where, S*T = (G*, H*), S"*T = (H{, HY) and the rotation matrix is
RSE_ | cos 3 sinf (86)
B sinf3 cosf

for future reference we note that

* + *
Hff = R%|,G* + RS*, H*
HF = RS*|,G* + RS*,,H* (87)
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5.5 Lepton Mass Matrices

In the superpotential in Eq. 47 the Yukawa couplings are matrices in generation space.
For the case of the leptons it is possible to start with the matrix hp already diagonalized.
However, for some applications, could be useful to have a general matrix. Here we consider
an arbitrary matrix. In 2—component spinor

notation the relevant mass terms in the Lagrangian are

(%1

v 1 plc * 0 pe
Ly = _7% (he)i; Cri iy — V2 (M) C1i bE; (%)

where (' are the interaction eigenstates. The 4-component spinors are

El
=" (89)
7
and therefore we have
Ly = —0MgPpl! — 0 Mg'P.('
= 0, Mply — 0 Mg'(), (90)
where
U *
(ME)ij = 715 (hE)ij (91)

To diagonalize the mass matrix Mg we need different rotations for the left handed and

right handed components. We introduceH

Then
R{ MpRLH — M3 or  RLTME®RE — Mg (93)

where Mgiag is a diagonal matrix. The rotation matrices are obtained by noticing that
oo\ 2 LN 2
MpMg' = RS (Mgﬂg) R, and Mg'Mg=RY (Mgms) R,  (94)

that tell us that R% diagonalizes MgMg' and R‘R diagonalizes Mg'Mg. For future refer-

ence we write the relations between the mass and the interaction eigenstates. We have

R = (Rlé); Lr; ? Cp; = Cr; (RlR)ji
L= (Ri)*“ CL; ; Ez = Ej (Ri) i

Ju Ju

(95)

51 changed here the convention in comparison with previous versions. Now the convention is uniform

for all fields and it is consistent with the convention used in SPheno [9].
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5.6 Quark Mass Matrices

In 2—component spinor notation the relevant terms in the Lagrangian are

ﬁM = (hD) d,Lz d/fj — (hU) ULZ uLg + h.c. (96)

s v

where the primed states are again the interaction eigenstates. In 4—component spinor

notation with the definitions

d’ )
d=|_" S (97)
d’s uf
we get
Ly = —d, Mpdy, — v/, Myu/y + h.c. (98)
where
v " v *
(MD)ij = — (hD)ij ) (MU)U = — (hU)ij (99)

V2 V2
To obtain the eigenstates of the mass we rotate the quark fields through
dR:R%d;z X dL:R%d/L ) URZ.R%U;% ) ULZR%UIL (100)

For future reference we write the relations between the mass and the interaction eigen-
states. We have

qu (RR)W 4Rj 3 q;%i = qr; (R%)ﬂ
B q = (d,u)
i = (R%);kz qr; ) qL; = qr; (R%)ji (101)
Then
R} MpRAt — M3 and  RY MyRut = Mj"¢ (102)
where Mgi&'% are a diagonal matrices. These are diagonalized by noticing that
RS MpMp' RS (Md'ag) . R& Mp'Mp R (M"mg)
R MyMy' Ryt = (Mgms) . R% My'My Ry (Md‘“g) (103)

Before we close this section let us write down the Cabibbo-Kobayashi-Maskawa (CKM)

mixing matrix with our conventions. The couplings of the W# with the quarks are

S Wy, — = WA (104)

Lo =——" -
cc NG i~/

Then in terms of the mass eigenstates the charged current Lagrangian reads

Loo = _% VO W dp A g — NG S T U TR (105)
where the CKM matrix V™ is defined through
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5.7 Slepton Mass Matrices
In the unrotated basis ¢/; = (€L, AL, TL, €5y Ly, Th) We get

L= —10" MP T

where
o (M M
t 2
Mg, Mgg
and
M}, = Lfofhphl + M7 —L(©2my, —m})cos2p
Mip = vihphy + M — (m3 —mj,) cos 23
M2, = YLopx 2 e
LR J2 E M\/i E
My - M
We define the mass eigenstates
(= Rty
which implies
Z/i = Reji ZJ

The rotation matrices are obtained from

g (M%nagsz: My

(107)

(108)

(109)

(110)

(111)

(112)

In most applications the matrices in Eq. [L08 are real and therefore the rotation matrices

R’ are orthogonal matrices.

5.8 Sneutrino Mass Matrices
In the unrotated basis v, = v;;, we have
Ly = -3 MV
where
My = M? + 1m3, cos 23

We define the mass eigenstates

v=RV

which implies

~ %k

~ ]
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The rotation matrices are obtained from
- . 2
R (M.gms) R = My (117)

In most applications the matrix in Eq. [[14]is real and therefore the rotation matrices Rt

are orthogonal matrices.

5.9 Squark Mass Matrices

In the unrotated basis w; = (up;, uy;) and d: = (dy, élv’;%z) we get

Ly =30 MW — 1dT M7 d (118)
where
M2 . M?
M;j2 _ q2LL q2LR ( 11 9)

with ¢ = (@, d). The blocks are different for up and down type squarks. We have

M2, = %v% hihi + Mg + é (4m3, — m%) cos 23
M2pr = S0Shlhy 4+ Mg+ 2(my —myy) cos2f3
M2, — 2o YL g
uLR 5 U M\/i U
T
M%RL = MagiLR (120)
and
1
M3, = 3 v Wphy, + Mg — & (2m3y, + m3) cos 23
Mfi%RR = 1vihphl + M} — X(my — mjy,) cos 23
2 o 0 * V2 *
M,;LR = E Ap — Mﬁ hp
2 _ 2
Mz, = Mz, (121)
We define the mass eigenstates
§=R17 (122)
which implies
4= R%; g, (123)
The rotation matrices are obtained from
~ : 2
R (Mgmg) R = My (124)

In many applications the matrices in Eq. are real and therefore the rotation matrices

R7 are orthogonal matrices.
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6 Couplings in the MSSM

In this section we give a list of all the MSSM couplings. The following table is a guide.

Name Type Equation
Gauge VVV Eq. (I28)
Self-Interaction | VVVV | Eq. (I30), Eq. (I31)
3-Point Gauge | Vff Eq. (I40), Eq. (I50)

Coupling VIf
VXX Eq. (I40), Eq. (I50)
VHH
3-Point Higgs | Hf f Eq. (IR3)
Coupling Hff Eq. (I92)
Hxx | Eq. (7D
HVV

HHH Eq. (203)
Other 3-Point | ff¥ Eq. (I6R)
4-Point VVIf
Coupling HHVV
HHHH | Eq. (209)
ffHH
fIff
Ghost ww V

ww H

Table 8 Couplings in the MSSM. V, f f and H are generic names. In particular H
includes the Goldstone bosons.

6.1 Gauge Self-Interactions
The gauge sector of the MSSM is exactly the same as in the SM. We present it here both
for completeness and to fix our notation.
6.1.1 VVV
From Eq. B9 we get

Lyyy = =39 (0,WF — 9,W) e W W (125)
Now using

Wj’ = sinfwA, +cosbwZ,
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we obtain
L= e [(aMW; L OWI) W AT — (9, — 0,WF) Wh AY

— (0,4, — 9,A,) W W"’}

i g cos { (O — W) W 2% — (8,1 — 0, ) W 2

— (0,2 — 0,2, ) WHH W‘”}

which gives the following Feynman rule for the vertices,

P2 Wu+
¥
Vo
3 igv |g" (P2 —ps3)’ + 9" (ps — p1)" + g™ (p1 — pz)y]
pl X
P3 ~
W,

where V = A(Z) and g4 = e, gz = g cosOy.

6.1.2 VVVV
For the quartic self-interactions we have
Lyyvvy = 56° [(W;W”) (W, W) — (W:W_“)ﬂ
+9? cos® Ow [W,SW, 212" —WIW " 7,27
e [WiW, AFAY —WIW A, AY]
+eg cosby [W,W, (ZFA” + ZVA*) = 2W W+ A, Z"]

which gives the following Feynman rules for the quartic vertices,

Wi W
ig* [29"9"77 — g™ g"" — g"g*’]
Wi W+
Va Wi
igvagv (99" + g™ — 29" g’
Vs Wi

22

(126)

(127)

(128)

(129)

(130)

(131)



where V = A(Z) and g4 = e, gz = g cosOy.

6.2 Charged Current Couplings

Using two component spinors and following the notation of ref. [5] the relevant part of

the Lagrangian can be written as

L = gW, {(FEM* —)\_—E”)\3> — % (ff—gﬁ”ﬁi +ﬁ—fﬁ”ff10>

1
V2

_ Y T =,
(ng'O_ vy +dp, o uLZ):|

+ gWr {(FE“/\?’—FEM‘) - % (ff—Jﬁ“ﬁgﬂtﬁ?ﬁ”ffl—)

V2

1 _
—— (v, 7" O+, 7 d’u)]

(132)

To obtain the couplings in four component notation we first write Eq. [[32]in terms of the

mass eigenstates in two component notation, Fii and F?. In order to do that we recall

that for the neutralinos
—iN =
—iX =
HY =
H =
while for the charginos
N =
Hy =
—i\t =
Hf =

We obtain then

L= gWu_ |: F_iOE“ FJ+ (Nigv*jl -

1
V2

+g W,/ [ ot Fy (N*iQle -

V2

N* FO
N*F?
N* 3 FD
N*,FY

U* Fy
U* o Fy
Ve Fy
V*uFy

1

V2

7= (Ez " v + d_/Lz a" ule)}

1
V2

_L (Ez o' v + @z a" ule):|

23

iN

N, F?
N F?
NF?
N FO

(2

NMV*jz) + F 5" FY <—N*Z-2Uj1 —

N*i4Vj2) —I—F_Z-OEM Fj_ (—NigU*jl —

(133)

(134)

1
— N*,3U;
N ﬂ)

1

—= N3U*,

(135)



Finally using
FYg"Ff = —x;7"Prx]

Fig'F = x;9"Px!

Fo'Fy = x"Pux;
Ffot ) = —x]"Pax;
0, 0" v = " Pyl
v ol = Ly Prli (136)

we get
_ 1 _
L=gW, [ X; v (OJ»LZ-PL + OﬁPR) o ﬁ (ﬁ’Lﬂ“PLV'Li + d’Li”y“PLu’Li)}
1

g [ 0 (05 Pu+ (08 Pa)x; = 5 (" Put, +u_'m“PLd'Li)] (137)

where
* 1 *
OJLZ- = (-N 2Uj — %N i3Uj2)

1
Off = <_Nz'2V*j1 + NG Ni4V*j2) (138)

Finally we rotate the leptons and quarks to the mass eigenstates using the relations@

up;, = Rpjui UL, = UL (RE);
_ d P *
dy;, = R$.dp dy, = dr; (R]), (139)
t = R%z’ngj Ez = Ej (R%):j
Vi = EijVLj V_}/z = VL, (RE)Z

to get

. 1 L
L=gW, [X]_ V¥ (O5PyL + O PR) X§ — 7 (CLiv" Prvp + V™ dLﬂ“PLULi)}

— 1
+ QW: [X? v ((OjLi)*PL + (Oﬁ)*PR) Xj__ﬁ (V_Li’yuPLgLi + VZ-KM U_LﬂuPLdLj)] (140)

where the CKM matrix V™ was defined in Eq. 106!

SNotice that as the neutrinos are massless we can rotate them by the same matrix as the leptons.

Then the charged current for neutrinos and leptons will remain diagonal.
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6.3 Neutral Current Couplings

Using two component spinors and following the notation of ref. [5] the relevant part of

the Lagrangian can be written as

L=—5 (9W; +9'By,) (ff—Jﬁ“ Hf — HY" fI;) — gW? (W At — A" gt A7)(141)

—L (—=gW?+4¢'B,) (?gaﬂﬁg—ﬁf_?aﬂﬁf) (142)
+3 (—gW) 4+ ¢'By) v, 7" v+ 5 (W + ¢'B.) 0, 01, — g'B, U, 7" (7{143)
+5 (=W, = 39'B,) up, 0" uy, + 5 (gW3 — 39'B,) 4,5 dy; (144)
+§Q,Bu “_/ch T, — %QIBM d_/ch o dr; (145)

To obtain the couplings in four component notation we first write Eq. in terms of the
mass eigenstates in two component notation, FZ-jE and F?. We also use

g
cos Oy

gWi = eA, + (1 —sin®0w) Z, (146)

sin® Oy Z,, (147)

/ — —
9B, = el os Oy

We get in two component notation

_ B V2 DR ARV ni S § SR & ¢ S ARSI Al =) [
L = 614# |:VZkV ij’i g Fj UZkU jkﬂ g Fj gLiO- € +£ i 0 62
P Lg- s+ _2 T g lC 1 gic Fm Jic
+5up 0" up, —5dy, 0 dr,; URZU uRi_l_ngiU dRJ

g * * T0—=
cos Oy cos Oy ¥ [ % (NiaN®ja — NigN*j3) Fo" FJQ

+ (%UiQU*jQ + UilU*jl — SiIl2 QWUku*]k) F—i_ﬁu F’j_

+ (_%VZ'QV*jQ — V,-lV“jl + sin2 HWVsz*jk) F—;_Eu FJ+
1L+ (3 = sin® Oy) 0, 0 0, + sin® Oy (5, 0 L],

+(—1 + Zsin® Oy )ul, 7% ulp, + (3 — Ssin®Oy) d), 0" di;

+ Zsin® Oy ulf, 7w — L sin® Oy dF, o A (148)

Now using the unitarity of the diagonalization matrices we get, still in two component

spinor notation,

L = eA, l( F-a"F- —F—;’E“F’iJr) + (0, om0, — U, 7" L)
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20T =, Tc =i, l /—p/__/c—p Ic
5 (uLia Up; — U, 0 uLi) 3 (d otdy; —df, o sz')

g * * T0—=
cos Oy Zy | 5 (NulN*j — NsN*35) 5" FJQ

+ (%U@'QU*JQ + UilU*jl — Sil’l2 GW 52]) F—;E‘u Fj_
+ (—AVuV* — VaV*y +sin’ 0y o) FF o Ff
—Lv ot vy, + (3 — sin® Ow) 07, 5% 0, + sin® Oy 05, 57 L

(=1 + 2sin® Oy )ul, 74, + (3 — Lsin®by) d), 5" dl,
+ Zsin® Oy ulf, 7% u; — 1 sin® Oy df, 0" d’fz] (149)
Finally we get in four component notationlﬂ
L =eA, {E”y“xi_ + Oyl — 2 g+ %Ezﬁudi]
b o2, B (OF'Pu+ O PR) XS4 X0 7 (O Pu+ OF'Pi) 7

+%ﬁi ’}/“ (—%PL + %PR) V;

+ Z Fir! {(—Ig + Q7 sin? QW) P+ @/ sin® Oy PR] fi| (150)
F=tud
where
OF" = §(NuN*j; — N;3N*j3)
of = —(Ok)
OF = JURU*js +UnU*j1 — sin® Oy 6y
O = ViV + V, V% —sin® 0oy (151)

and I:{ and Q' are, respectively, the weak isospin and the charge of fermion f = ¢, u, d.

6.4 3-point gauge boson couplings to scalars

In this section we give the 3-point couplings of gauge bosons with the scalars.

"We can see that the neutral current interaction of the leptons and quarks is diagonal in generation

space after we perform the rotation into the mass eigenstates.
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6.4.1 Gauge boson couplings to sfermions (V ff)
We write the Lagrangian as
_ s XY 3 Lo s R M . XY R —u
ﬁ—lngf [x0ufyv 2" +ieQyf fxO fx A" + LG 77 f'x0,fyW™+ he (152)

where in the last term @ — Q5 = 1. We have

9?}; = st [foz R§/2 <T3f — sin? 9WQf) + R&)Hg R§/72+3 (— sin® HWQf)]
xy _ 9 pl)pl) =
Iwif = — ERM Ry; (153)

where ¢ = 1,2,3. This in turn corresponds to the following Feynman rules.

f;{ S D2
\\ AL
NN i) ) (154)
fy ’//1;1
;( \\\ P2
N AW
NN — i eQf (p1 +p2)! (155)
fx ",/];1
X X P2
W
NNANNN 0 (pr+p2), gi(v?f (156)

6.4.2 Gauge boson couplings to Higgs (VHH)

6.5 4-point gauge boson couplings to scalars
6.5.1 Gauge boson couplings to sfermions (VV ff)

6.5.2 Gauge boson couplings to Higgs (VVHH)

6.6 Scalar couplings to fermions
6.6.1 Charged scalars couplings to fermions

Using two component spinors and following the notation of ref. [5] the relevant part of

the Lagrangian can be written as

L= 'Cgauge + 'CYukawa (157)
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where the gauge part is determined by the gauge group and quantum numbers of the

matter multiplets and is given by

(=0%8) b4 L (iX) = g (N |+ T [0 VEGT)
+ uj, l—— (—iN*) uf, — 9 (—iN)ul; — g (—idt) d, } + Up; [4_9/ (iN) u_c}
Li \/5 Li 3\/5 Li Li L 3\/§ Li

Tk g \3\ ¥ g NI\ gt / 7 29 Wi _}
+dy,; |+—= (—iA°)dy,; — —iN)dy,; — N )up; | +dri |— iN') df,
b [+ ) = T i = g Cin Y | 4 |- 0 @

+h.c. (158)

The Yukawa part is derived from the superpotential W by use of Eq. In order to use

this equation it is helpful to write down explicitly the superpotential. We have

W = _(hE>ijZi1§JHl (hD)zg QlD Hl (hU)zg@?ﬁJﬁZI
+ (hg)y; LAR;H + (hp),; Q2D HY + (hy),; QLU H3 (159)

Then in two component spinor notation the Yukawa part of the couplings of charged

scalar to fermions is
Lyurava = — (hp)y; (il HY — (hp);; CrglHY + (hi)y; Crgvi Hi + (hi)yy Hy vl
— (hp)yy dudy 1Y = (hp),y diyd 1) + (hp) y dpg Hy + (h) 5 Hy i df
— (hv)y ﬂLiufjﬁzo — (hv)y; UjurHY + + (h)y; Upjdp H; + (ho)y; Hy dpur;
+ (hp),, Upadf; Hy + (ho),; dpaf Hy
+h.c. (160)

Now this can be written in four component spinor notation in terms of the mass eigen-

states. We will do this separately for Lyquge and Ly yrqwa- We obtainH

Loguge = H K% Uiz (Nps +tan Oy Np;) _QUAINB3) X__APRX?B]

V2

8We still keep the unrotated fields for the leptons and quarks. The final rotation will be done in
Section [6.6.3

+ Hy [<_ivf42 (N*B2 _'_tanHWN*Bl) _QVZIN*B4) X__APLX%}
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and

+

ﬁYukawa

RE, O | L
* X[ﬂ

RZX7Z'+3 Z} [—g\/itan QW NAl FAPREQ]

(N + tan6u N') XouPoll — gU, X—P]

R&‘XJ' (NA2 + 3 tan ewNAl) FAPLUQ — gV*Bl EPLCZ;]

s

4 _
Rqu+3 UX {g% tan Oy N a3 XOAPRUQ}

REX,Z' i [% (Nyy — Ltan 0w N%,) XOuPrd, — gUpy FBPLU;]

S5

9

V2

h.c. (161)

Rg X,i+3 g} [—

[GCRIN )

tan GW NAI FAPRCZ;]

[\

— (hg);; Nys (R?;,- Ux U;Ppy’ + RZX,]'+3 Oy FAPLE;’)
+ (hE)y; (UZQ Rly s O XGPLV,+ HY %PLV;)
— (hp);; Nas (R{{;Z dx @;Pyx% + Ry jys di FAPLC%)
+(hp); (UZQ Ry s di XoaPuuj + Hy EjPLu;>
— (h)y; N (RquuX Wi PLx + R s Uy X APLU)
+ (ho)y; (Vg R¥x jus Wy X~ aPrd; + Hf W/;Prd))
+ (hp)y; Uls Rﬁ;l Ux d'jPrx, + (hv)y; Ve Rg;z dx W Pry

+ hec. (162)

In Section [6.6.3] we will give the final formulas.

6.6.2 Neutral scalars couplings to fermions

Using two component spinors and following the notation of ref. [5] the relevant part of

the Lagrangian can be written as

L= Egauge + EYuImwa (163>

where the gauge part is

Egauge

- (i)

Cay g N . ~_
(—i\3) HY + NG (—iN) HY — g (—i)t) H;
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#(15)" [ i) B - L i) B - g (-ix) B

. g, 3 g Ny
+ 7 [—ﬁ(—z)\)I/i+ﬁ(—z)\)ui—g(—z>\ )62}

+ h.c. (164)
and the Yukawa part is
Lyukawa = (hE) v LZEL]H_ (hE)ij H?E’Liﬁ’fj - (hD)ij H?dle’dchj - (hU) ngLz ,Lc]
~+h.c. (165)

Now this can be written in four component spinor notation in terms of the mass eigen-

states. We will do this separately for Lgqg. and Ly yrawe. We obtain
* g * * * 0 * EI— —
Lgauge = (H?) [_% (NA2 — tan HWNAI) N, XOAPLX% —gVaUps x APLXB]
* g * * * 0 * I —
+ (Hg) [ﬁ (NA2 — tan 9WNA1> Ny, XOAPLX% — gV aUp X_APLXB]

+R;X,i vy [—% (ij — tan HWNL) FAPLVZ{ — gV X_—APL@]

+h.c. (166)
and
@Mm::4@%%%&44@%%@&@4@%@@&@
+ (hg),; Uy R Ux €5PLX
+h.c. (167)

In Section [6.6.3] we will give the final formulas.

6.6.3 Final formulas for the scalar couplings to fermions

In this Section we present the final formulas for the scalar couplings to fermions. To be
more precise we are going to only to write down those for the couplings fermion—sfermion—
chargino and fermion—sfermion—neutralino. These leave out the couplings of the neutral
and charged Higgs bosons with the fermions. These can be read from Egs. (I61]), (I62),
(I66) and (I67) not forgetting that we still have to perform the rotation into the Higgs
bosons mass eigenstates.

We interaction lagrangian can be written as

L = by, [CLA(QPL + RO PR] X5+ 0x [C L p 4 cRYp ] X

3 (2
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(3

—%%%pﬂﬂ+%ﬂﬂﬂ+ﬁmkﬂﬂ+&w]ﬁ
+ fx Ji [ fg(PLJFNAXPR] XA

+ h.c.

(168)

where the indices i, A, X apply to generations, charginos (or neutralinos) and sfermions,

respectively. All repeated indices are summed over and f = ¢, v, u,d. The coefficients C'

and N can be read from Eqs. (I61)), (I62), (I66) and (IE7). We list them below.

)

L/ * Y
CHY = (hg)y; Uy RP5 R,

R(¢ o *
C‘A(X) =—gVa RVX,k Rgik

)

L(v
CLY =0

Cﬁx(;j() =—gUn ReXJc Riik + (hE) U 1 RlX J+3 Rsz
CiLA(_C)l() = (hD)k' Uim R&z;k RdR'

1j
Cﬁx(gc =—gVau R" XkR%zk +( ) VA2R“X;+3R%m
CHY = (hy)y; Vi Ry, RY,

ij
CiRA(;() =—gUa RdX,k R+ ()i Uas Rdx;+3 Ri
and for the N’s

( L * 7" % 7 *
N'A(X) =9 V2 tan Oy Ny, R£X7k+3 RtRik - (hE)kj N; ReX,k Rléij

7

NEO

g -~ " ~
iAX — E <NA2 + tan 9WNA1) ReX,k R%ik - (hE‘)kj Nas RlX,j—i—B Réik
\

L(v
NiA(X) =
N = =5 (Naz — tan 0w Ny ) B3, R,
tan Oy Ny, Ra;,ms Ry, — (hU)kj Ny, Ra;k R‘}‘éij
Nﬁ()u() S (NA2 +3 tan 9WNA1> RuXkRzzk - (h*U)kj N 44 Rﬁ;,j+3 Ry

L(d 2 g * d*
NiA(X) = T3 /5 32 tan Oy Ny, Rdx k43 R‘}m (hD)kj Nys RdX,k R‘Iliij

\ Nﬁx(;) = % (NA2 - %tan 9WNA1) RdX,k Rg,ik - (hE)kj N s RdX,j+3 R%ik

31

(169)

(170)

(171)

(172)

(173)

(174)

(175)

(176)



6.6.4 Final formulas for the Higgs couplings to SUSY fermions

In this Section we present the final formulas for the Higgs couplings to supersymmetric
fermions (charginos and neutralinos). These can be read from Egs. ([I61]), (162), (I66)
and (I67]).

We interaction lagrangian can be written as
L=x4 [ng.*)PL n Dﬁﬁ*’PR] X% S+ hee.

1 — .
+3 X% [Ej(BSiO)PL + Eff_r;sio)PR] X5 S+ X4 [Fjg-o)PL + FEEEO)PR] X5 S}

1— 0 0 — 0 0
+5X% [Ejg 'L+ EY; )PR] X5 PY+X"a [sz(af P+ Fiy )PR] Xp Py (177)
where the indices i, A, B apply to the Higgs, and charginos (or neutralinos), respectively.

All repeated indices are summed over. The coefficients D, E and F' can be read from

Fqs. (IGT), (I62), (IG8) and (IET). We list them below .

+ % % % % * + *
DG = [_\/% Vs (Npy + tanfw N, ) — gV, 34} R,
(178)

+ oy
Dil(ffi = [% U2 (Npy +tanfywNp;) _gUAlNBg} R(fl)

( L(S° * * * * * * % * S0
EA§31' )= % [ — 9N uNp3 + Ny Nps — gNp,Nys + g'Np, A?J R(il )

* * * * * * * * S°
—l—% [ + 9NNy — Ny Ny + gNpa Ny — QINBlNAA:} R(i2) (179)

R(S° L(S%)\ *
EA(Bi )= (EA(BZ‘ ))

( L(P° i * * * * * * * * PO
EA(Bi )= —3 [ — 9N sNps + Ny Nps — gNpyNoyg + g'Np, A3] R(u )

. % % * * * * * * 0
5[+ ON NGy — NNy + 0NN — NN RS (150)

R(P° L(P)\*
EAJ(BZ' )= (EAJ(BZ' )>

L(S° * * S0 * * S0
Fib) = — (VAIUB2R(i1) Vi BlR(z’2))

(181)
0 0 0
P = =25 (VeiU RS + Vil RS)

9The rotation matrices R®") and R"") are real orthogonal matrices. However SPheno[9] considers

R(S+) to be in general complex, so we follow this convention.
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L(PO° . * * PO * * PO
Fiy ) =i % ( WURRY + ViUs R, )> (182)
182
0 . 0 0
Fi = i 2 (VBlUMR(fl ) 4 ViUnRE >)

6.6.5 Final formulas for the Higgs couplings to SM fermions

In this Section we present the final formulas for the Higgs couplings to Standard Model

fermions. These can be read from Eqgs. ﬁ]ﬂb and (IG7).

We write the interaction lagrangian as

£=87 0 (GH Py + GR Pr) v+ 87 d; (GH Py + GIE Pr)

ijk ijk

O Py + HU Pr) 6 S0k

+ ( ijk

)
.

+ 0 (1 P+ 10 Pr) € P

ijk

ijk ijk

(5

" (H”k Py + HIY PR) u; SO+ (Héﬁf Py + HO PR) d; S°
(1
+ (I

“p, IR(“)PR> w; PO+, ( 4P, 4 15 PR) d; P? (183)
The coefficients G, H and I can be read from Eqs. (I62) and (I67). We list them below.

L(qq’ St * d)
Gyt = (ho)wy RS Rejp” RRj)

ijk

184
R(qq') _ * R(SJr)* R (u) * R (d) ( )
GZ]k - (hU)Jlk?/ i2 Rk’ L]j/
L' SH) % ) « ;
G = (h)wy RS R Ral)
R(tv) (185)
Gijk =0
HZ?EP = _%(hE)]/Z/R(ii) RL%)/* RRz(f’)
186)
RO _ ( HL“))* (
gk T ijk
Héggd) — _%(h'D%’Z’R(}S:;) RLgch* RRZ(;J/)
187)
R@ _ ( HL(d)>* (
ijk ijk

19The order of the fields was chosen to be in agreement with SPheno[9] conventions.
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( L(u S0 w) * u
Hijgs ) = _%(hU)j’i’R(m) RLg'j') RREi')
R(u) L(u) (188)
Hijk = (Hz’jk )
[ 15 =i L(he);e RS RL)" Re
JRO _ (L) (189)
ke T\ ik
( L(d . (S9)
Imgc) -1 %(h’D%'l"R k1 RL]] RR
R(d) L)\ " (190)
[ijk = (Iijk
( L(u SO w) * u
R(u) L))" (191)
[ijk = (Iijk )

6.7 Trilinear scalar couplings with Higgs bosons

In this section we will show the trilinear scalar couplings envolving the Higgs boson and the
corresponding Goldstone bosons. The Higgs self interactions will be left for section
6.7.1 Higgs — Sfermion — Sfermion

We write the lagrangian as
£ =g srdar + g5 S 4+ hee

ijk ijk

+ ffkdd SOd.dr + j,f“ SO% it + gfiéé SO0 + jkW” S5t

POdd* 7 G POga* - POE*) 5 G POpi* S
+g§jk ! PPd;d; +gi(jk ) Pliyiy + 92( P +gi(jk " P (192)

We list below these couplings.

2 2
Stdi* Vq g SE) % Uy g Si d) m
g ) = {ﬁ ((hDhE)j'k' - 551%') R} +ﬁ ((hUhB)j'k' - 5@'%’) R ]R( ‘R}))
+ +) ) * (@
0 )RS + (A0 RS RO RO,

* SE) x % SE d) U
+ [M(hD)k’j’R§2 : +(AD)k’j’R§1 : ]REJ +3R§€k’
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Vu p($F)x | Vd p(sF) x| ot @ * pla
+ |:\/§Rzl + \/§Rz2 :| (h'Dh'U)j'k' Rj] +3Rl(c,11’+3 (193)
(Ster) _ 2 T 92 SE) « Uy 92 ) % 0) * (D
Gijk = [\/5 <(hEhE)j'k' - 5@"]«) Ry - NG 5 0k R } R%.), R
* (Si * * 1Y & 0) * U
+ [M(hD)k’j’Riz : + (AE)k’j’REf ) ]jo)‘ursRl(f)' (194)
(S9dd*)
ijk {vd (12 (39°+9") djn (hDhE)j'k') RGV— < T (39°+97) o R }R Ry}
w 0) i
L )RS 2 ()RS RO REY

V2

L * SO (6
+ =) B + L) RS | R R
- g/2 ; (SO) g/2 ( d _
+ _Ud (F - (hDhD)j’,k’> Ry - qu(sj’,k’Ri } REJ +3RI(;,L11’+3 (195)

(S9aa") _ (8°) 1
Yijk —[ 13 (39> =) 0w R+, (ﬁ (3°—4"?) 6j/k/—(hUhL)j/k/)R§§ ]R(u ‘R)})

» O
+ (ho)w R —

1 N 7 i
- , (S| pd) * pa
\/5 \/é(AU)J’k’Riz Rjj’ Rk,l)c’+3
W sy 1 s | pld «
+ _ﬂ(hU)k’j’Rﬂ - E(AU)k’j’Rgz : R§'7J?'+3Rl(ck)’
r g/2 (89 g/2 i
g bR 4o (T = (o), k) R ] RYLRY. (196)

Uy,

oy _| (Lo my s t (5) 2 59| 1(d) * p(d
a0 =i (1 (=) Sy Chonl o ) RED = 2 () 0,0 RS” | R R

r 1 0 * T -
b ' (89 H S0 d) * (i
+ _ \/E(AE)]’k’Ril + ﬁ(hE)j/k/Rﬁg '| RS RE
o . - )
o * (S ) :u * SO d) * U
+ i \/i(AE)k’j’Ril + ﬁ(hE)k’j'Rz(Q : R§7J)I+3Rl(sk)’
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(SOpir*)

ijk

o

g/2

2

o 12
(hTEhE)j',k') R - ng?@",k'RE }

Y e

(Ap) R

Sl

Nis

(]

S

- Sl

E(AE)k/ /R +
POpp*
gz‘(jk :

R~

5,3'+3

(@)
Rk,k’+3

S0) v) * (v
4 (g _'_9/2) 5 ’k’R,f2 ]R]]) R](Ck‘)’

* PO
(Ap)wy R +

* 0
(ho) Ry

* po
(hi)wy R +

(Ag);w R +
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\/’

1 0
E(AU)j’k’RZ%D

V2

W 0y
%(hE)j/kng

V2

=0

(hD)j'k’Rg K

(h})wy RS

1 N
(A)wy R

/J“ * PO |
—(h)wy Ry

d)
R( Rk k43

(d) (@)
R 5,3 +3Rkk’

| 2R

R

(@)
5,5 +3Rk‘k’

1| p@d « p@
R_]] Rk,k’+3
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5,3 +3Rkk’

(197)

(198)

(199)

(200)

(201)

(202)



6.8 Quartic scalar couplings with Higgs bosons

In this section we will show the quartic scalar couplings envolving the Higgs boson and the

corresponding Goldstone bosons. The Higgs self interactions will be left for section

6.9 Quartic sfermion interactions

In this section we will show the quartic scalar couplings envolving the sfermions among

themselves.

6.10 Higgs couplings with the gauge bosons
6.10.1 Higgs — Gauge Boson — Gauge Boson

6.10.2 Higgs — Higgs — Gauge Boson — Gauge Boson

6.11 Higgs boson self interactions

In this section we will show the self couplings envolving the Higgs boson among themselves.

We give separately the 3-point and 4-point interactions.

6.11.1 Higgs — Higgs — Higgs

For the 3-point Higgs boson self interactions we write the Lagrangian as

1 0q0 g0 1 0 p0 p0O 0g+qg— —
L=cgnui SIS+ 5ane " SIPIR +g50 7 SiSfS, (203)
where 1/6 and 1/2 are symmetry factors for the case of identical particles, chosen in such
a way that, for instance, the coupling gfﬁoso is really the Feynman rule for the vertice

(after multiplying by 7 as usual), that is,

SOSOSO _ 83£

[ 957957057 (204)

and similarly for the other cases. To simplify the notation we write the values for the

unrotated couplings defined by the relations

5,3’

0g0g0 ~§050g0 S0 S0 S0
g2 = g5 RS RYS) RS (205)

and similar relations. We get

QSOSOSO B 392Ud _ 3g’2vd gSOSOSO _gzvu 4 g’2vu
LL1 4 4 11,2 4 4

SO PO PO

1We have that, obviously, gf;ioso is completely symmetric and g; ;% is symmetric in the last two

entries.
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505050 :g Vy i g Uy gSOSOSO :g Va i g~ Uq
1,2,1 4 4 1,2,2 4 1
2 12 2 2
~ 505050 _g Uy, + g Uy ~5050g0 _w g “vq
2,1,1 4 4 21,2 4 4
2 2 2 2
505050 g vd+g Vg L §05050 397Uy 3970y (206)
2,2,1 4 4 2,2,2 4 4
2 2
~§0 p0 po o g Va g Va ~ G0 p0 po —O
91,11 Y R 91,12 =
2 2
~ 50 p0 po _0 gsop()PO _g (% g Vd
1,2,1 1,2,2 4 4
2 2
AG0pop0 T Uy g Uy ~ G50 p0 po -0
92.1,1 — 4 + 1 9212 =
2 2
~ 50 p0 po _0 ~ 50 p0 poO . g Vu g, Uy 207
2,2,1 = 9222 = - ( )
4 4
2 2 2
gsos+sf __9Y 9l gsos+sf _ 9
1,1,1 4 4 1,1,2 4
2 2 2
gsostsT _ _ 9 Vu gsostsT _ _ gla g U
1,2,1 4 1,2,2 1 4
2 2 2
gsests™ _ 9 G Vu gSostsT — _ 9 Vd
2,1,1 1 4 2,1,2 4
21) 21) /21)
L $0s+s— _ g d .S0sts— _ GTUu g7V (208)
9221 e 92,22 = 4 1

6.11.2 Higgs — Higgs — Higgs — Higgs

For the 4-point Higgs boson self interactions we write the Lagrangian as

1 1 1
£ = O ES SESOSES] + e SYSIPLRY + o Eat " POPRPLRY. (209)

1 508095+S— @0 @0 — 1 POPOSt0S5— 0 po - 1 Sts—s+s- - —
agi,j,k,l S; Sj S;Sl + igi,j,k,z F; Pg S,jSl + (2!)ggi,j,k,l S;_Sj SI:_Sl

We get for the unrotated couplings

. Al L A
o 4 4 o e e 4 4
AsOsOsOsO AsOsOsOsO AsOsOsOsO g2 9/2 AsOsOsOsO
912,11 =0, 91,2,1,2 = 01221 :Z + i 91,2,2,2 =0
AsosOSOSO _0 ASOSOSOSO - ASOSOSOSO _92 9/2 ASOSOSOSO o
2111 =Y, 92112 T 92121 = + R G195~ =0 (210)
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2 2
A50505050 _g g ASOSOSOSO o A50505050 —O
2211 T4 + Ve 92212 = UY92221 =Y,
2 2
ASOsOPOPO _ g_ . g_ ASOSOPOPO o ASOsOPOPO —O
911.1,1 - 10 1,1,1,2 = 91,121 =V,
ASOsOPOPO _0 ASOSOPOPO o ASOsOPOPO —O
1,2,1,1 =Y, 1,2,1,2 = 01221 =Y,
/\SOSOPOPO _0 /\SOSOPOPO o /\SOSOPOPO —O
2,1,1,1 =U, 2,1,1,2 = 02121 =U,
2 2
~ 5050 po po _g qg A5050pOp0 . 50g0p0po -0
2,2,1,1 1 + 1 2,2,1,2 = 02221 =U,
/\POPOPOPO 392 3g/2 /\POPOPOPO /\POPOPOPO
911,11 T4 o 91,1,1,2 = 011,21 =0,
2
AI)OPOPOPO —O APOPOIJOPO_ AI)OPOPOPO _g_
91211 ) 91,2,1,2 = 01221 =
2
/\POPOPOPO —O APOPOPOPO_ /\POPOPOPO _g_
921,11 =U, 92,1,1,2 = 021,21 7
2 2
AI)OPOPOPO _g g AI)OPOPOPO o AI)OPOPOPO —O
92211 =1 + 0 92212 = 02221 =0,
2 2
~5050s+g— 9§ .g0g0g+g—  .50g0g+g- —0
1,1,1,1 = 1 10 91,1,1,2 =01,1.2.1 =V,
~50505+ 5= ~§0505+5—  .g0g0g+g—
91211 =0, 91,212 = 01221 =
5508°sts~ ~50805+ g~ .50g0g+tge—
2,1,1,1 =U, 2,1,1,2 = 92121 =
2 12
~80505+s- 9~ n 9~ .s0805+5— _ ~50805+ 5 —0
92211 = 1 10 92212 = 092221 )
2 2
GPOPOstsT _ 9 9 POPUSTST _ GPOPOstsT
911,11 - 10 91,1,1,2 = 011,21 =U,
2
GPOPOSTST ~POPOS+S— _ ~poposts— 9~
1,211 =U, 91,2,1,2 = 01221 R
2
GPOPOStST ~POPOSHS— _ ~pOpOgtg- 9
921,11 =U, 92,1,1,2 = 02121 R
2 2
~POposts— 9~ 4 g~ . popogtg— _ .pOpogtg- —0
92211 - g0 2212 = 92221 =y,
2 2
~S+tS=S+S— _ asts—sts— 9 47
911,11 = 02222 - 9

39

~50505080

2,2,2,2

ASOSOPOPO
1,1,2,2

0.0 p0 PO
SSPP_O7

1,2,2,2

Q0. q0 PO PO
SSPP_O’

2,1,2,2

/\SOSOPOPO
2,2,2,2 =

/\POPOPOPO

91,1,2,2

91,2,2,2

921,22

AI)OPOPOPO

2,2,2,2

~50505+85—

91,122

91,222

y 921,22

~50505T 5~

92,222

~APOPOSTS—
91,1,2,2 =

~POPOS+S—
91,2,2.2

APOPOSTS—
921,22

APOPOSTS—
2,2,2,2 =
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AI)OPOPOPO

~ PO p0 p0 p0o
POPOPOPY ()
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+ D
4
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o 9
4 4
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__ 9.
4 4’
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S9S05TST g

G060 ot g—
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2 2
~StS—§tS— _ AstsmstsT _ asts—stse _ astsmsts— 9 9

91,1,2,2 = 01221 = 921,12 = 092211 -+
4 4
GSTETSTST _ aSTSTSTST _ nSTSTSTST _ aStsTstsT _ astsTstsT
91.1,1,2 =0911.2.1 = 91211 = 012,1,2 = 012,22 =
AS+tS—S+S— _ AS+STSHST _ ASTSTSTS— _ AStS—StS— _ Ag+S—g+s—
92.1,1,1 =921.21 = 921,22 = 09221,2 = 029221 =0 (215)

6.12 Ghost interactions
6.12.1 Ghost — Ghost — Gauge Boson

6.12.2 Ghost — Ghost — Higgs
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A Changelog

e 24/6/2011
— Corrected misprints in Eq. IG1 Eq. 0162, Eq. 168, Eq. and Eq. I70. We
thank R. Fonseca for pointing out these.
e 23/11/2010
— Added the 3-point and 4-point Higgs self-interaction in sections [6.11.1] and
0. 11.2)
e 18/11/2010
— Added the Higgs—Sfermion—Sfermion couplings of section [6.7.11
e 16/11/2010
— Changed the convention in Eq. (I61)) to write the couplings for H,  instead of
H;". This leads to Eq. (ITT7) and Eq. (I78) in agreement with SPheno.
e 15/11/2010

— Changed the convention of the left-handed rotation matrices for leptons, Eq. (O0).
— Corrected a misprint in Eq. (I61)).

— Changed notation in Eq. (I68) for CZ.LA(_;) and Cﬁ&) to be uniform with the
other terms.

Changed some of the couplings in Eqs. (I69)-(L76) to be consistent with the
previous changes.

— All the couplings in Eqgs (I69)-(I76) were checked against SPheno[9] with com-
plete agreement.

e 16/2/2005

— sin? and cos? were exchanged in Eq. [78l
e 28/11/2003

— Corrected misprints in Eq. Q6 Eq. 70, Eq. I71 and Eq.
e 27/10/2002

— Changed Version Number to 1.6.xxx corresponding to the year 2002.

— Changed minor points in notation in Eq. [62 and related expressions.
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e 31/8/2001

— Corrected Q = T35 +Y in Eq. 43l
e 17/6/2001

— Introduced the VVV and VVVV couplings.
e 27/5/2001

— Introduced the version numbering convention.
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